Brief Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The Finite Element Method: Introductory Remarks</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Some Methods for Solving Continuum Problems</td>
<td>23</td>
</tr>
<tr>
<td>3</td>
<td>Variational Approach</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>Requirements for the Interpolation Functions</td>
<td>33</td>
</tr>
<tr>
<td>5</td>
<td>Heat Transfer Applications</td>
<td>35</td>
</tr>
<tr>
<td>6</td>
<td>One-Dimensional Steady-State Problems</td>
<td>42</td>
</tr>
<tr>
<td>7</td>
<td>The Two-Dimensional Heat-Conduction Problem</td>
<td>51</td>
</tr>
<tr>
<td>8</td>
<td>Three-Dimensional Heat-Conduction Applications with Convection and Internal Heat Absorption</td>
<td>66</td>
</tr>
<tr>
<td>9</td>
<td>One-Dimensional Transient Problems</td>
<td>95</td>
</tr>
<tr>
<td>10</td>
<td>Fluid Mechanics Finite Element Applications</td>
<td>106</td>
</tr>
<tr>
<td>11</td>
<td>Use of Nodeless Degrees of Freedom</td>
<td>114</td>
</tr>
<tr>
<td>12</td>
<td>Finite Element Analysis in Curvilinear Coordinate</td>
<td>149</td>
</tr>
<tr>
<td>13</td>
<td>Finite Element Modeling of Flow in Annular Axisymmetric Passages</td>
<td>176</td>
</tr>
<tr>
<td>14</td>
<td>Extracting the Finite Element Domain from a Larger Flow System</td>
<td>189</td>
</tr>
<tr>
<td>15</td>
<td>Finite Element Application to Unsteady Flow Problems</td>
<td>201</td>
</tr>
<tr>
<td>16</td>
<td>Finite Element–Based Perturbation Approach to Unsteady Flow Problems</td>
<td>237</td>
</tr>
</tbody>
</table>

Appendices

- **Appendix A.** Natural Coordinates for Three-Dimensional Surface Elements
- **Appendix B.** Classification and Finite Element Formulation of Viscous Flow Problems
- **Appendix C.** Numerical Integration
- **Appendix D.** Finite Element–Based Perturbation Analysis: Formulation of the Zeroth-Order Flow Field
- **Appendix E.** Displaced-Rotor Operation: Perturbation Analysis
- **Appendix F.** Rigorous Adaptation to Compressible-Flow Problems
Detailed Contents

Preface

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 The Finite Element Method: Introductory Remarks</td>
<td>1</td>
</tr>
<tr>
<td>The Mathematical Approach: A Variational Interpretation</td>
<td>2</td>
</tr>
<tr>
<td>Continuum Problems</td>
<td>3</td>
</tr>
<tr>
<td>Terminology and Preliminary Considerations: Types of Nodes</td>
<td>4</td>
</tr>
<tr>
<td>Degrees of Freedom</td>
<td>4</td>
</tr>
<tr>
<td>Interpolation Functions: Polynomials</td>
<td>6</td>
</tr>
<tr>
<td>One Independent Variable</td>
<td>6</td>
</tr>
<tr>
<td>Two Independent Variables</td>
<td>7</td>
</tr>
<tr>
<td>Three Independent Variables</td>
<td>7</td>
</tr>
<tr>
<td>Deriving Interpolation Functions</td>
<td>8</td>
</tr>
<tr>
<td>Natural Coordinates</td>
<td>10</td>
</tr>
<tr>
<td>Natural Coordinates in One Dimension</td>
<td>11</td>
</tr>
<tr>
<td>Natural Coordinates in Two Dimensions</td>
<td>12</td>
</tr>
<tr>
<td>Natural Coordinates in Three Dimensions</td>
<td>14</td>
</tr>
<tr>
<td>Curve-Sided Isoparametric Elements</td>
<td>16</td>
</tr>
<tr>
<td>Coordinate Transformation</td>
<td>17</td>
</tr>
<tr>
<td>Evaluation of Elemental Matrices</td>
<td>20</td>
</tr>
<tr>
<td>References</td>
<td>22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Some Methods for Solving Continuum Problems</td>
<td>23</td>
</tr>
<tr>
<td>Overview</td>
<td>23</td>
</tr>
<tr>
<td>The Ritz Method</td>
<td>24</td>
</tr>
<tr>
<td>Example: The Ritz Method</td>
<td>24</td>
</tr>
<tr>
<td>The Finite Element Method: Relation to the Ritz Method</td>
<td>26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Variational Approach</td>
<td>27</td>
</tr>
<tr>
<td>Example of Piecewise Approximation</td>
<td>28</td>
</tr>
<tr>
<td>Elemental Equations from a Variational Principle</td>
<td>30</td>
</tr>
</tbody>
</table>
Detailed Contents

