Terrestrial Biosphere-Atmosphere Fluxes

Fluxes of trace gases, water, and energy between the terrestrial biosphere and the atmosphere govern the state and fate of these two coupled systems. This "breathing of the biosphere" is controlled by a large number of interacting physical, chemical, biological, and ecological processes. In this integrated and interdisciplinary book, the authors provide the tools to understand and quantitatively analyze fluxes of energy, complex organic compounds such as terpenes, and trace gases including carbon dioxide, water vapor, and methane.

The book first introduces the fundamental principles that affect the supply and demand for energy and trace gas exchange at the leaf and soil scales: thermodynamics, diffusion, turbulence, and physiology. It then builds on these principles to model the exchange of energy, water, carbon dioxide, terpenes, and stable isotopes at the ecosystem scale. Detailed mathematical derivations of commonly used relations in biosphere-atmosphere interactions are provided for reference in appendices.

An accessible introduction for graduate students to this essential component of Earth system science, this book is also a key resource for researchers in many related fields such as atmospheric science, hydrology, meteorology, climate science, biogeochemistry, and ecosystem ecology.

Online resources at www.cambridge.org/monson:

• A short online mathematical supplement guides students through basic mathematical principles, from calculus rules of derivation and integration, to statistical moments and coordinate rotation.

Russell Monson is Louise Foucar Marshall Professor at the University of Arizona, Tucson and Professor Emeritus at the University of Colorado, Boulder. His research focuses on photosynthetic metabolism, the production of biogenic volatile organic compounds and plant water relations from the scale of chloroplasts to the globe. He has received numerous awards, including the Alexander von Humboldt Fellowship, the John Simon Guggenheim Fellowship, and the Fulbright Senior Fellowship, and was also appointed Professor of Distinction in the Department of Ecology and Evolutionary Biology at the University of Colorado. Professor Monson is a Fellow of the American Geophysical Union and has served on advisory boards for numerous national and international organizations and projects. He is Editor-in-Chief of the journal *Oecologia* and has over 200 peer-reviewed publications.

Dennis Baldocchi is Professor of Biometeorology at the University of California, Berkeley. His research focuses on physical, biological, and chemical processes that control trace gas and energy exchange between vegetation and the atmosphere and the micrometeorology of plant

canopies. Awards received include the Award for Outstanding Achievement in Biometeorology from the American Meteorological Society (2009), and the Faculty Award for Excellence in Postdoctoral Mentoring (2011). Professor Baldocchi is a Fellow of the American Geophysical Union and is a member of advisory boards for national and international organizations and projects. He is Editor-in-Chief of the *Journal of Geophysical Research: Biogeosciences* and has over 200 peer-reviewed publications.

Terrestrial Biosphere-Atmosphere Fluxes

RUSSELL MONSON University of Arizona DENNIS BALDOCCHI University of California, Berkeley

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107040656

© Russell Monson and Dennis Baldocchi 2014

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2014

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication data Monson, R. K. (Russell K.), 1954– Terrestrial biosphere-atmosphere fluxes / Russell Monson, Dennis Baldocchi. pages cm ISBN 978-1-107-04065-6 (hardback) 1. Atmospheric circulation. 2. Atmospheric turbulence. 3. Biosphere. I. Baldocchi, Dennis D. II. Title. QC880.4.A8M658 2013 551.51–dc23 2013024741

ISBN 978-1-107-04065-6 Hardback

Additional resources for this publication at www.cambridge.org/monson

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Preface	<i>page</i> xi
List of symbols	xiv
1 The general nature of biosphere-atmosphere fluxes	1
1.1 Biosphere-atmosphere exchange as a biogeochemical process	2
1.2 Flux – a unifying concept in biosphere-atmosphere interactions	3
1.3 Non-linear tendencies in biosphere-atmosphere exchange	5
1.4 Modeling – a tool for prognosis and diagnosis in ecosystem-atmosph	ere
interactions	10
1.5 A hierarchy of processes in surface-atmosphere exchange	12
2 Thermodynamics, work, and energy	15
2.1 Thermodynamic systems and fluxes as thermodynamic processes	16
2.2 Energy and work	17
2.3 Free energy and chemical potential	20
2.4 Heat and temperature	23
2.5 Pressure, volume, and the ideal gas law	26
2.6 Adiabatic and diabatic processes	28
2.7 The Navier-Stokes equations	29
2.8 Electromagnetic radiation	31
2.9 Beer's Law and photon transfer through a medium	34
3 Chemical reactions, enzyme catalysts, and stable isotopes	38
3.1 Reaction kinetics, equilibrium, and steady state	39
3.2 The energetics of chemical reactions	41
3.3 Reduction-oxidation coupling	46
3.4 Enzyme catalysis	50
3.5 Stable isotopes and isotope effects	55
Appendix 3.1 Formal derivations of the Arrhenius equation and the Q_{10}	model 60
Appendix 3.2 Derivation of the Michaelis-Menten model of enzyme kine	etics 62
4 Control over metabolic fluxes	64
4.1 The principle of shared metabolic control	65
4.2 Control over photosynthetic metabolism	68
4.3 Photorespiratory metabolism	80
4.4 Tricarboxylic acid cycle respiration ("dark respiration") in plants	82
4.5 C_4 photosynthesis	85

