
1 Introduction and review of probability

1.1 Probability models

Stochastic processes constitute a branch of probability theory treating probabilistic sys-
tems that evolve in time. There seems to be no very good reason for trying to define
stochastic processes precisely, but as we hope will become evident in this chapter, there
is a very good reason for trying to be precise about probability itself. Those particular
topics in which evolution in time is important will then unfold naturally. Section 1.5
gives a brief introduction to one of the very simplest stochastic processes, the Bernoulli
process, and then Chapters 2, 3, and 4 develop three basic stochastic process mod-
els which serve as simple examples and starting points for the other processes to be
discussed later.

Probability theory is a central field of mathematics, widely applicable to scientific,
technological, and human situations involving uncertainty. The most obvious applica-
tions are to situations, such as games of chance, in which repeated trials of essentially
the same procedure lead to differing outcomes. For example, when we flip a coin, roll a
die, pick a card from a shuffled deck, or spin a ball onto a roulette wheel, the procedure
is the same from one trial to the next, but the outcome (heads (H) or tails (T) in the case
of a coin, 1 to 6 in the case of a die, etc.) varies from one trial to another in a seemingly
random fashion.

For the case of flipping a coin, the outcome of the flip could be predicted from the
initial position, velocity, and angular momentum of the coin and from the nature of
the surface on which it lands. Thus, in one sense, a coin flip is deterministic rather
than random and the same can be said for the other examples above. When these initial
conditions are unspecified, however, as when playing these games, the outcome can
again be viewed as random in some intuitive sense.

Many scientific experiments are similar to games of chance in the sense that multiple
trials of apparently the same procedure lead to results that vary from one trial to another.
In some cases, this variation is due to slight variations in the experimental procedure,
in some it is due to noise, and in some, such as in quantum mechanics, the random-
ness is generally believed to be fundamental. Similar situations occur in many types
of systems, especially those in which noise and random delays are important. Some of
these systems, rather than being repetitions of a common basic procedure, are systems
that evolve over time while still containing a sequence of underlying similar random
occurrences.
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2 Introduction and review of probability

This intuitive notion of randomness, as described above, is a very special kind of
uncertainty. Rather than involving a lack of understanding, it involves a type of uncer-
tainty that can lead to probabilistic models with precise results. As in any scientific field,
the models might or might not correspond to reality very well, but when they do corres-
pond to reality, there is the sense that the situation is completely understood, while still
being random.

For example, we all feel that we understand flipping a coin or rolling a die, but
still accept randomness in each outcome. The theory of probability was initially devel-
oped particularly to give precise and quantitative meaning to these types of situations.
The remainder of this section introduces this relationship between the precise view of
probability theory and the intuitive view as used in applications and everyday language.

After this introduction, the following sections of this chapter review probability the-
ory as a mathematical discipline, with a special emphasis on the laws of large numbers.
In the final section, we use the theory and the laws of large numbers to obtain a fuller
understanding of the relationship between theory and the real world.1

Probability theory, as a mathematical discipline, started to evolve in the seventeenth
century and was initially focused on games of chance. The importance of the theory
grew rapidly, particularly in the twentieth century, and it now plays a central role in risk
assessment, statistics, data networks, operations research, information theory, control
theory, theoretical computer science, quantum theory, game theory, neurophysiology,
and many other fields.

The core concept in probability theory is that of a probability model. Given the extent
of the theory, both in mathematics and in applications, the simplicity of probability mod-
els is surprising. The first component of a probability model is a sample space, which
is a set whose elements are called sample points or outcomes. Probability models are
particularly simple in the special case where the sample space is finite, and we consider
only this case in the remainder of this section. The second component of a probability
model is a class of events, which can be considered for now simply as the class of all
subsets of the sample space. The third component is a probability measure, which can
be regarded for now as the assignment of a non-negative number to each outcome, with
the restriction that these numbers must sum to 1 over the sample space. The probability
of an event is the sum of the probabilities of the outcomes comprising that event.