4 Requirements for the Interpolation Functions 33

5 Heat Transfer Applications ... 35
Variational Approach 35
 Example 37
Approximation of Integrals 38
One-Dimensional Steady-State Problems 39
Finite Element Formulation 40

6 One-Dimensional Steady-State Problems 42
Variational Statement 42
Finite Element Formulation 44
Numerical Results 48
Problems 49

7 The Two-Dimensional Heat-Conduction Problem 51
Variational Statement 51
Finite Element Formulation 52
Numerical Solution 59
Numerical Results 63

8 Three-Dimensional Heat-Conduction Applications with Convection
 and Internal Heat Absorption ... 66
The Problem of Cooling a Radial Turbine Rotor: Overview 66
 Governing Equations 67
Finite Element Variational Formulation 68
Euler's Theorem of Variational Calculus 68
Derivation of the Variational Statement 69
Discretization of the Continuum 71
Evaluation of $dI_e/d\{T\}$ 73
 Evaluation of $dI_e/d\{T\}$ 78
 Evaluation of $dI_e/d\{T\}$ 79
 Evaluation of $dI_e/d\{T\}$ 82
The Final Set of Equations 83
 Turbine Rotor Configuration and Cooling Techniques 83
 Determination of the Hot Turbine Boundary Conditions 84
 Rotor Blade 84
 Rotor Disk Backside 85
 Rotor Hub 85
 Cooled Turbine Rotor Calculations 85
 Rotor Disk Cooling 86
 Blade Cooling through a Slot 86
 Blade Cooling through Radially Drilled
 Holes 86
Numerical Results 87
Remark 93
Detailed Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>One-Dimensional Transient Problems</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Variational Statement</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Finite Element Formulation</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>Numerical Solutions</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>Euler’s Method</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>Crank-Nicolson Method</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>Purely Implicit Method</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>105</td>
</tr>
<tr>
<td>10</td>
<td>Fluid Mechanics Finite Element Applications</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>Inviscid Incompressible Flows</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>Problem Statement</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>Velocity Potential and Stream-Function Formulations</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>Flow around Multiple Bodies by Superposition</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>113</td>
</tr>
<tr>
<td>11</td>
<td>Use of Nodeless Degrees of Freedom</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>Overview</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>Flow-Governing Equations</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>Boundary Conditions</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>Flow Inlet Station ((B – C))</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>Flow Exit Station ((D – A))</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>Periodic Boundaries ((A – B \text{ and } D – C))</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>Domain-Splitting Boundaries ((E – F \text{ and } G – H))</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>Airfoil Suction and Pressure Surfaces</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>Finite Element Analysis</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>Galerkin’s Weighted-Residual Approach</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>Applications</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>Flow Analysis in a Rectilinear-Airfoil Cascade</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>Field Discretization Model</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>Computational Results and Accuracy Assessment</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>Periodicity Conditions in Radial Cascades</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>Flow Investigation in a Radial-Turbine Scroll</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>Finite Element Analysis</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>Introduction of a Velocity Potential Discontinuity</td>
<td>134</td>
</tr>
<tr>
<td></td>
<td>Computational Results</td>
<td>134</td>
</tr>
<tr>
<td></td>
<td>Proposed Analysis Upgrades</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>Domains with High Degrees of Multiconnectivity</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>Axial-Flow Stator with a Spanwise Circulation Variation</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>147</td>
</tr>
</tbody>
</table>
12 Finite Element Analysis in Curvilinear Coordinate 149
 Introduction 149
 Analysis Guidelines and Limitations 153
 Flow-Governing Equations 154
 Continuity Equation 154
 Through-Flow Momentum Equation 154
 Tangential Momentum Equation 154
 Boundary Conditions 156
 Finite Element Formulation 158
 Continuity Equation 160
 Through-Flow Momentum Equation 160
 Tangential Momentum Equation 160
 Iterative Solution Procedure 161
 Application Examples 162
 Example 1: Second-Stage Stator of a Gas Turbine 164
 Example 2: Low-Aspect-Ratio Turbine Stator 165
 Proposed Analysis Upgrades 167
 Adaptation to a Rotating-Blade Cascade 167
 Inclusion of the Flow Turbulence Aspect 169
 Problems 169
 References 174