۷

vi	Contents			
	5 Modeling the metabolic CO ₂ flux	89		
	5.1 Modeling the gross rate of CO_2 assimilation and photorespiration	90		
	5.2 Modeling dark respiration (R_d)	96		
	5.3 Net versus gross CO_2 assimilation rate	100		
	5.4 The scaled connections among photosynthetic processes	109		
	6 Diffusion and continuity	111		
	6.1 Molecular diffusion	112		
	6.2 Diffusion through pores and in multi-constituent gas mixtures	121		
	6.3 Flux divergence, continuity, and mass balance	131		
	Appendix 6.1 A thermodynamic derivation of Fick's First Law	133		
	7 Boundary layer and stomatal control over leaf fluxes	136		
	7.1 Diffusive driving forces and resistances in leaves	137		
	7.2 Fluid-surface interactions and boundary layer resistance	138		
	7.3 Stomatal resistance and conductance	144		
	7.4 The leaf internal resistance and conductance to CO_2 flux	166		
	7.5 Evolutionary constraint on leaf diffusive potential	168		
	Appendix 7.1 A thermodynamic derivation of diffusive conductances	169		
	Appendix 7.2 Derivation of the ternary stomatal conductance to CO_2 , H_2O , and dry air	169		
	Appendix 7.3 Derivation of the Leuning and Monteith forms of the			
	Ball-Woodrow-Berry model	171		
	8 Leaf structure and function	173		
	8.1 Leaf structure	174		
	8.2 Convergent evolution as a source of common patterns in			
	leaf structure and function	177		
	8.3 Photon transport in leaves	181		
	8.4 CO_2 transport in leaves	189		
	8.5 Water transport in leaves	191		
	8.6 The error caused by averaging non-linearities in the flux relations of leaves	193		
	8.7 Models with explicit descriptions of leaf gradients	198		
	Appendix 8.1 Derivation of the Terashima et al. (2001) model describing			
	leaf structure and its relation to net CO ₂ assimilation rate	200		
	9 Water transport within the soil-plant-atmosphere continuum	203		
	9.1 Water transport through soil	204		
	9.2 Water flow through roots	209		
	9.3 Water transport through stems	211		
	9.4 The hydraulic conductance of leaves and aquaporins	217		
	9.5 Modeling the hydraulic conductance and associated effects of embolism	218		
	9.6 Hydraulic redistribution	220		

vii	Contents	
1() Leaf and canopy energy budgets	2
	10.1 Net radiation	2
	10.2 Sensible heat exchange between leaves and their environment	2
	10.3 Latent heat exchange, atmospheric humidity, and temperature	2
	10.4 Surface latent heat exchange and the combination equation	2
	Appendix 10.1 Derivation of the Clausius–Clapeyron relation	2
	Appendix 10.2 A thermodynamic approach to derivation of the	
	Penman–Monteith equation	2
	Appendix 10.3 Derivation of the isothermal form of the Penman–Monteith	
	equation	4
11	Canopy structure and radiative transfer	2
	11.1 The structure of canopies	2
	11.2 The solar radiation regime of canopies	4
	11.3 Remote sensing of vegetation structure and function	4
	Appendix 11.1 Reconciling the concepts of statistical probability and	
	canopy photon interception	4
	Appendix 11.2 The theoretical linkage between the probability of photon flux	
	penetration (P_0) and the probability of a sunfleck (P_{sf})	
	at a specific canopy layer	4
12	2 Vertical structure and mixing of the atmosphere	2
	12.1 Structure of the atmosphere	2
	12.2 Atmospheric buoyancy, potential temperature, and the equation of state	4
	12.3 Atmospheric stability	4
	Appendix 12.1 Derivation of potential temperature and conversion from	
	volume to pressure in the conservation of energy equation	4
13	Wind and turbulence	4
	13.1 The general nature of wind	2
	13.2 Turbulent wind eddies	4
	13.3 Shear, momentum flux, and the wind profile near the surface	-
	13.4 Turbulence kinetic energy (TKE)	2
	13.5 Turbulence spectra and spectral analysis	-
	13.6 Dimensionless relationships: the Reynolds number and drag coefficient	2
	13.7 The aerodynamic canopy resistance	3
	13.8 Eulerian and Lagrangian perspectives of turbulent motions	3
	13.9 Waves, nocturnal jets, and katabatic flows	
	averaging averaging with extended reference to Keyholds	2
	Appendix 13.2 Derivation of the Reynolds shear stress	3
	Annendix 12.2 Derivation of the logarithmic wind profile	-

