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Terrestrial Biosphere-Atmosphere Fluxes

Fluxes of trace gases, water, and energy between the terrestrial biosphere and the atmosphere

govern the state and fate of these two coupled systems. This “breathing of the biosphere” is

controlled by a large number of interacting physical, chemical, biological, and ecological

processes. In this integrated and interdisciplinary book, the authors provide the tools to

understand and quantitatively analyze fluxes of energy, complex organic compounds such as

terpenes, and trace gases including carbon dioxide, water vapor, and methane.

The book first introduces the fundamental principles that affect the supply and demand for

energy and trace gas exchange at the leaf and soil scales: thermodynamics, diffusion,

turbulence, and physiology. It then builds on these principles to model the exchange of

energy, water, carbon dioxide, terpenes, and stable isotopes at the ecosystem scale. Detailed

mathematical derivations of commonly used relations in biosphere-atmosphere interactions

are provided for reference in appendices.

An accessible introduction for graduate students to this essential component of Earth

system science, this book is also a key resource for researchers in many related fields such as

atmospheric science, hydrology, meteorology, climate science, biogeochemistry, and

ecosystem ecology.

Online resources at www.cambridge.org/monson:

* A short online mathematical supplement guides students through basic mathematical

principles, from calculus rules of derivation and integration, to statistical moments and

coordinate rotation.

Russell Monson is Louise Foucar Marshall Professor at the University of Arizona, Tucson

and Professor Emeritus at the University of Colorado, Boulder. His research focuses on

photosynthetic metabolism, the production of biogenic volatile organic compounds and

plant water relations from the scale of chloroplasts to the globe. He has received numerous

awards, including the Alexander von Humboldt Fellowship, the John Simon Guggenheim

Fellowship, and the Fulbright Senior Fellowship, and was also appointed Professor of

Distinction in the Department of Ecology and Evolutionary Biology at the University of

Colorado. Professor Monson is a Fellow of the American Geophysical Union and has served

on advisory boards for numerous national and international organizations and projects. He is

Editor-in-Chief of the journal Oecologia and has over 200 peer-reviewed publications.

Dennis Baldocchi is Professor of Biometeorology at the University of California, Berkeley. His

research focuses on physical, biological, and chemical processes that control trace gas and

energy exchange between vegetation and the atmosphere and the micrometeorology of plant
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Preface

This book is about interactions – those that occur between the terrestrial biosphere and the

atmosphere. Understanding biosphere-atmosphere interactions is a core activity within the

discipline of earth system sciences. Many of the most pressing environmental challenges

that face society (e.g., the anthropogenic forcing of climate change, urban pollution, the

production of sustainable energy sources, and stratospheric ozone depletion), and their

remedies, can be traced to biosphere-atmosphere interactions within the earth system.

Traditionally, biosphere-atmosphere interactions have been studied within a broad range

of conventional disciplines, including biology, the atmospheric and geological sciences, and

engineering. In this book we take an integrated, interdisciplinary perspective; one that

weaves together concepts and theory from all of the traditional disciplines, and organizes

them into a framework that we hope will catalyze a new, synergistic approach to teaching

university courses in the earth system sciences.

As we wrote the initial outline for the book, we recognized that the interdisciplinary

perspective we sought, in a subtle way, had already emerged; it simply had not been

formally collated into a synthetic format. For the past several years, biologists have been

attending meetings and workshops traditionally associated with meteorology and geo-

chemistry and conversely meteorologists and geochemists have been attending biology

meetings. As a result, newly defined and integrative disciplines have already appeared

with names such as “biometeorology,” “bioclimatology,” and “ecohydrology.” Thus, the

foundations for the book had already been laid. We simply needed to find the common

elements and concepts that permeated these emerging disciplines and pull them together

into a single treatment.