13 Finite Element Modeling of Flow in Annular Axisymmetric Passages .. 176
 Introduction .. 176
 Analysis ... 177
 Flow-Governing Equations 177
 Turbulence Closure 178
 Boundary Conditions 180
 Finite Element Formulation 181
 Method of Numerical Solution 183
 Numerical Results 183
 Grid Dependency of the Flow Field 184
 Diffuser Flow Field and Off-Design Performance 184
 References 187

14 Extracting the Finite Element Domain from a Larger Flow System ... 189
 Introduction .. 189
 Analysis ... 191
 Selection Options of the Computational Domain 191
 Flow-Governing Equations 192
 Boundary Conditions 193
 Stage Inlet Station 193
 Impeller Inlet and Exit Stations 193
 Stage Exit Station 193
<table>
<thead>
<tr>
<th>Detailed Contents</th>
<th>xi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid Boundary Segments</td>
<td>193</td>
</tr>
<tr>
<td>Finite Element Formulation</td>
<td>194</td>
</tr>
<tr>
<td>Numerical Results</td>
<td>194</td>
</tr>
<tr>
<td>References</td>
<td>199</td>
</tr>
</tbody>
</table>

15 **Finite Element Application to Unsteady Flow Problems** 201
- Introduction 201
- Example 201
- Flow-Governing Equations 204
 - Continuity Equation 204
 - Radial Momentum Equation 204
 - Tangential Momentum Equation 205
 - Axial Momentum Equation 205
- Boundary Conditions 205
- Finite Element Formulation 207
- Time-Integration Algorithm 210
- Numerical Procedure 211
- Computational Results 211
- Proposed Analysis Upgrades 219
 - Bidirectional Transfer of Boundary Conditions 219
 - Two-Way Stator/Rotor Exchange of Boundary Conditions 220
 - Continuity of the Variables' Normal Derivatives through Implicit Means 223
 - Methodology 223
 - Analysis 224
- Problems 226
- References 235

