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1
The Finite Element Method:

Introductory Remarks

The finite element method is a numerical technique for obtaining approximate solu-

tions to a wide spectrum of engineering problems. Although originally developed

to study the stresses in complex airframe structures, it has since been extended and

applied to a broad field in continuum mechanics. Because of its diversity and flex-

ibility as an analysis tool, this particular technique is receiving much attention in

both academia and industry fields.

Although this brief comment on the finite element method answers the question

posed by the section heading, it does not give us the operational definition we need

to apply the method to a particular problem. Such an operational definition, along

with a description of the method fundamentals, requires considerably more than

just one paragraph to develop. Hence, the first segment of this book is devoted to

basic concepts and fundamental theory. Before discussing more aspects of the finite

element method, we should first consider some of the circumstances leading to its

inception, and we should briefly contrast it with other numerical techniques.

In more and more engineering situations today, we find that it is necessary

to obtain approximate numerical solutions to problems rather than exact closed-

form solutions. For example, we may want to find the load capacity of a plate

that has several stiffeners and odd-shaped holes, the concentration of pollutants

during nonuniform atmospheric conditions, or the rate of fluid flow through a pas-

sage of arbitrary shape. Without too much effort, we can write down the governing

equations and boundary conditions for these problems, but we immediately see that

no simple analytical solution can be found. The difficulty in these examples lies in

the fact that either the geometry or some other features of the problem are irregu-

lar. Analytical closed-form solutions to problems of this type seldom exist, yet those

are the kinds of problems that engineers are called on to solve.

The resourcefulness of the analyst usually comes to the rescue, providing sev-

eral alternatives to overcome the dilemma. One possibility is to make meaningful

assumptions, to ignore the difficulties, and to reduce the problem to one that can be

handled. Sometimes this procedure works. However, more often than not, it leads

to serious inaccuracies or totally wrong answers. Now that large-scale digital com-

puters are widely available, a more viable alternative is to retain the complexities of

the problem and try to find an approximate numerical solution.
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2 The Finite Element Method

Finite-difference mesh Finite element mesh

Figure 1.1. Superiority of the finite element method in simulating curved-domain boundary
segments.

Several approximate numerical analysis methods have evolved over the years,

with the most commonly used method being the finite-difference technique. The

familiar finite-difference model of a problem gives pointwise approximation to the

governing equations. The model, formed by writing difference equations for an

array of grid points, is improved as more points are used. With finite-difference

techniques, we can treat some fairly difficult problems, but, for example, when we

encounter irregular geometries or unusual specification of boundary conditions, we

find that finite-difference techniques become too hard to use.

In addition to the finite-difference method, another, more recent numerical

method, known as the finite element method, has emerged. Unlike the finite-

difference method, which envisions the solution domain as an array of grid points,

the finite element method envisions the solution region as a buildup of small,

nonoverlapping and interconnected subregions termed elements. A finite element

model of a problem gives a piecewise approximation to the governing equations.

The basic premise of the finite element method is that a solution domain can be

modeled or approximated analytically by replacing it with an assemblage of discrete

elements. Since these elements can be put together in a variety of ways, they can be

used to represent exceedingly complex shapes.

As an example of how finite-difference and finite element models might be used

to represent a complex geometric shape, consider the annular passage in Figure 1.1.

Note the superiority of the finite element method in handling such problems because

the elements can be shaped in such a way that matches the solution-domain curved

boundary segments. Figure 1.1 is meant to simply illustrate the finite element model

in contrast to a typical finite-difference mesh of the same annulus.

The Mathematical Approach: A Variational Interpretation

This approach is helpful in gaining an understanding of the finite element method,

but instrumental difficulties arise when we try to apply it to complex problems. In

this section, we take a broader view and interpret the finite element method as
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The Finite Element Method 3

an approximate means of solving variational problems. At this point, however, we

cannot faithfully discuss the many specific techniques that are useful for particular

types of problems. These specialized aspects of the finite element method will be

introduced later in this and succeeding chapters.

To set the stage for the introduction of the mathematical concepts and to give

them a place in the overall collection of solution techniques, we begin with a general

discussion of the continuum problems of mathematical physics.