We have written the book as two colleagues who have migrated from different ends of the

biology-meteorology spectrum – one (Monson) from formal training in biology and one

(Baldocchi) from formal training in meteorology – but who also have struggled throughout

their careers to grasp concepts at these disciplinary interfaces. In many ways this book

is autobiographical; it reflects the challenges that both of us faced as we developed

collaborations across these disciplines. We actually met for the first time at a conference

in Asilomar, California in 1990, which was dedicated to bridging the gaps among biologists,

meteorologists, and atmospheric chemists. Thus, the interdisciplinary foundation for the

book has deep roots that were initiated over two decades ago. From that initial friendship

we developed a collaboration in which we began to compile and combine materials that

we extracted from our respective course lectures.

This book is intended to be used as both a textbook and reference book. As a textbook

it is intended to support courses for advanced undergraduate students or beginning

graduate students. As a reference book it is intended to provide detailed mathematical

xi
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derivations of some of the most commonly used relations in biosphere-atmosphere

interactions. In order to address both aims, we have written the primary text of the chapters

to provide what we consider to be the rudiments; those concepts essential to an introduc-

tory understanding of process interactions and fundamental theory. Detailed mathematical

derivations are presented as “appendices” at the end of many chapters. These derivations

are intended mostly as reference material; however, in our own experiences we discovered

that formal derivations, such as these, also served as an important resource to students. In

fact a well-received feature of some of our classes was the “Derivation Derby” held as an

evening session in which students were required to use the chalk board to present, in their

own words, the foundations of some of the more classic biophysical relations; of course

with good food and drink as accompaniment. We have used a second tool to develop

advanced topics of more conceptual, rather than quantitative, nature – the “boxes” that are

embedded in many chapters. In the boxes we have tried to bring out current topics and

issues that appear to have captured the attention of the field at the moment, or we have

described studies that have used the concepts under discussion in unique ways. Once

again, the boxes will be most effectively used to provide supplementary material that

embellishes the rudimentary topics presented in the main text of the chapters. We have

tried to use a modest frequency of citations in most chapters. Much of the material

we cover is of an elementary nature, and in order to sustain continuity in those discussions

we have not interrupted the text with frequent citations. In those cases where we thought

that a citation might be useful for further explorations of a topic, especially where a review

article or an article of historical significance might be useful, we have provided citations.

In the sections that cover contemporary concepts, especially those still being defined

through active debate in the literature, we have provided a more complete record

of citations. Furthermore, many of the figures were adopted from past studies, and we

have provided citations in the figure legends, which will be useful in directing students to

primary sources in the literature.

One of the initial decisions we made as we organized material for the book involved the

strategy for topical organization. We considered two possible frameworks: chapters that

focused on single environmental factors (e.g., a chapter on water, a chapter on light,

a chapter on temperature, and so on), or chapters that build in spatiotemporal scale, from

processes at smaller scales to those at larger scales (e.g., a chapter on cells and metabo-

lism, a chapter on leaves and diffusion, a chapter on canopies and turbulent transport, and

so on). Conventional treatments, especially in texts that deal with environmental physics,

have followed the former model, and they have done so with good success. However, we

recognized that many of the observations and much of the theory that has emerged in

recent years has been framed around hierarchical scaling, and we wanted to develop

a treatment that could be used within this framework. After much discussion and delibe-

ration, we decided to follow the second model, though with a bit of introgression from the

first model. Thus, the chapters build in scale, beginning with chloroplasts, progressing to

leaves and canopies, and culminating with the planetary boundary layer. Each of these

scaled chapters is preceded with one or more chapters on the nature of relevant environ-

mental factors as drivers of processes. Thus, the chapter on leaf scale transport is preceded

with a chapter on diffusion, and the chapter on turbulent transport is preceded with a

xii Preface
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chapter on stability in the planetary boundary layer. Exceptions to these patterns are the

initial three chapters, which deal with broad topics in thermodynamics and chemical rate

theory, and the final three chapters, which deal respectively with soil carbon and nitrogen

fluxes, fluxes of volatile reactive compounds and atmospheric chemistry, and fluxes

related to stable isotope fractionation. These chapters are intended to provide a framework

for understanding the relations among fluxes, sources/sinks, and gradients, in the case

of the earliest chapters, and to elaborate on some important recent directions in earth

system sciences research, in the case of the latest chapters.