viii	Contents	
	14 Observations of turbulent fluxes	
	14.1 Turbulent fluxes in the atmospheric surface layer	
	14.2 The effect of a plant canopy on atmospheric turbulence	
	14.3 Turbulent fluxes above canopies	
	14.4 Mesoscale fluxes	
	Appendix 14.1 Derivation of Monin–Obukhov similarity relationships Appendix 14.2 Derivation of the conservation equation for canopy flux	
	15 Modeling of fluxes at the canopy and landscape scales	
	15.1 Modeling canopy fluxes	
	15.2 Mass balance, dynamic box models, and surface fluxes	
	15.3 Eulerian perspectives in canopy flux models	
	15.4 Lagrangian perspectives in canopy flux models	
	Appendix 15.1 Derivation of the model for planetary boundary layer	
	(PBL) scalar budgets in the face of entrainment	
	16 Soil fluxes of CO_2 , CH_4 , and NO_x	
	16.1 The decomposition of soil organic matter	
	16.2 Control by substrate over soil respiration rate	
	16.3 Control by climate over soil respiration rate	
	16.4 Coupling of soil respiration to net primary production and implications	
	for carbon cycling in the face of global change	
	16.5 Methane emissions from soils	
	16.6 The fluxes of nitrogen oxides from soils	
	Appendix 16.1 Derivation of first-order litter decomposition kinetics	
	17 Fluxes of biogenic volatile compounds between plants and the atmosphere	
	17.1 The chemical diversity of biogenic volatile organic compounds (BVOCs)	
	17.2 The biochemical production of BVOCs	
	17.3 Emission of metabolic NH_3 and NO_2 from plants	
	17.4 Stomatal control over the emission of BVOCs from leaves	
	17.5 The fate of emitted BVOCs in the atmosphere	
	17.6 Formation of organic secondary aerosol particles in the atmosphere Appendix 17.1 Reactions leading to the oxidation of BVOCs to form	
	tropospheric O ₃	
	18 Stable isotope variants as tracers for studying biosphere-atmosphere exchange	4
	18.1 Stable isotope discrimination by Rubisco and at other points in plant	
	carbon metabolism	
	18.2 Fractionation of stable isotopes in leaves during photosynthesis	4
	18.3 Fractionation of the isotopic forms of H_2O during leaf transpiration	4
	18.4 Isotopic exchange of ¹⁸ O and ¹⁶ O between CO_2 and H_2O in leaves	4

ix	Contents		
	18.5 Assessing the isotopic signature of ecosystem respired CO_2 – the		
	"Keeling plot"	423	
	18.6 The influence of ecosystem CO_2 exchange on the isotopic composition		
	of atmospheric CO ₂	424	
	Appendix 18.1 Derivation of the Farquhar et al. (1982) model and		
	augmentations for leaf carbon isotope discrimination	429	
	Appendix 18.2 Derivation of the leaf form of the Craig–Gordon model	432	
	References	434	
	Index	473	
	Color plate section is found between pages 202 and 203		
	Supplement available at www.cambridge.org/monson:		

• Supplement 1: Mathematical concepts

Preface

This book is about *interactions* – those that occur between the terrestrial biosphere and the atmosphere. Understanding biosphere-atmosphere interactions is a core activity within the discipline of *earth system sciences*. Many of the most pressing environmental challenges that face society (e.g., the anthropogenic forcing of climate change, urban pollution, the production of sustainable energy sources, and stratospheric ozone depletion), and their remedies, can be traced to biosphere-atmosphere interactions within the earth system. Traditionally, biosphere-atmosphere interactions have been studied within a broad range of conventional disciplines, including biology, the atmospheric and geological sciences, and engineering. In this book we take an integrated, interdisciplinary perspective; one that weaves together concepts and theory from all of the traditional disciplines, and organizes them into a framework that we hope will catalyze a new, synergistic approach to teaching university courses in the earth system sciences.