After briefly mentioning some of the more popular solution techniques for dif-

ferent classes of problems, we establish the necessary technology and definitions

to show how variational problems and the finite element method are related. The

variational basis of the finite element method dictates the criteria to be satisfied

by the so-called element interpolation functions and enables us to make definitive

statements about the convergence of results as we use an ever-increasing number of

smaller and smaller elements.

After a discussion of the variational approach to the formulation of element

equations, we consider a detailed example. The last segment of this chapter con-

tains the problem of how to find variational principles for use in the finite element

method.

Continuum Problems

Problems in engineering and science fall into two fundamentally different categories

depending on which point of view we adopt. One point of view is that all matter

consists of single particles that retain their identity and nature as they move through

space. Their position in space at any instant is given by the coordinates in some

reference frame, and these coordinates are functions of time – the only independent

variable for any process. This viewpoint, known as the Lagrangian viewpoint, is the

basis for Newtonian particle mechanics.

The other viewpoint, the one we will use, stems from the continuum rather than

the molecular or particle approach to nature. In the continuum (sometimes termed

Eulerian) viewpoint, we say that all processes are characterized by field quantities

that are defined at every point in space. The independent variables in continuum

problems are the coordinates of space and time. The Eulerian viewpoint allows

us to focus our attention on one point in space and then observe the phenomena

occurring there.

Continuum problems are concerned with fields of temperature, stress, mass

concentration, displacement, electromagnetic, and acoustic potentials, to name

just a few examples. These problems arise from phenomena in nature that are

approximately characterized by partial differential equations and their boundary

conditions.

We will briefly discuss the nature of continuum problems typically encountered

and some of the possible means of solution. Then we will return to the topic of

solving these problems using the finite element method. Continuum problems of

mathematical physics are often referred to as boundary-value problems because

their solution is sought in some domain defined by a given boundary, on which cer-

tain constraints termed boundary conditions are specified. Except for free-boundary
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4 The Finite Element Method

problems, the boundary shape and its location are always known. Sometimes, how-

ever, it is the analyst’s responsiblity to extract it from a bigger system. The boundary

may be defined by a curve or a surface of n-dimensional space, and the domain it

defines may be finite or infinite depending on the extremities of the boundary. The

boundary is said to be closed if conditions affecting the solution of the problem

are specified everywhere on the boundary (even though part of the boundary may

extend to infinity) and open if part of the boundary extends to infinity and no bound-

ary conditions are specified on the part at infinity. It is important to note that our

definition of a boundary value problem departs from the usual one. The usual def-

inition distinguishes between boundary value problems and initial value problems,

where time is an independent variable. Because of our definition of the domain

boundary, we may describe all partial differential equations and their boundary

conditions as boundary value problems.

Terminology and Preliminary Considerations: Types of Nodes

In Figures 1.2 through 1.6, the number of basic element shapes and typical loca-

tions of nodes assigned to these elements are illustrated. We allude to the exterior

and interior nodes, but now we can be more specific. Nodes are classified as either

exterior or interior depending on their location relative to the geometry of an ele-

ment. Exterior nodes lie on the boundary of an element, and they represent the

points of connection between bordering elements. Nodes positioned at the cor-

ners of elements, along the edges, or on the surfaces are all exterior nodes. For

one-dimensional elements such as those in Figure 1.2, there are only two exterior

nodes because only the ends of the element connect to other one-dimensional ele-

ments. In contrast to exterior nodes, interior nodes are those that do not connect

with neighboring elements.

Degrees of Freedom

Two other features, in addition to shape, characterize a particular element type:

(1) the number of nodes assigned to the element and (2) the number and type of

nodal variables chosen for it. Often the nodal variables associated with the element

are referred to as the degrees of freedom of the element. This terminology, which

we will adopt, is a spin-off from the solid mechanics field, where the nodal variables

are usually nodal displacements and sometimes derivatives of displacements. Nodal
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Figure 1.2. A family of one-dimensional line elements.
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Figure 1.3. Examples of two-dimensional elements.
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Figure 1.4. The quadriteral element formed by combining triangles.
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Figure 1.5. Examples of axisymmetric-ring elements.
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Figure 1.6. Three-dimensional elements.

degrees of freedom can be interior or exterior in relation to the element boundaries,

depending on whether they are assigned to interior or exterior nodes.