The overall emphasis of the book is on understanding processes that control fluxes. Less

emphasis is placed on descriptions of biogeochemical pools and reservoirs. We also pay less

attention to instrumentation and experimental protocols. Most of the chapters focus on CO2,

H2O, and energy fluxes, although we also take up the topic of other trace gases in briefer

format. Finally, we note that our book focuses exclusively on terrestrial ecosystems.

Our decision not to wade into the oceans was determined by recognition of our strengths

and weaknesses as scientists and authors, and this decision does not reflect a bias against the

importance of ocean processes to earth system dynamics.

We appreciate the many discussions we have had with generous colleagues as we

wrote the book and sought critical feedback. Reviews and discussions of several of the

chapters in early form were provided by Dave Bowling, Tom Sharkey, John Finnigan,

Rowan Sage, Ray Leuning, Laura Scott-Denton, Peter Harley, Tony Delany, Dan Yakir,

Jielun Sun, Mike Weintraub, Dave Moore, Paul Stoy, Dave Schimel, and Keith Mott. Many

thanks to all of you! While these colleagues provided many useful insights and suggestions,

responsibility for the book’s final form belongs with us.

xiii Preface
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Symbols

In writing a book with as broad a set of mathematical relations as that presented here we had

to make decisions as to whether to create new symbols for cases of duplicated usage, or

retain those most often used, by convention, in the scientific literature. We tried to use

conventional symbols as often as was possible, and we allowed for some overlap in

designation, especially when duplicated symbols were used in different chapters.

Uppercase, non-italicized Latin

A CO2 assimilation rate (µmol m−2 s−1)

Ac canopy net CO2 assimilation rate

An net CO2 assimilation rate

Ag gross CO2 assimilation rate

E energy (J) or energy content (J mol−1)

Ea energy of activation (J mol−1)

E surface evaporation or leaf transpiration flux density (mol m−2 s−1)

Et total enzyme protein content (mol l−1)

Eo standard reduction potential (J coulomb−1)

F flux density (mol m−2 s−1)

Fc flux density of CO2

Fw flux density of H2O

Fj flux density of constituent j

FJ photosynthetic electron transport flux density

Fvm vertical atmospheric mean flux density

Fvt vertical atmospheric turbulent flux density

F Faraday’s constant (coulomb mol−1)

G conduction flux density of heat (J m−2 s−1)

G free energy (J) or molar free energy content (J mol−1)

G0 standard free energy (J) or molar free energy content (J mol−1)

G rate of biomass increase (g s−1)

GPP gross primary productivity (mol m−2 s−1 or mol m−2 yr−1)

H enthalpy (J) or enthalpy content (J mol−1)

H conduction of heat (W m−2)

xiv
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Hse conduction of sensible heat (from the surface to the atmosphere) (W m−2)

HG conduction of sensible heat (from the atmosphere to the ground

surface) (W m−2)

I photon flux density (mol photons m−2 s−1)

ID direct photon flux density

Id diffuse photon flux density

Is isoprene emission flux density (nmol m−2 s−1)

J joule unit of energy (kg m2 s−1)

LAI leaf area index (m2 leaf area m−2 ground area)

L leaf area index (used in equations)

Le effective LAI

N newton unit of force (kg m s−1)

Na Avogadro’s number

NDVI normalized difference of vegetation index (dimensionless)

NPP net primary productivity (mol m−2 s−1 or mol m−2 yr−1)

P total atmospheric pressure (N m−2, Pa)

P statistical probability

P0 probability of photon penetration to a canopy layer

Psf probability of a sunfleck in a canopy layer

Q thermal energy (J) or molar thermal energy content (J mol−1)