These probability models play a dual role. In the first, the many known results about
various classes of models, and the many known relationships between models, constitute
the essence of probability theory. Thus one often studies a model not because of any
relationship to the real world, but simply because the model provides a building block
or example useful for the theory and thus ultimately useful for other models. In the other
role, when probability theory is applied to some game, experiment, or other situation

1 It would be appealing to show how probability theory evolved from real-world random situations, but
probability theory, like most mathematical theories, has evolved from complex interactions between
theoretical developments and initially oversimplified models of real situations. The successes and flaws of
such models lead to refinements of the models and the theory, which in turn suggest applications to totally
different fields.
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1.1 Probability models 3

involving randomness, a probability model is used to represent the experiment (in what
follows, we refer to all of these random situations as experiments).

For example, the standard probability model for rolling a die uses {1, 2, 3, 4, 5, 6} as
the sample space, with each possible outcome having probability 1/6. An odd result,
i.e., the subset {1, 3, 5}, is an example of an event in this sample space, and this event
has probability 1/2. The correspondence between model and actual experiment seems
straightforward here. Both have the same set of outcomes and, given the symmetry
between faces of the die, the choice of equal probabilities seems natural. Closer inspec-
tion, however, reveals an important difference between the model and the actual rolling
of a die.

The model above corresponds to a single roll of a die, with a probability defined for
each possible outcome. In a real-world experiment where a single die is rolled, one of
the six faces, say face k comes up, but there is no observable probability for k.

Our intuitive notion of rolling dice, however, involves an experiment with n consec-
utive rolls of a die. There are then 6n possible outcomes, one for each possible n-tuple
of individual die outcomes. As reviewed in subsequent sections, the standard probabil-
ity model for this repeated-roll experiment is to assign probability 6−n to each possible
n-tuple, which leads to a probability

(n
m

)
(1/6)m(5/6)n−m that the face k comes up on

m of the n rolls, i.e., that the relative frequency of face k is m/n. The distribution of
these relative frequencies is increasingly clustered around 1/6 as n is increased. Thus
if a real-world experiment for tossing n dice is reasonably modeled by this probability
model, we would also expect the relative frequency to be close to 1/6 for large n. This
relationship through relative frequencies in a repeated experiment helps overcome the
non-observable nature of probabilities in the real world.

1.1.1 The sample space of a probability model

An outcome or sample point in a probability model corresponds to a complete result
(with all detail specified) of the experiment being modeled. For example, a game of
cards is often appropriately modeled by the arrangement of cards within a shuffled 52-
card deck, thus giving rise to a set of 52! outcomes (incredibly detailed, but trivially
simple in structure), even though the entire deck might not be played in one trial of the
game. A poker hand with four aces is an event rather than an outcome in this model,
since many arrangements of the cards can give rise to four aces in a given hand. The
possible outcomes in a probability model (and in the experiment being modeled) are
mutually exclusive and collectively constitute the entire sample space (space of possible
outcomes). An outcome ω is often called a finest grain result of the model in the sense
that a singleton event {ω} containing only ω clearly contains no proper subsets. Thus
events (other than singleton events) typically give only partial information about the
result of the experiment, whereas an outcome fully specifies the result.

In choosing the sample space for a probability model of an experiment, we often
omit details that appear irrelevant for the purpose at hand. Thus in modeling the set of
outcomes for a coin toss as {H, T}, we ignore the type of coin, the initial velocity and
angular momentum of the toss, etc. We also omit the rare possibility that the coin comes
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4 Introduction and review of probability

to rest on its edge. Sometimes, conversely, the sample space is enlarged beyond what is
relevant in the interest of structural simplicity. An example is the above use of a shuffled
deck of 52 cards.

The choice of the sample space in a probability model is similar to the choice of a
mathematical model in any branch of science. That is, one simplifies the physical situa-
tion by eliminating detail of little apparent relevance. One often does this in an iterative
way, using a very simple model to acquire initial understanding, and then successively
choosing more detailed models based on the understanding from earlier models.

The mathematical theory of probability views the sample space simply as an abstract
set of elements, and from a strictly mathematical point of view, the idea of doing an
experiment and getting an outcome is a distraction. For visualizing the correspondence
between the theory and applications, however, it is better to view the abstract set of
elements as the set of possible outcomes of an idealized experiment in which, when the
idealized experiment is performed, one and only one of those outcomes occurs. The two
views are mathematically identical, but it will be helpful to refer to the first view as a
probability model and the second as an idealized experiment. In applied probability texts
and technical articles, these idealized experiments, rather than real-world situations, are
often the primary topic of discussion.2

1.1.2 Assigning probabilities for finite sample spaces

The word probability is widely used in everyday language, and most of us attach various
intuitive meanings3 to the word. For example, everyone would agree that something
virtually impossible should be assigned a probability close to 0 and something virtually
certain should be assigned a probability close to 1. For these special cases, this provides
a good rationale for choosing probabilities. The meaning of virtually and close to are
slightly unclear at the moment, but if there is some implied limiting process, we would
all agree that, in the limit, certainty and impossibility correspond to probabilities 1 and
0 respectively.