In the fluid mechanics section of this book, one of the first few problems

(Chapter 11) has to do with the fluid flow in multiply-connected solution domains. In

this case, the field variable is the velocity potential φ. In addition, however, the cir-

culation around the lifting body is added to a specific group of computational points

as a nodeless degree of freedom. With the aid of this chapter’s contents, therefore,

the student is encouraged to generalize the term degree of freedom in a manner that

is consistent with the problem physics.

Interpolation Functions: Polynomials

In the finite element literature, the functions used to represent the behavior of a

field variable within an element are called interpolation functions, shape functions,

or approximation functions. We have used and will continue to use only the first term

in this text. Although it is conceivable that many types of functions could serve as

interpolation functions, only polynomials have received widespread use. The reason

is that polynomials are relatively easy to manipulate mathematically. In other words,

they can be integrated or differentiated without difficulty. Trigonometric functions

also possess this property, but they are seldom used. Here we will employ only

polynomials of various types and orders to generate suitable interpolation functions.

The polynomials we will consider follow.

One Independent Variable

In one dimension, a general complete nth-order polynomial may be written as

follows:

Pn(x) =

Tn
(1)

∑

i=0

αix
(i)
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Figure 1.7. Array of terms in a complete polynomial in two dimensions.

where the number of terms in the polynomial is Tn
(1) = n + 1. For n = 1, T1

(1) = 2,

and P1(x) = α) +α1x. For n = 2, T2
(1) = 3, and p2(x) = α0 +α1x +α2x2, . . ., and so on.

Two Independent Variables

In two dimensions, a complete nth-order polynomial may be written as follows:

Pn(x,y) =

Tn
(2)

∑

k=1

αkxi
y

j, i + j ≤ n

where the number of terms in the polynomial is Tn
(2) = [(n + 1)(n + 2)]/2. For n = 1,

T1
(2) = 3, and P1(x,y) = α1 +α2x +α3y. For n = 2, T2

(2) = 6, and P2(x,y) = α1 +α2x +

α3y +α4xy +α5x2 +α6y
2, . . ., and so on.

Gallagher [1] suggested a convenient way to illustrate the terms in a complete

two-dimensional polynomial. If the terms are placed in a triangular array of ascend-

ing order, we obtain an arrangement similar to the Pascal triangle (Figure 1.7).

We note that the sum of exponents of any term in this triangular array is the

corresponding number in the well-known Pascal triangle of binomial coefficients.

Three Independent Variables

In three dimensions, a complete nth-order polynomial may be written as follows:

Pn(x,y,z) =

Tn
(3)

∑

l=1

αlx
i
y

jzk i + j + k ≤ n

where the number of terms in the polynomial is

Tn
(3) =

(n + 1)(n + 2)(n + 3)

6

For n = 1, T1
(3) = 4, and P1(x,y,z) = α1 + α2x + α3y + α4z. For n = 2, T2

(3) = 10, and

P2(x,y,z) = α1 + α2x + α3y + α4z + α5xy + α6xz + α7yz + α8x2 + α9y
2 + α10z2, . . ., and

so on.

The terms in a complete three-dimensional polynomial may also be arrayed in

a manner that is analogous to the triangular array in two dimensions. The array
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Figure 1.8. Array of terms in a complete polynomial in three dimensions.

becomes a tetrahedron, with the various terms placed at different planar levels, as

shown in Figure 1.8.

Deriving Interpolation Functions

Thus far we have seen how a field variable can be represented within an element

as a polynomial series whose coefficients are the generalized coordinates. In this

section we will see how the interpolation functions for the physical degree of free-

dom are derived. These interpolation functions emerge from the basic procedure for

expressing the generalized coordinates in terms of the nodal degrees of freedom.

The basic ideas can be illustrated through a simple example in two dimensions.