Q10 respiratory quotient (ratio of Rd at two temperatures separated by 10 °C)

R radiant energy flux density (J m−2 s−1 or W m−2)

RS shortwave radiant energy flux density (J m−2 s−1 or W m−2)

RL longwave radiant energy flux density (J m−2 s−1 or W m−2)

Rn net radiation flux density (J m−2 s−1 or W m−2)

R isotope abundance ratio

Rd “dark” (mitochondrial) respiration (µmol m−2 s−1)

Re ecosystem respiration

Rg growth mitochondrial respiration

Rm maintenance mitochondrial respiration

S molar entropy content (J mol−1 K−1)

S amount of substrate (moles)

S sink or source “strength,” as a flux density (mol m−2 s−1)

Srel relative specificity of Rubisco (unitless)

[S] enzyme substrate concentration (mol l−1 or mol m−3)

T temperature (K or °C)

TKE turbulence kinetic energy (J)

TPU triose phosphate utilization flux density (µmol m−2 s−1)

U internal energy (J) or molar internal energy content (J mol−1)

V volume (m3)

Vmax Michaelis–Menten velocity coefficient (mol s−1)

xv List of symbols
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Vcmax Michaelis–Menten velocity coefficient for Rubisco carboxylation

Vomax Michaelis–Menten velocity coefficient for Rubisco oxygenation

W work (J) or molar work content (J mol−1)

Wp total plant biomass (g)

Yg growth yield (fraction of substrate converted to biomass)

Uppercase, italicized Latin

A surface area (m2)

AG ground area

AL leaf area

B feedback multiplier (unitless)

Bk permeability coefficient for viscous flow (m2)

CD drag coefficient (dimensionless)

CEx flux control coefficient (unitless)

Ex radiative transfer extinction function (fraction of total PPFD)

F force (N)

Fd molar diffusive force (N mol−1)

FD drag force (g m s−2)

G fraction of leaf area oriented normal to ID in radiative transfer models

G gain of feedback loop (unitless)

Gc closed-loop feedback gain

Go open-loop feedback gain

Kd molecular diffusion coefficient (m2 s−1)
kKd Knudsen diffusion coefficient (m2 s−1)

Kdh diffusion coefficient for heat (m2 s−1)

Kdw diffusion coefficient for H2O

Kdc diffusion coefficient for CO2

KD eddy diffusion coefficient (m2 s−1)

Ke equilibrium constant (unitless)

KI canopy PPFD extinction coefficient (KI = G/cos θ)

Km Michaelis–Menten coefficient (mol l−1 or mol m−3)

Kc Michaelis–Menten coefficient for dissolved CO2

Ko Michaelis–Menten coefficient for dissolved O2

Ks steady state constant (mol−1)

Kn Knudsen number (dimensionless)

L turbulent length scale (m) (generally used)

L Obukhov length scale (m) (specifically used)

Nu Nusselt number (dimensionless)
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R universal gas constant (J K−1 mol−1)

Re Reynolds number (dimensionless)

Ri Richardson number (dimensionless)

Ric critical Richardson number

Rib bulk Richardson number

Sc radiative transfer scattering function (fraction of total PPFD)

S(κ) spectral density as a function of wavenumber

V specific volume (m3 kg−1)

Vw partial molal volume of H2O (m3 mol−1)

Lowercase, non-italicized Latin

a radiant or photon absorptance (fractional)

aPAR fraction of absorbed photosynthetically active radiation

c concentration as mole fraction

cac atmospheric CO2 mole fraction

caw atmospheric H2O mole fraction

caw* atmospheric H2O mole fraction at saturation

ccc chloroplast CO2 mole fraction

cco chloroplast O2 mole fraction

cic intercellular CO2 mole fraction in the leaf air spaces

ciw intercellular H2O mole fraction in the leaf air spaces

csc CO2 mole fraction at leaf surface

cEx mole fraction concentration of enzyme x

fPAR fraction of absorbed photosynthetically active radiation

g conductance (m s−1 or mol m−2 s−1)