16 **Finite Element–Based Perturbation Approach to Unsteady Flow Problems** 237
- Overview 237
- Foundation of the Finite Element–Based Perturbation Approach 238
- Definition of the Force-Related Rotordynamic Coefficients 240
- Computational Development: Analysis of the Centered-Rotor Flow Field 242
 - Flow-Governing Equations 242
 - Continuity Equation 242
 - Axial Momentum Equation 242
 - Radial Momentum Equation 243
 - Tangential Momentum Equation 243
 - Boundary Conditions 243
 - Flow Inlet Station 243
 - Flow Exit Station 244
 - Solid Boundary Segments 244
 - Introduction of the Upwinding Technique 244
Detailed Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finite Element Formulation</td>
<td>245</td>
</tr>
<tr>
<td>Method of Numerical Solution</td>
<td>248</td>
</tr>
<tr>
<td>Assessment of the Centered-Rotor Flow Field</td>
<td>249</td>
</tr>
<tr>
<td>Computational Development: Building the Zeroth-Order Flow Model</td>
<td>249</td>
</tr>
<tr>
<td>Strategy</td>
<td>251</td>
</tr>
<tr>
<td>Transition to an Alternate Frame of Reference</td>
<td>252</td>
</tr>
<tr>
<td>Adaptation of the Axisymmetric Flow Solution</td>
<td>253</td>
</tr>
<tr>
<td>Flow-Governing Equations in the Rotating Frame of Reference</td>
<td>255</td>
</tr>
<tr>
<td>Continuity Equation</td>
<td>255</td>
</tr>
<tr>
<td>x-Momentum Equation</td>
<td>255</td>
</tr>
<tr>
<td>y-Momentum Equation</td>
<td>255</td>
</tr>
<tr>
<td>z-Momentum Equation</td>
<td>255</td>
</tr>
<tr>
<td>Calculation of the Force-Related Rotodynamic Coefficients</td>
<td>256</td>
</tr>
<tr>
<td>Applications: Benchmark Test Case—Comparison with Cal Tech’s Experimental Work</td>
<td>258</td>
</tr>
<tr>
<td>Background</td>
<td>258</td>
</tr>
<tr>
<td>Features of the Centered-Rotor Flow Field</td>
<td>259</td>
</tr>
<tr>
<td>Assessment of the Fluid-Induced Force Components</td>
<td>260</td>
</tr>
<tr>
<td>Applications: Perturbed Flow Structure due to Synchronous Whirl</td>
<td>262</td>
</tr>
<tr>
<td>Overview</td>
<td>262</td>
</tr>
<tr>
<td>Grid Dependency Investigation</td>
<td>264</td>
</tr>
<tr>
<td>Samples of the Computational Results</td>
<td>265</td>
</tr>
<tr>
<td>Comparison with Experimental Data</td>
<td>267</td>
</tr>
<tr>
<td>Applications: Rotodynamic Analysis of Labyrinth Seals</td>
<td>273</td>
</tr>
<tr>
<td>Literature Survey</td>
<td>273</td>
</tr>
<tr>
<td>Centered-Rotor Flow Field</td>
<td>275</td>
</tr>
<tr>
<td>Investigation of the Grid Dependency</td>
<td>278</td>
</tr>
<tr>
<td>Fluid-Induced Forces and Rotodynamic Coefficients</td>
<td>280</td>
</tr>
<tr>
<td>Applications: Rotodynamic Behavior of a Shrouded Pump Impeller</td>
<td>283</td>
</tr>
<tr>
<td>Centered-Impeller Subproblem: Contouring the Flow Domain</td>
<td>284</td>
</tr>
<tr>
<td>Centered-Impeller Subproblem: Boundary Conditions</td>
<td>284</td>
</tr>
<tr>
<td>Stage Inlet Station</td>
<td>284</td>
</tr>
<tr>
<td>Impeller Inlet and Exit Stations</td>
<td>285</td>
</tr>
<tr>
<td>Stage Exit Station</td>
<td>285</td>
</tr>
<tr>
<td>Solid Boundary Segments</td>
<td>285</td>
</tr>
<tr>
<td>Flow Structure</td>
<td>285</td>
</tr>
<tr>
<td>Simulation of the Impeller Subdomain Effects</td>
<td>291</td>
</tr>
<tr>
<td>Worthiness of Simulating the Impeller Subdomain</td>
<td>292</td>
</tr>
<tr>
<td>Results of the Perturbation Analysis</td>
<td>294</td>
</tr>
<tr>
<td>Assessment of the Single-Harmonic Perturbation Assumption</td>
<td>296</td>
</tr>
<tr>
<td>Applications: Investigation of Annular Seals under Conical Whirl</td>
<td>298</td>
</tr>
<tr>
<td>Rotodynamic Analysis of the Fluid/Rotor Interaction</td>
<td>299</td>
</tr>
<tr>
<td>System</td>
<td>301</td>
</tr>
<tr>
<td>Computational Results</td>
<td>301</td>
</tr>
<tr>
<td>Applications: Interrelated Effects of the Cylindrical/Conical Rotor Whirl</td>
<td>303</td>
</tr>
</tbody>
</table>
Detailed Contents

- Expanded Rotordynamic Analysis 304
- Computational Results 306
- Applications: Compressible-Flow Gas Seals Using a Simplified Adiabatic-Flow Approach 307
 - Computational Results 308
 - Comment 308
- Proposed Upgrades of the Perturbation Analysis 309
 - Inclusion of the Shear-Stress Perturbations in Computing the Fluid-Induced Forces 309
- Rigorous Adaptation to Compressible-Flow Problems 311
- Relevant Remarks 311
- Problems 313
- References 317

Appendix A. Natural Coordinates for Three-Dimensional Surface Elements 321

Appendix B. Classification and Finite Element Formulation of Viscous Flow Problems 324

Appendix C. Numerical Integration 331

Appendix D. Finite Element–Based Perturbation Analysis: Formulation of the Zeroth-Order Flow Field 335

Appendix E. Displaced-Rotor Operation: Perturbation Analysis 344

Appendix F. Rigorous Adaptation to Compressible-Flow Problems 355

Index 369