As we wrote the initial outline for the book, we recognized that the interdisciplinary perspective we sought, in a subtle way, had already emerged; it simply had not been formally collated into a synthetic format. For the past several years, biologists have been attending meetings and workshops traditionally associated with meteorology and geochemistry and conversely meteorologists and geochemists have been attending biology meetings. As a result, newly defined and integrative disciplines have already appeared with names such as "biometeorology," "bioclimatology," and "ecohydrology." Thus, the foundations for the book had already been laid. We simply needed to find the common elements and concepts that permeated these emerging disciplines and pull them together into a single treatment.

We have written the book as two colleagues who have migrated from different ends of the biology-meteorology spectrum – one (Monson) from formal training in biology and one (Baldocchi) from formal training in meteorology – but who also have struggled throughout their careers to grasp concepts at these disciplinary interfaces. In many ways this book is autobiographical; it reflects the challenges that both of us faced as we developed collaborations across these disciplines. We actually met for the first time at a conference in Asilomar, California in 1990, which was dedicated to bridging the gaps among biologists, meteorologists, and atmospheric chemists. Thus, the interdisciplinary foundation for the book has deep roots that were initiated over two decades ago. From that initial friendship we developed a collaboration in which we began to compile and combine materials that we extracted from our respective course lectures.

This book is intended to be used as both a textbook and reference book. As a textbook it is intended to support courses for advanced undergraduate students or beginning graduate students. As a reference book it is intended to provide detailed mathematical

xi

xii

Preface

derivations of some of the most commonly used relations in biosphere-atmosphere interactions. In order to address both aims, we have written the primary text of the chapters to provide what we consider to be *the rudiments*; those concepts essential to an introductory understanding of process interactions and fundamental theory. Detailed mathematical derivations are presented as "appendices" at the end of many chapters. These derivations are intended mostly as reference material; however, in our own experiences we discovered that formal derivations, such as these, also served as an important resource to students. In fact a well-received feature of some of our classes was the "Derivation Derby" held as an evening session in which students were required to use the chalk board to present, in their own words, the foundations of some of the more classic biophysical relations; of course with good food and drink as accompaniment. We have used a second tool to develop advanced topics of more conceptual, rather than quantitative, nature - the "boxes" that are embedded in many chapters. In the boxes we have tried to bring out current topics and issues that appear to have captured the attention of the field at the moment, or we have described studies that have used the concepts under discussion in unique ways. Once again, the boxes will be most effectively used to provide supplementary material that embellishes the rudimentary topics presented in the main text of the chapters. We have tried to use a modest frequency of citations in most chapters. Much of the material we cover is of an elementary nature, and in order to sustain continuity in those discussions we have not interrupted the text with frequent citations. In those cases where we thought that a citation might be useful for further explorations of a topic, especially where a review article or an article of historical significance might be useful, we have provided citations. In the sections that cover contemporary concepts, especially those still being defined through active debate in the literature, we have provided a more complete record of citations. Furthermore, many of the figures were adopted from past studies, and we have provided citations in the figure legends, which will be useful in directing students to primary sources in the literature.

One of the initial decisions we made as we organized material for the book involved the strategy for topical organization. We considered two possible frameworks: chapters that focused on single environmental factors (e.g., a chapter on water, a chapter on light, a chapter on temperature, and so on), or chapters that build in spatiotemporal scale, from processes at smaller scales to those at larger scales (e.g., a chapter on cells and metabolism, a chapter on leaves and diffusion, a chapter on canopies and turbulent transport, and so on). Conventional treatments, especially in texts that deal with environmental physics, have followed the former model, and they have done so with good success. However, we recognized that many of the observations and much of the theory that has emerged in recent years has been framed around hierarchical scaling, and we wanted to develop a treatment that could be used within this framework. After much discussion and deliberation, we decided to follow the second model, though with a bit of introgression from the first model. Thus, the chapters build in scale, beginning with chloroplasts, progressing to leaves and canopies, and culminating with the planetary boundary layer. Each of these scaled chapters is preceded with one or more chapters on the nature of relevant environmental factors as drivers of processes. Thus, the chapter on leaf scale transport is preceded with a chapter on diffusion, and the chapter on turbulent transport is preceded with a

xiii

Preface

chapter on stability in the planetary boundary layer. Exceptions to these patterns are the initial three chapters, which deal with broad topics in thermodynamics and chemical rate theory, and the final three chapters, which deal respectively with soil carbon and nitrogen fluxes, fluxes of volatile reactive compounds and atmospheric chemistry, and fluxes related to stable isotope fractionation. These chapters are intended to provide a framework for understanding the relations among fluxes, sources/sinks, and gradients, in the case of the earliest chapters, and to elaborate on some important recent directions in earth system sciences research, in the case of the latest chapters.