gb boundary layer conductance (m s−1 or mol m−2 s−1)

gbw boundary layer conductance to H2O diffusion (m s−1 or mol m−2 s−1)

gbc boundary layer conductance to CO2 diffusion (m s−1 or mol m−2 s−1)

gs stomatal conductance (m s−1 or mol m−2 s−1)

gsw stomatal conductance to H2O vapor diffusion (m s−1 or mol m−2 s−1)

gsc stomatal conductance to CO2 diffusion (m s−1 or mol m−2 s−1)

gic internal leaf conductance to CO2 diffusion (m s−1 or mol m−2 s−1)

gtw total leaf conductance to H2O vapor diffusion (m s−1 or mol m−2 s−1)

h height (m)

m mass (g)

n molar quantity (mol)

p pressure or partial pressure of a gas constituent (N m−2, Pa)

pr probability of recollision (secondary collision) of a photon
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r radius (m)

r reflectance of incident PPFD (fractional)

r resistance (s m−1)

ra aerodynamic resistance (s m−1)

rbl boundary layer diffusive resistance (s m−1)

ri internal leaf diffusive resistance (s m−1)

rs stomatal diffusive resistance (s m−1)

t transmittance of incident PPFD (fractional)

v speed or velocity (mol l−1 s−1 or m s−1)

vc Rubisco carboxylation rate on leaf area basis (µmol m−2 s−1)

Lowercase, italicized Latin

a acceleration (m s−2)

c speed of “light” (m s−1)

c specific heat (J kg K−1)

cp specific heat of dry air at constant pressure (J kg−1 K−1)

cv specific heat of dry air at a constant volume (J kg−1 K−1)

d boundary layer length scale (m)

dH canopy displacement height (m)

f frequency (s−1)

fa fraction of canopy woody surface area

g gravitational acceleration (~ 9.8 m s−2)

h Planck’s constant (J s)

hc heat transfer coefficient (J m−2 s−1 K−1)

k reaction rate constant (s−1 or mol−1 s−1)

kcat enzyme catalytic rate constant

k von Karman’s constant (dimensionless)

kB Boltzmann constant (J K−1)

kH Henry’s Law partitioning coefficient (kPa liter mol−1)

kN canopy nitrogen allocation coefficient (dimensionless)

l length (m)

m̂ mechanical advantage of the epidermis (dimensionless)

p porosity of a soil or leaf volume (fractional)

rp radial width of penumbra (cm)

t time (s)

tE Eulerian time scale (s)

tL Lagrangian time scale (s)

u molar flow rate (mol s−1)
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u longitudinal wind velocity (m s−1)

u′ turbulent longitudinal wind velocity (m s−1)

u mean longitudinal wind velocity (m s−1)

uj Einstein–Smoluchowski mobility of constituent j (s kg−1)

u* friction velocity (m s−1)

v cross-stream wind velocity (m s−1)

w vertical wind velocity (m s−1)

w′ turbulent vertical wind velocity (m s−1)

w mean vertical wind velocity (m s−1)

z electrical charge

z vertical length (m)

zbl vertical depth of boundary layer (m)

z0 aerodynamic roughness length (m)

zp depth of pore (mm)

Lowercase, non-italicized Greek

α isotope effect (unitless)

γ foliar clumping (fraction of LAI)

δ isotope abundance ratio (delta notation) (‰)

ε TKE dissipation rate (s)

ε radiation-use efficiency in remote sensing modeling (g C MJ−1)

κ wavenumber (m−1)

λ canopy clumping index (dimensionless)

λa mean free path of diffusion in air (m)

λw latent heat of vaporization for H2O (J mol−1)

λwE latent heat flux density (J m−2 s−1)

μ molar chemical potential (J mol−1)

μ* standard molar chemical potential (J mol−1)

ν kinematic viscosity (m2 s−1)

ρ density (g m−3)

ρa mass density of air (g m−3)