Suppose that we wish to construct a rectangular element with nodes positioned at

the element corners (Figure 1.9). If we assign one value of φ to each node, the ele-

ment, then, will have four degrees of freedom, and we may select, as an interpolation

model, a four-term polynomial such as

φ(x,y) = α1 +α2x +α3y +α4xy

The generalized coordinates may now be found by evaluating this interpola-

tion function at each of the four nodes and then inverting the resulting set of

simultaneous equations. Thus we may write

φ1 = α1 +α2x1 +α3y1 +α4x1y1

φ2 = α1 +α2x2 +α3y2 +α4x2y2

φ3 = α1 +α2x3 +α3y3 +α4x3y3

φ4 = α1 +α2x4 +α3y4 +α4x4y4
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Figure 1.9. A rectangular element with sides parallel to the axes of the global coordinate
system.

or, in matrix notation,

{φ} = [G]{α}

where the preceding column vectors and matrix are defined as follows:

{φ} =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

φ1

φ2

φ3

φ4

⎫

⎪

⎪

⎬

⎪

⎪

⎭

[G] =

⎡

⎢

⎢

⎣

1 x1 y1 x1y1

1 x2 y2 x2y2

1 x3 y3 x3y3

1 x4 y4 x4y4

⎤

⎥

⎥

⎦

{α} =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

α1

α2

α3

α4

⎫

⎪

⎪

⎬

⎪

⎪

⎭

In principle, then, we can express the generalized coordinates as the solution of the

preceding matrix equation for {α}, that is,

{α} = [G]−1{φ}

Expressing the terms of the interpolation polynomial in the original expression for

φ(x,y) as a product of a row vector and a column vector, we can write

φ = [P]{α}

where [P] = [1 x y xy]

Thus, through simple substitution, we get

φ = [P][G]−1{φ} = [N]{φ}

with [N] = [P][G]−1
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10 The Finite Element Method

This expression for the field variable φ, though obtained for one case, is gener-

ally applicable to all straight-sided elements. The original interpolation polynomial

[P]{α} should not be confused with the interpolants Ni associated with the nodal

degree of freedom. The distinction to note here is that [P]{α} is an interpolation

function that applies to the whole element and expresses the field-variable behavior

in terms of the generalized coordinates, whereas the interpolants Ni refer to individ-

ual nodes and individual degrees of freedom, and they represent the field-variable

behavior. It is easy to see from the last expression of φ that the function Ni refer-

ring to node i takes on unit value at node i and zero value at all other nodes of the

element.

The procedure for expressing the generalized coordinates in terms of the nodal

degrees of freedom is actually the method commonly used to derive the nodal inter-

polation functions Ni. The procedure is straightforward and may be carried out

easily, but sometimes difficulties are encountered. For some types of elements mod-

els, the inverse of the matrix [G] may not exist for all orientations of the element

in the global coordinate system. If an explicit expression for [G]−1 is obtained alge-

braically, it may be possible to see under what conditions [G]−1 does not exist and

then try to avoid those circumstances when constructing the element mesh. Such an

approach, however, is seldom recommended. Another disadvantage stems from the

computational effort required to obtain [G]−1 when it exists. For a large number of

elements with many degrees of freedom, the computational cost can be prohibitive.

These reasons have motivated many researchers to try to obtain the nodal inter-

polation functions Ni by inspection, often relying on the use of special coordinate

systems called natural coordinates. This particular topic is discussed separately in

Appendix A for the general three-dimensional heat-conduction problem.

Throughout the remainder of this book, many elements with different shapes

in two- and three-dimensional applications, including curve-sided elements, will be

used. In each case, the shape functions will be defined and used in solving a variety

of heat transfer and fluid mechanics problems.

Natural Coordinates

A local coordinate system that relies on the element geometry for its definition and

whose coordinates range between zero and unity within the element is known as a

natural coordinate system. Such systems have the property that one particular coor-

dinate has a unity value at one node of the element and zero value at the other

node(s); its variation between nodes is linear. We may construct natural coordi-

nate systems for two-node line elements, three-node triangular elements, four-node

quadrilateral elements, four-node tetrahedral elements, and so on.

The use of natural coordinates in deriving interpolation functions is particularly

advantageous because special closed-form integration formulas can often be used

to evaluate the integrals in the element equations. Natural coordinates also play a

crucial role in the development of curve-sided elements.

The basic purpose of a natural coordinate system is to describe the location

of a point inside an element in terms of the coordinates associated with the nodes

of the element. We denote the natural coordinates as Li, (i = 1,2, . . . ,n), where n

is the number of external nodes of the element. One coordinate is associated with
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