Between virtual impossibility and certainty, if one outcome appears to be closer to
certainty than another, its probability should be correspondingly greater. This intuitive
notion is imprecise and highly subjective; it provides little rationale for choosing numer-
ical probabilities for different outcomes, and, even worse, little rationale justifying that
probability models bear any precise relation to real-world situations.

Symmetry can often provide a better rationale for choosing probabilities. For exam-
ple, the symmetry between H and T for a coin, or the symmetry between the six faces
of a die, motivates assigning equal probabilities, 1/2 each for H and T and 1/6 each for
the six faces of a die. This is reasonable and extremely useful, but there is no completely
convincing reason for choosing probabilities based on symmetry.

2 This is not intended as criticism, since we will see that there are good reasons to concentrate initially on
such idealized experiments. However, readers should always be aware that modeling errors are the major
cause of misleading results in applications of probability, and thus modeling must be seriously considered
before using the results.

3 It is popular to try to define probability by likelihood, but this is unhelpful since the words are essentially
synonyms.
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1.2 The axioms of probability theory 5

Another approach is to perform the experiment many times and choose the prob-
ability of each outcome as the relative frequency of that outcome (i.e., the number of
occurrences of that outcome divided by the total number of trials). Experience shows
that the relative frequency of an outcome often approaches a limiting value with an
increasing number of trials. Associating the probability of an outcome with that limiting
relative frequency is certainly close to our intuition and also appears to provide a testable
criterion between model and real world. This criterion is discussed in Sections 1.8.1 and
1.8.2 and provides a very concrete way to use probabilities, since it suggests that the
randomness in a single trial tends to disappear in the aggregate of many trials. Other
approaches to choosing probability models will be discussed later.

1.2 The axioms of probability theory

As the applications of probability theory became increasingly varied and complex dur-
ing the twentieth century, the need arose to put the theory on a firm mathematical
footing. This was accomplished by an axiomatization of the theory, successfully car-
ried out by the great Russian mathematician A. N. Kolmogorov [18] in 1932. Before
stating and explaining these axioms of probability theory, the following two examples
explain why the simple approach of the last section, assigning a probability to each
sample point, often fails with infinite sample spaces.

Example 1.2.1 Suppose we want to model the phase of a sine wave, where the phase
is viewed as being ‘uniformly distributed’ between 0 and 2π . If this phase is the only
quantity of interest, it is reasonable to choose a sample space consisting of the set of
real numbers between 0 and 2π . There are uncountably4 many possible phases between
0 and 2π , and with any reasonable interpretation of uniform distribution, one must con-
clude that each sample point has probability 0. Thus, the simple approach of the last
section leads us to conclude that any event in this space with a finite or countably infin-
ite set of sample points should have probability 0. That simple approach does not help
in finding the probability, say, of the interval (0, π ).

For this example, the appropriate view is the one taken in all elementary probability
texts, namely to assign a probability density 1/(2π ) to the phase. The probability of
an event can then usually be found by integrating the density over that event. Useful
as densities are, however, they do not lead to a general approach over arbitrary sample
spaces.5

4 A set is uncountably infinite if it is infinite and its members cannot be put into one-to-one correspondence
with the positive integers. For example, the set of real numbers over some interval such as (0, 2π ) is
uncountably infinite. The Wikipedia article on countable sets provides a friendly introduction to the
concepts of countability and uncountability.

5 It is possible to avoid the consideration of infinite sample spaces here by quantizing the possible phases.
This is analogous to avoiding calculus by working only with discrete functions. Both usually result in both
artificiality and added complexity.
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6 Introduction and review of probability

Example 1.2.2 Consider an infinite sequence of coin tosses. The usual probability
model is to assign probability 2−n to each possible initial n-tuple of individual out-
comes. Then in the limit n → ∞, the probability of any given sequence is 0. Again,
expressing the probability of an event involving infinitely many tosses as a sum of indi-
vidual sample-point probabilities does not work. The obvious approach (which we often
adopt for this and similar situations) is to evaluate the probability of any given event as
an appropriate limit, as n → ∞, of the outcome from the first n tosses.