ρm molar density (mol m−3)

ρmw molar density of water (typically of air; mol m−3)

ρw mass density of water (g m−3)

σ standard deviation

τ atmospheric lifetime (s)

τ momentum flux density (N m−2)

ϕ fractional leakage of mass from a metabolic pathway

ϕ ratio of the rates of oxygenation and carboxylation for Rubisco
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ϕ molar quantum yield of photosynthesis (mole fraction)

ψw total water potential (Pa)

ψg gravitational component of water potential (Pa)

ψm matric component of water potential (Pa)

ψp pressure component of water potential (Pa)

ψπ osmotic component of water potential (Pa)

ψπg osmotic potential of guard cell (Pa)

ψπs osmotic potential of subsidiary cell (Pa)

Lowercase, italicized Greek

α Kolmogorov constant for turbulent inertial subrange (dimensionless)

α surface albedo (percentage of incident solar flux density)

ε radiant emittance (fractional)

εL leaf emittance of longwave radiation

ε vxj elasticity coefficient of reaction x with respect to metabolite j

(unitless)

θ solar zenith angle (degrees or radians)

θt potential temperature (K)

θvt virtual potential temperature (K)

κ thermal conductivity (J s−1 m−1 K−1)

κE Eyring transmission coefficient (fractional)

λ wavelength (m)

μ dynamic viscosity (kg m−1 s−1)

ν frequency of electromagnic wave

σ Stefan–Boltzmann constant (5.673 × 10–8 J s−1 m−2 K−4)

τ tortuosity of a pore system (dimensionless)

ϕ Monin–Obukhov scaling coefficient (dimensionless)

ϕ solar azimuth angle (degrees or radians)

ϕ Bunsen solubility coefficient for gases (m3 gas m−3 solution)

φE electrical potential (J coloumb−1)

χ stomatal mechanical coefficient (mmol H2O m−2 s−1 MPa−1)

ω photon scatter coefficient (dimensionless)

Uppercase, non-italicized Greek

Γ CO2 compensation point (µmol mol−1)

Γ* CO2 photocompensation point (µmol mol−1)

Δ isotope discrimination (‰)
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Δcj finite difference in mole fraction of chemical species j

ΛE Eulerian length scale (m)

ΛL Lagrangian length scale (m)

Ω angle of solar photon interactions with a surface (degrees or radians)

ΩL angle of leaf surface orientation

A Note on the Parenthetical Formatting of Function Relations

and Collected Sums or Differences

Conventional algebraic notation indicates that a dependent variable is a ‘function of’ an

independent variable through use of parenthetical formatting. Thus, dependent variable y is

related to independent variable x according to y = f (x). However, other symbols can be used

to designate dependent and independent variables using parenthetical notation. Take the

example of atmospheric vapor pressure (often designated as es) determined as a function of

air temperature (often designated as Ta). We can write an equation with es expressed as a

function of Ta, and related to surface temperature (Ts), and a linear slope (s), as: es [Ta] ≈

es [Ts] + s (Ta – Ts). This relation is read as ‘es’ evaluated as a function of ‘Ta’ is

approximated by ‘es’ as a function of ‘Ts’ plus the product between a linear slope ‘s’ and

the difference between Ta and Ts. The terms containing es on the left and right sides of the

equation should not be read as “esmultiplied by Ta or Ts”; rather, the reader should be aware

from the context of the equation that the notation is referring to es as a function of Ta or Ts.

The mathematical difference between Ta and Ts on the right side of the equation is gathered

as a “collected difference”within parentheses. Similar parenthetical nomenclature is used to

indicate “collected sums”. Both collected differences and collected sums, unlike the terms

indicated as parenthetical functions, are indeed active variables of the relation. We have

tried to assist the reader in making these distinctions by using squared brackets around those

terms intended as functional relations (e.g., [Ta]), and rounded parentheses around those

terms intended as collected sums or differences (e.g., (Ta – Ts)).
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