The overall emphasis of the book is on understanding processes that control fluxes. Less emphasis is placed on descriptions of biogeochemical pools and reservoirs. We also pay less attention to instrumentation and experimental protocols. Most of the chapters focus on CO_2 , H_2O , and energy fluxes, although we also take up the topic of other trace gases in briefer format. Finally, we note that our book focuses exclusively on terrestrial ecosystems. Our decision not to wade into the oceans was determined by recognition of our strengths and weaknesses as scientists and authors, and this decision does not reflect a bias against the importance of ocean processes to earth system dynamics.

We appreciate the many discussions we have had with generous colleagues as we wrote the book and sought critical feedback. Reviews and discussions of several of the chapters in early form were provided by Dave Bowling, Tom Sharkey, John Finnigan, Rowan Sage, Ray Leuning, Laura Scott-Denton, Peter Harley, Tony Delany, Dan Yakir, Jielun Sun, Mike Weintraub, Dave Moore, Paul Stoy, Dave Schimel, and Keith Mott. Many thanks to all of you! While these colleagues provided many useful insights and suggestions, responsibility for the book's final form belongs with us.

Symbols

In writing a book with as broad a set of mathematical relations as that presented here we had to make decisions as to whether to create new symbols for cases of duplicated usage, or retain those most often used, by convention, in the scientific literature. We tried to use conventional symbols as often as was possible, and we allowed for some overlap in designation, especially when duplicated symbols were used in different chapters.

Uppercase, non-italicized Latin

 s^{-1})

А	CO_2 assimilation rate (µmol m ⁻² s ⁻¹)
A _c	canopy net CO ₂ assimilation rate
A _n	net CO ₂ assimilation rate
Ag	gross CO ₂ assimilation rate
E	energy (J) or energy content (J mol^{-1})
Ea	energy of activation $(J \text{ mol}^{-1})$
Е	surface evaporation or leaf transpiration flux density (mol m^{-2}
Et	total enzyme protein content (mol l^{-1})
Eo	standard reduction potential (J coulomb ⁻¹)
F	flux density (mol $m^{-2} s^{-1}$)
F _c	flux density of CO ₂
Fw	flux density of H ₂ O
F _i	flux density of constituent <i>j</i>
F _J	photosynthetic electron transport flux density
F _{vm}	vertical atmospheric mean flux density
F _{vt}	vertical atmospheric turbulent flux density
F	Faraday's constant (coulomb mol^{-1})
G	conduction flux density of heat $(J m^{-2} s^{-1})$
G	free energy (J) or molar free energy content (J mol^{-1})
G^0	standard free energy (J) or molar free energy content (J mol^{-1})
G	rate of biomass increase (g s^{-1})
GPP	gross primary productivity (mol $m^{-2} s^{-1}$ or mol $m^{-2} yr^{-1}$)
Н	enthalpy (J) or enthalpy content (J mol^{-1})
Н	conduction of heat (W m^{-2})

xiv

XV		List of symbols
	H _{se}	conduction of sensible heat (from the surface to the atmosphere) (W m^{-2})
	H_{G}	conduction of sensible heat (from the atmosphere to the ground surface) (W m^{-2})
	Ι	photon flux density (mol photons $m^{-2} s^{-1}$)
	I _D	direct photon flux density
	Id	diffuse photon flux density
	Is	isoprene emission flux density (nmol $m^{-2} s^{-1}$)
	J	joule unit of energy (kg m ² s ^{-1})
	LAI	leaf area index (m ² leaf area m ^{-2} ground area)
	L	leaf area index (used in equations)
	Le	effective LAI
	Ν	newton unit of force (kg m s^{-1})
	N _a	Avogadro's number
	NDVI	normalized difference of vegetation index (dimensionless)
	NPP	net primary productivity (mol $m^{-2} s^{-1}$ or mol $m^{-2} yr^{-1}$)
	Р	total atmospheric pressure (N m^{-2} , Pa)
	Р	statistical probability
	P ₀	probability of photon penetration to a canopy layer
	\mathbf{P}_{sf}	probability of a sunfleck in a canopy layer
	Q	thermal energy (J) or molar thermal energy content (J mol^{-1})
	Q ₁₀	respiratory quotient (ratio of R_d at two temperatures separated by 10 °C)
	R	radiant energy flux density $(J m^{-2} s^{-1} \text{ or } W m^{-2})$
	R _S	shortwave radiant energy flux density $(J m^{-2} s^{-1} \text{ or } W m^{-2})$
	R _L	longwave radiant energy flux density $(J m^{-2} s^{-1} \text{ or } W m^{-2})$
	R _n	net radiation flux density (J $m^{-2} s^{-1}$ or W m^{-2})
	R	isotope abundance ratio
	R _d	"dark" (mitochondrial) respiration (μ mol m ⁻² s ⁻¹)
	R _e	ecosystem respiration
	R _g	growth mitochondrial respiration
	R_m	maintenance mitochondrial respiration
	S	molar entropy content (J mol ⁺ K ⁺)
	S	amount of substrate (moles)
	S	sink or source "strength," as a flux density (mol m ⁻² s ⁻¹)
	S _{rel}	relative specificity of Rubisco (unitless)
	[S]	enzyme substrate concentration (mol 1 ⁻¹ or mol m ⁻³)
	Т	temperature (K or °C)
	TKE	turbulence kinetic energy (J)
	TPU	triose phosphate utilization flux density (μ mol m \sim s \sim)
	U	internal energy (J) or molar internal energy content (J mol ⁻¹)
	V	volume (m) Michaelie Monter colorite as \mathcal{C} signt (m, 1, -1)
	V _{max}	whentens-menten velocity coefficient (mol s)