We will later find a number of situations, even for this almost trivial example, where
working with a finite number of elementary experiments and then going to the limit
is very awkward. One example, to be discussed in detail later, is the strong law of
large numbers (SLLN). This law looks directly at events consisting of infinite length
sequences and is best considered in the context of the axioms to follow.

Although appropriate probability models can be generated for simple examples such as
those above, there is a need for a consistent and general approach. In such an approach,
rather than assigning probabilities to sample points, which are then used to assign prob-
abilities to events, probabilities must be associated directly with events. The axioms to
follow establish consistency requirements between the probabilities of different events.
The axioms, and the corollaries derived from them, are consistent with one’s intuition,
and, for finite sample spaces, are consistent with our earlier approach. Dealing with the
countable unions of events in the axioms will be unfamiliar to some students, but will
soon become both familiar and consistent with intuition.

The strange part of the axioms comes from the fact that defining the class of events
as the collection of all subsets of the sample space is usually inappropriate when the
sample space is uncountably infinite. What is needed is a class of events that is large
enough that we can almost forget that some very strange subsets are excluded. This is
accomplished by having two simple sets of axioms, one defining the class of events,6

and the other defining the relations between the probabilities assigned to these events.
In this theory, all events have probabilities, but those truly weird subsets that are not
events do not have probabilities. This will be discussed more after giving the axioms for
events.

The axioms for events use the standard notation of set theory. Let � be the sample
space, i.e., the set of all sample points for a given experiment. It is assumed through-
out that � is non-empty. The events are subsets of the sample space. The union of n
subsets (events) A1, A2, . . . , An is denoted by either

⋃n
i=1 Ai or A1

⋃ · · ·⋃An, and con-
sists of all points in at least one of A1, A2, . . . , An. Similarly, the intersection of these
subsets is denoted by either

⋂n
i=1 Ai or7 A1A2 · · · An and consists of all points in all of

A1, A2, . . . , An.
A sequence of events is a collection of events in one-to-one correspondence with the

positive integers, i.e., A1, A2, . . . ad infinitum. A countable union,
⋃∞

i=1 Ai is the set of

6 A class of elements satisfying these axioms is called a σ -algebra or, less commonly, a σ -field.
7 Intersection is also sometimes denoted as A1

⋂ · · ·⋂An, but is usually abbreviated as A1A2 · · · An.
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1.2 The axioms of probability theory 7

points in one or more of A1, A2, . . . . Similarly, a countable intersection
⋂∞

i=1 Ai is the
set of points in all of A1, A2, . . . . Finally, the complement Ac of a subset (event) A is the
set of points in � but not A.

1.2.1 Axioms for events

Given a sample space �, the class of subsets of � that constitute the set of events satisfies
the following axioms:

1. � is an event.
2. For every sequence of events A1, A2, . . . , the union

⋃∞
n=1 An is an event.

3. For every event A, the complement Ac is an event.

There are a number of important corollaries of these axioms. First, the empty set ∅ is
an event. This follows from Axioms 1 and 3, since ∅ = �c. The empty set does not
correspond to our intuition about events, but the theory would be extremely awkward
if it were omitted. Second, every finite union of events is an event. This follows by
expressing A1

⋃ · · ·⋃An as
⋃∞

i=1 Ai, where Ai = ∅ for all i > n. Third, every finite or
countable intersection of events is an event. This follows from De Morgan’s law,[⋃

n
An

]c =
⋂

n
Ac

n.

Although we will not make a big fuss about these axioms in the rest of the text, we
will be careful to use only complements and countable unions and intersections in our
analysis. Thus subsets that are not events will not arise.

Note that the axioms do not say that all subsets of � are events. In fact, there are
many rather silly ways to define classes of events that obey the axioms. For example,
the axioms are satisfied by choosing only the universal set � and the empty set ∅ to
be events. We shall avoid such trivialities by assuming that for each sample point ω,
the singleton subset {ω} is an event. For finite sample spaces, this assumption, plus the
axioms above, imply that all subsets are events.

For uncountably infinite sample spaces, such as the sinusoidal phase above, this
assumption, plus the axioms above, still leaves considerable freedom in choosing a
class of events. As an example, the class of all subsets of � satisfies the axioms but
surprisingly does not allow the probability axioms to be satisfied in any sensible way.
How to choose an appropriate class of events requires an understanding of measure the-
ory which would take us too far afield for our purposes. Thus we neither assume nor
develop measure theory here.8

From a pragmatic standpoint, we start with the class of events of interest, such as
those required to define the random variables (rv s) needed in the problem. That class is
then extended so as to be closed under complementation and countable unions. Measure
theory shows that this extension is possible.

8 There is no doubt that measure theory is useful in probability theory, and serious students of probability
should certainly learn measure theory at some point. For application-oriented people, however, it seems
advisable to acquire more insight and understanding of probability, at a graduate level, before
concentrating on the abstractions and subtleties of measure theory.
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8 Introduction and review of probability

1.2.2 Axioms of probability

Given any sample space � and any class of events E satisfying the axioms of events,
a probability rule is a function Pr{·} mapping each A ∈ E to a (finite9) real number in
such a way that the following three probability axioms10 hold:

1. Pr{�} = 1.
2. For every event A, Pr{A} ≥ 0.
3. The probability of the union of any sequence A1, A2, . . . of disjoint11 events is

given by

Pr
{⋃∞

n=1
An

}
=
∑∞

n=1
Pr{An} , (1.1)

where
∑∞

n=1 Pr{An} is shorthand for limm→∞
∑m

n=1 Pr{An}.
The axioms imply the following useful corollaries:

Pr{∅} = 0. (1.2)

Pr
{⋃m

n=1
An

}
=
∑m

n=1
Pr{An} for A1, . . . , Am disjoint. (1.3)

Pr
{
Ac} = 1 − Pr{A} for all A. (1.4)

Pr{A} ≤ Pr{B} for all A ⊆ B. (1.5)

Pr{A} ≤ 1 for all A. (1.6)∑
n

Pr{An} ≤ 1 for A1, A2, . . . disjoint. (1.7)

Pr
{⋃∞

n=1
An

}
= lim

m→∞ Pr
{⋃m

n=1
An

}
. (1.8)

Pr
{⋃∞

n=1
An

}
= lim

n→∞ Pr{An} for A1 ⊆ A2 ⊆ · · · . (1.9)

Pr
{⋂∞

n=1
An

}
= lim

n→∞ Pr{An} for A1 ⊇ A2 ⊇ · · · . (1.10)

To verify (1.2), consider a sequence of events, A1, A2, . . . for which An = ∅ for each
n. These events are disjoint since ∅ contains no outcomes, and thus has no outcomes in
common with itself or any other event. Also,

⋃
n An = ∅ since this union contains no

outcomes. Axiom 3 then says that

Pr{∅} = lim
m→∞

m∑
n=1

Pr{An} = lim
m→∞ mPr{∅} .

Since Pr{∅} is a real number, this implies that Pr{∅} = 0.
To verify (1.3), apply Axiom 3 to the disjoint sequence A1, . . . , Am, ∅, ∅, . . . .
To verify (1.4), note that � = A

⋃
Ac. Then apply (1.3) to the disjoint sets A and Ac.

9 The word finite is redundant here, since the set of real numbers, by definition, does not include ±∞. The
set of real numbers with ±∞ appended, is called the extended set of real numbers.

10 Sometimes finite additivity, (1.3), is included as an additional axiom. This inclusion is quite intuitive and
avoids the technical and somewhat peculiar proofs given for (1.2) and (1.3).

11 Two sets or events A1, A2 are disjoint if they contain no common events, i.e., if A1A2 = ∅. A collection of
sets or events are disjoint if all pairs are disjoint.
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1.3 Probability review 9

To verify (1.5), note that if A ⊆ B, then B = A
⋃

(B−A), where B−A is an alternative
way to write B

⋂
Ac. We see then that A and B − A are disjoint, so from (1.3),

Pr{B} = Pr
{

A
⋃

(B − A)
}

= Pr{A} + Pr{B − A} ≥ Pr{A} ,

where we have used Axiom 2 in the last step.
To verify (1.6) and (1.7), first substitute � for B in (1.5) and then substitute