Cambridge University Press & Assessment 978-1-107-04065-6 — Terrestrial Biosphere-Atmosphere Fluxes Russell Monson, Dennis Baldocchi Frontmatter <u>More Information</u>

xvi	List of symbols
	 V_{cmax} Michaelis–Menten velocity coefficient for Rubisco carboxylation V_{omax} Michaelis–Menten velocity coefficient for Rubisco oxygenation W work (J) or molar work content (J mol⁻¹) W total plant biomass (g)
	Y_g growth yield (fraction of substrate converted to biomass)

Uppercase, italicized Latin

- A surface area (m^2)
- A_G ground area
- leaf area A_L feedback multiplier (unitless) В permeability coefficient for viscous flow (m^2) B_k drag coefficient (dimensionless) C_D flux control coefficient (unitless) C_{Ex} radiative transfer extinction function (fraction of total PPFD) E_x force (N) F molar diffusive force (N mol^{-1}) F_d drag force (g m s⁻²) F_D
- G fraction of leaf area oriented normal to I_D in radiative transfer models
- *G* gain of feedback loop (unitless)
- G_c closed-loop feedback gain
- G_o open-loop feedback gain
- K_d molecular diffusion coefficient (m² s⁻¹)
- ${}^{k}K_{d}$ Knudsen diffusion coefficient (m² s⁻¹)
- K_{dh} diffusion coefficient for heat (m² s⁻¹)
- K_{dw} diffusion coefficient for H₂O
- K_{dc} diffusion coefficient for CO₂
- K_D eddy diffusion coefficient (m² s⁻¹)
- K_e equilibrium constant (unitless)
- K_I canopy PPFD extinction coefficient ($K_I = G/\cos \theta$)
- K_m Michaelis–Menten coefficient (mol l⁻¹ or mol m⁻³)
- K_c Michaelis–Menten coefficient for dissolved CO₂
- K_o Michaelis–Menten coefficient for dissolved O₂
- K_s steady state constant (mol⁻¹)
- *Kn* Knudsen number (dimensionless)
- *L* turbulent length scale (m) (generally used)
- *L* Obukhov length scale (m) (specifically used)
- *Nu* Nusselt number (dimensionless)

xvii		List of symbols
	R	universal gas constant (J K^{-1} mol ⁻¹)
	Re	Reynolds number (dimensionless)
	Ri	Richardson number (dimensionless)
	Ri_c	critical Richardson number
	Ri_b	bulk Richardson number
	S_c	radiative transfer scattering function (fraction of total PPFD)
	$S(\kappa)$	spectral density as a function of wavenumber
	V	specific volume $(m^3 kg^{-1})$
	\overline{V}_w	partial molal volume of H_2O (m ³ mol ⁻¹)

Lowercase, non-italicized Latin

a	radiant or photon absorptance (fractional)
aPAR	fraction of absorbed photosynthetically active radiation
с	concentration as mole fraction
C _{ac}	atmospheric CO ₂ mole fraction
c _{aw}	atmospheric H ₂ O mole fraction
c _{aw} *	atmospheric H ₂ O mole fraction at saturation
c _{cc}	chloroplast CO ₂ mole fraction
c _{co}	chloroplast O ₂ mole fraction
c _{ic}	intercellular CO_2 mole fraction in the leaf air spaces
c _{iw}	intercellular H ₂ O mole fraction in the leaf air spaces
c _{sc}	CO ₂ mole fraction at leaf surface
c_{Ex}	mole fraction concentration of enzyme x
fPAR	fraction of absorbed photosynthetically active radiation
g	conductance (m s ^{-1} or mol m ^{-2} s ^{-1})
g _b	boundary layer conductance (m s ^{-1} or mol m ^{-2} s ^{-1})
g _{bw}	boundary layer conductance to H_2O diffusion (m s ⁻¹ or mol m ⁻² s ⁻¹)
g _{bc}	boundary layer conductance to CO_2 diffusion (m s ⁻¹ or mol m ⁻² s ⁻¹)
g _s	stomatal conductance (m s ^{-1} or mol m ^{-2} s ^{-1})
g_{sw}	stomatal conductance to H_2O vapor diffusion (m s ⁻¹ or mol m ⁻² s ⁻¹)
g _{sc}	stomatal conductance to CO_2 diffusion (m s ⁻¹ or mol m ⁻² s ⁻¹)
g _{ic}	internal leaf conductance to CO_2 diffusion (m s ⁻¹ or mol m ⁻² s ⁻¹)
g _{tw}	total leaf conductance to H_2O vapor diffusion (m s ⁻¹ or mol m ⁻² s ⁻¹)
h	height (m)
m	mass (g)
n	molar quantity (mol)
р	pressure or partial pressure of a gas constituent (N m $^{-2}$, Pa)
p _r	probability of recollision (secondary collision) of a photon

Cambridge University Press & Assessment 978-1-107-04065-6 — Terrestrial Biosphere-Atmosphere Fluxes Russell Monson, Dennis Baldocchi Frontmatter <u>More Information</u>

xviii	List of symbols		
	r radius (m)		
	r reflectance of incident PPFD (fractional)		
	r resistance (s m^{-1})		
	r_a aerodynamic resistance (s m ⁻¹)		
	r_{bl} boundary layer diffusive resistance (s m ⁻¹)		
	r_i internal leaf diffusive resistance (s m ⁻¹)		
	r_s stomatal diffusive resistance (s m ⁻¹)		
	t transmittance of incident PPFD (fractional)		
	v speed or velocity (mol $l^{-1} s^{-1}$ or m s^{-1})		
	V_c Rubisco carboxylation rate on leaf area basis (µmol m ⁻² s ⁻¹)		

Lowercase, italicized Latin

- a acceleration (m s⁻²)
- c speed of "light" (m s⁻¹)
- c specific heat $(J \text{ kg } \text{K}^{-1})$
- c_p specific heat of dry air at constant pressure (J kg⁻¹ K⁻¹)
- c_v specific heat of dry air at a constant volume (J kg⁻¹ K⁻¹)
- d boundary layer length scale (m)
- d_H canopy displacement height (m)
- f frequency (s⁻¹)
- f_a fraction of canopy woody surface area
- g gravitational acceleration (~ 9.8 m s⁻²)
- *h* Planck's constant (J s)
- h_c heat transfer coefficient (J m⁻² s⁻¹ K⁻¹)
- k reaction rate constant (s⁻¹ or mol⁻¹ s⁻¹)
- k_{cat} enzyme catalytic rate constant
- *k* von Karman's constant (dimensionless)
- k_B Boltzmann constant (J K⁻¹)
- k_H Henry's Law partitioning coefficient (kPa liter mol⁻¹)
- k_N canopy nitrogen allocation coefficient (dimensionless)
- *l* length (m)
- \hat{m} mechanical advantage of the epidermis (dimensionless)
- *p* porosity of a soil or leaf volume (fractional)
- r_p radial width of penumbra (cm)
- t time (s)
- t_E Eulerian time scale (s)
- t_L Lagrangian time scale (s)
- *u* molar flow rate (mol s⁻¹)

xix	List of symbols	
	<i>u</i> longitudinal wind velocity (m s ^{-1})	
	u' turbulent longitudinal wind velocity (m s ⁻¹)	
	\overline{u} mean longitudinal wind velocity (m s ⁻¹)	
	u_i Einstein–Smoluchowski mobility of constituent j (s kg ⁻¹)	
	u_* friction velocity (m s ⁻¹)	
	v cross-stream wind velocity (m s ⁻¹)	
	W vertical wind velocity (m s ⁻¹)	
	W' turbulent vertical wind velocity (m s ⁻¹)	
	\overline{w} mean vertical wind velocity (m s ⁻¹)	
	z electrical charge	
	z vertical length (m)	
	$z_{\rm bl}$ vertical depth of boundary layer (m)	
	z_0 aerodynamic roughness length (m)	
	$z_{\rm p}$ depth of pore (mm)	
	Lowercase, non-italicized Greek	