⋃
n An

for A.
Finally, (1.8) is established in Exercise 1.2(e), and (1.9) and (1.10) are simple

consequences of (1.8).
The axioms specify the probability of any disjoint union of events in terms of the

individual event probabilities, but what about a finite or countable union of arbitrary
events? Exercise 1.2(c) shows that in this case, (1.3) can be generalized to

Pr
{⋃m

n=1
An

}
=
∑m

n=1
Pr{Bn} , (1.11)

where B1 = A1 and for each n > 1, Bn = An − ⋃n−1
m=1 Am is the set of points in An but

not in any of the sets A1, . . . , An−1. That is, the sets Bn are disjoint. The probability of
a countable union of disjoint sets is then given by (1.8). In order to use this, one must
know not only the event probabilities for A1, A2 . . . , but also the probabilities of their
intersections. The union bound, which is derived in Exercise 1.2(d), depends only on the
individual event probabilities, and gives the following frequently useful upper bound on
the union probability.

Pr
{⋃

n
An

}
≤

∑
n

Pr{An} (union bound). (1.12)

1.3 Probability review

1.3.1 Conditional probabilities and statistical independence

Definition 1.3.1 For any two events A and B in a probability model, the conditional
probability of A, conditional on B, is defined if Pr{B} > 0 by

Pr{A|B} = Pr{AB} /Pr{B} . (1.13)

To motivate this definition, consider a discrete experiment in which we make a partial
observation B (such as the result of a given medical test on a patient) but do not observe
the complete outcome (such as whether the patient is sick and the outcome of other
tests). The event B consists of all the sample points with the given outcome of the given
test. Now let A be an arbitrary event (such as the event that the patient is sick). The
conditional probability, Pr{A|B} is intended to represent the probability of A from the
observer’s viewpoint.

For the observer, the sample space can now be viewed as the set of sample points in B,
since only those sample points are now possible. For any event A, only the event AB, i.e.,
the original set of sample points in A that are also in B, is relevant, but the probability of
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10 Introduction and review of probability

A in this new sample space should be scaled up from Pr{AB} to Pr{AB} /Pr{B}, i.e., to
Pr{A|B}.

With this scaling, the set of events conditional on B becomes a probability space, and
it is easily verified that all the axioms of probability theory are satisfied for this condi-
tional probability space. Thus all known results about probability can also be applied to
such conditional probability spaces.

Another important aspect of the definition in (1.13) is that it maintains consistency
between the original probability space and this new conditional space in the sense that
for any disjoint events, A1, A2, . . . , and any event B with Pr{B} > 0,

Pr
{(⋃

n
An

)
| B
}

=
∑

n
Pr{An | B} .

This means that we can easily move back and forth between unconditional and
conditional probability spaces.

The intuitive statements about partial observations and probabilities from the stand-
point of an observer are helpful in reasoning probabilistically, but sometimes cause
confusion. For example, Bayes’ law, in the form

Pr{A|B} Pr{B} = Pr{B|A} Pr{A} ,

is an immediate consequence of the definition of conditional probability in (1.13). How-
ever, if we can only interpret Pr{A|B} when B is ‘observed’ or occurs ‘before’ A, then we
cannot interpret Pr{B|A} and Pr{A|B} together. This caused immense confusion in prob-
abilistic arguments before the axiomatic theory and clean definitions based on axioms
were developed.

Definition 1.3.2 Two events, A and B, are statistically independent (or, more briefly,
independent) if

Pr{AB} = Pr{A} Pr{B} .

For Pr{B} > 0, this is equivalent to Pr{A|B} = Pr{A}. This latter form often corresponds
to a more intuitive view of independence, since it says that A and B are independent if
the observation of B does not change the observer’s probability of A.

The notion of independence is of vital importance in defining, and reasoning about,
probability models. We will see many examples where very complex systems become
very simple, both in terms of intuition and analysis, when appropriate quantities are
modeled as statistically independent. An example will be given in the next subsec-
tion where repeated independent experiments are used to understand arguments about
relative frequencies.

Often, when the assumption of independence is unreasonable, it is reasonable to
assume conditional independence, where A and B are said to be conditionally inde-
pendent given C if Pr{AB|C} = Pr{A|C} Pr{B|C}. Most of the stochastic processes
to be studied here are characterized by various forms of independence or conditional
independence.

For more than two events, the definition of statistical independence is a little more
complicated.
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