α	isotope effect (unitless)
γ	foliar clumping (fraction of LAI)
δ	isotope abundance ratio (delta notation) (‰)
3	TKE dissipation rate (s)
3	radiation-use efficiency in remote sensing modeling (g C MJ^{-1})
κ	wavenumber (m^{-1})
λ	canopy clumping index (dimensionless)
λ_{a}	mean free path of diffusion in air (m)
$\lambda_{\rm w}$	latent heat of vaporization for $H_2O (J \text{ mol}^{-1})$
$\lambda_{\rm w} E$	latent heat flux density $(J m^{-2} s^{-1})$
μ	molar chemical potential $(J \text{ mol}^{-1})$
μ*	standard molar chemical potential $(J \text{ mol}^{-1})$
ν	kinematic viscosity $(m^2 s^{-1})$
ρ	density (g m^{-3})
ρ_a	mass density of air $(g m^{-3})$
ρ_{m}	molar density (mol m^{-3})
ρ_{mw}	molar density of water (typically of air; mol m^{-3})
$\rho_{\rm w}$	mass density of water (g m^{-3})
σ	standard deviation
τ	atmospheric lifetime (s)
τ	momentum flux density (N m^{-2})

- φ fractional leakage of mass from a metabolic pathway
- $\boldsymbol{\varphi}$ ratio of the rates of oxygenation and carboxylation for Rubisco

(mole fraction) ial (Pa)) Pa)

 $\psi_{\pi g}$ osmotic potential of guard cell (Pa)

 $\psi_{\pi s}$ osmotic potential of subsidiary cell (Pa)

Lowercase, italicized Greek

- α Kolmogorov constant for turbulent inertial subrange (dimensionless)
- α surface albedo (percentage of incident solar flux density)
- ε radiant emittance (fractional)
- ϵ_L leaf emittance of longwave radiation
- $\varepsilon_{j}^{v_{x}}$ elasticity coefficient of reaction x with respect to metabolite j (unitless)
- θ solar zenith angle (degrees or radians)
- θ_t potential temperature (K)
- θ_{vt} virtual potential temperature (K)
- κ thermal conductivity (J s⁻¹ m⁻¹ K⁻¹)
- $\kappa_{\rm E}$ Eyring transmission coefficient (fractional)
- λ wavelength (m)
- μ dynamic viscosity (kg m⁻¹ s⁻¹)
- v frequency of electromagnic wave
- σ Stefan–Boltzmann constant (5.673 × 10⁻⁸ J s⁻¹ m⁻² K⁻⁴)
- τ tortuosity of a pore system (dimensionless)
- ϕ Monin–Obukhov scaling coefficient (dimensionless)
- ϕ solar azimuth angle (degrees or radians)
- ϕ Bunsen solubility coefficient for gases (m³ gas m⁻³ solution)
- $\varphi_{\rm E}$ electrical potential (J coloumb⁻¹)
- $\chi \qquad \text{stomatal mechanical coefficient (mmol H_2O m^{-2} s^{-1} MPa^{-1})}$
- ω photon scatter coefficient (dimensionless)

Uppercase, non-italicized Greek

- Γ CO₂ compensation point (µmol mol⁻¹)
- Γ_* CO₂ photocompensation point (µmol mol⁻¹)
- Δ isotope discrimination (‰)

- $\Lambda_{\rm E}$ Eulerian length scale (m)
- Λ_L Lagrangian length scale (m)
- Ω angle of solar photon interactions with a surface (degrees or radians)
- $\Omega_{\rm L}$ angle of leaf surface orientation

A Note on the Parenthetical Formatting of Function Relations and Collected Sums or Differences

Conventional algebraic notation indicates that a dependent variable is a 'function of' an independent variable through use of parenthetical formatting. Thus, dependent variable y is related to independent variable x according to y = f(x). However, other symbols can be used to designate dependent and independent variables using parenthetical notation. Take the example of atmospheric vapor pressure (often designated as e_s) determined as a function of air temperature (often designated as T_a). We can write an equation with e_s expressed as a function of T_a, and related to surface temperature (T_s), and a linear slope (s), as: $e_s [T_a] \approx$ $e_s [T_s] + s (T_a - T_s)$. This relation is read as 'e_s' evaluated as a function of 'T_a' is approximated by 'es' as a function of 'Ts' plus the product between a linear slope 's' and the difference between T_a and T_s. The terms containing e_s on the left and right sides of the equation should not be read as "e_s multiplied by T_a or T_s"; rather, the reader should be aware from the context of the equation that the notation is referring to e_s as a function of T_a or T_s. The mathematical difference between T_a and T_s on the right side of the equation is gathered as a "collected difference" within parentheses. Similar parenthetical nomenclature is used to indicate "collected sums". Both collected differences and collected sums, unlike the terms indicated as *parenthetical functions*, are indeed active variables of the relation. We have tried to assist the reader in making these distinctions by using squared brackets around those terms intended as functional relations (e.g., [Ta]), and rounded parentheses around those terms intended as collected sums or differences (e.g., $(T_a - T_s)$).