Mathematics and the Body

This book explores alternative ways to consider the relationship between mathematics and the material world. Drawing on the philosophy of Gilles Châtelet and the posthumanist materialism of Karen Barad, the authors present an ‘inclusive materialist’ approach to studying mathematics education. This approach offers a fresh perspective on human and non-human bodies, challenging current assumptions about the role of the senses, language and ability in teaching and learning mathematics. Each chapter provides empirical examples from the classroom that demonstrate how inclusive materialism can be applied to a wide range of concerns in the field. The authors analyse recent studies on students’ gestures, expressions and drawings in order to establish a link between mathematical activity and mathematical concepts. Mathematics and the Body expands the landscape of research in mathematics education and will be an essential resource for teachers, students and researchers alike.

Elizabeth de Freitas is an associate professor at the Ruth S. Ammon School of Education at Adelphi University. She is the co-editor of Opening the Research Text: Critical Insights and In(ter)ventions into Mathematics Education (2008) and an associate editor of the journal Educational Studies in Mathematics.

Nathalie Sinclair is an associate professor in the Faculty of Education, an associate member in the Department of Mathematics and a Canada Research Chair in Tangible Mathematics Learning at Simon Fraser University. She is also an associate editor of For the Learning of Mathematics. She is the author of Mathematics and Beauty: Aesthetic Approaches to Teaching Children (2006) and Developing Essential Understanding of Geometry for Teaching Mathematics (2012), among other books.
LEARNING IN DOING: SOCIAL, COGNITIVE
AND COMPUTATIONAL PERSPECTIVES

SERIES EDITOR EMERITUS
John Seely Brown, Xerox Palo Alto Research Center

GENERAL EDITORS
Roy Pea, Professor of Education and the Learning Sciences and Director, Stanford Center for Innovations in Learning, Stanford University
Christian Heath, The Management Centre, King’s College, London
Lucy A. Suchman, Centre for Science Studies and Department of Sociology, Lancaster University, UK

BOOKS IN THE SERIES
The Construction Zone: Working for Cognitive Change in School
Denis Newman, Peg Griffin, and Michael Cole

Situated Learning: Legitimate Peripheral Participation
Jean Lave and Etienne Wenger

Street Mathematics and School Mathematics
Terezinha Nunes, David William Carraher, and Analucia Dias Schliemann

Understanding Practice: Perspectives on Activity and Context
Seth Chaiklin and Jean Lave, Editors

Distributed Cognitions: Psychological and Educational Considerations
Gavriel Salomon, Editor

The Computer as Medium
Peter Bogh Anderson, Berit Holmqvist, and Jens F. Jensen, Editors

Sociocultural Studies of Mind
James V. Wertsch, Pablo del Rio, and Amelia Alvarez, Editors

Sociocultural Psychology: Theory and Practice of Doing and Knowing
Laura Martin, Katherine Nelson, and Ethel Tobach, Editors

(Continued after index)
Mathematics and the Body

Material Entanglements in the Classroom

ELIZABETH DE FREITAS
Adelphi University

NATHALIE SINCLAIR
Simon Fraser University
Contents

List of Figures page ix
Series Foreword xi
Foreword by Brian Rotman xiii
Acknowledgements xix

Introduction 1
Outline of the book 5
Synopsis 12

1 When does a body become a body? 14
Theories of embodiment 16
Material phenomenology and post-humanism 22
Objects, quasi-objects and agency 26
Assemblages and processes of becoming 32

2 The ‘ontological turn’ of inclusive materialism 38
New materialisms 38
Towards a relational ontology 43
The pedagogy of the concept 50
How mathematical assemblages come to matter 57

3 Diagrams, gestures, movement 62
On gestures and diagrams 63
Mobile mathematics 68
A diagramming experiment 73
Inventive diagramming in the classroom 82
Diagrams and the exteriority of thought 84
viii

4 Inventiveness in the mathematics classroom 86
 Creative acts and materiality 87
 Digital technologies, mathematics and impulse 90
 When do two lines intersect? 92
 Creating a new space for potential intersection 96
 What kind of motion makes a vertical line? 99
 Mobility and potentiality 107

5 Materialist approaches to mathematics classroom discourse 111
 The materiality of language 112
 Word assemblage 117
 The human voice 127

6 The sensory politics of the body mathematical 140
 Mathematics, the senses and intuition 141
 Mathematics education and the sensory organs 147
 Rethinking perception and sensation 156
 The sensory politics of (dis)ability in mathematics 159
 Reconfiguring the human body 165

7 Mapping the cultural formation of the mathematical aesthetic 172
 Classroom consensus and dissensus 173
 A political aesthetics 176
 The mathematician’s sensibility 180
 New standards of curricular consensus 190

8 The virtuality of mathematical concepts 200
 Bridging the mathematical and physical worlds 201
 Curriculum mapping of concepts 213
 Conclusion 225

Bibliography 233
Author Index 257
Subject Index 259
Figures

1.1 Student drawing of knots page 15
1.2 (a) Placing chips beside goblets; (b) another possible rearrangement 28
2.1 Four trees around the fishpond 51
2.2 A reconfigured diagram with added elements 52
2.3 (a) The number line; (b) accentuating the role of 0 56
2.4 The point at infinity in the perspective drawing of a cube 59
3.1 Diagram with dotted and solid arcs 63
3.2 Oresme’s configurationes for linear qualities unites extensive (time on the horizontal) and intensive (speed on the vertical) quantities so that distance can be calculated in terms of area 67
3.3 Châtelet’s ‘cut-out’ diagram 68
3.4 Archimedes’ spiral (a) the static form; (b) a more dynamic representation 69
3.5 Visual proof 70
3.6 Topological diagramming 71
3.7 Approaching poplars 72
3.8 Snapshots of the Nicolet film on circles 74
3.9 A successive framing approach 76
3.10 Successive framing without discontinuity 77
3.11 A diagram that transcends the temporal constraints 78
3.12 Two different ways of imagining circle growth 79
3.13 Conjuring the path of the centres 80
3.14 Exploding temporality and perspective 81
4.1 Two points tracing intersecting paths in Sketchpad 92
4.2 A non-visible intersection in Sketchpad 93
4.3 Children’s gesturing with the lines 94
4.4 Children’s gestures evoking new objects 95
4.5 Interface of the Motion Visualizer 100
4.6 Gaia’s right hand moving horizontally and actualizing the vertical line 102
4.7 Elisa’s right hand moving twice horizontally 103
4.8 Beniamino’s right hand miming the passage of time and his left hand actualizing a timeless motion 104
5.1 The image projected on the wall of the classroom 121
5.2 A mathematics lecturer’s blackboard 130
5.3 Time/pitch graph showing pitch matching 133
6.1 Melencolia I, 1514 (engraving), Albrecht Dürer (1471–1528)/Private Collection (The Bridgeman Art Library) 144
6.2 (a) Counting world; (b) with a number on the shelf; (c) without shelf 151
6.3 (a) Katy’s swimming index finger; (b) focus on 10; (c) not watching 153
7.1 A two-column proof of corresponding angles 195
8.1 The rigid, inert triangle cut-out form the multiplicity of indeterminate pre-figures 205
8.2 Leibniz’s characteristic triangle 208
8.3 Diagram of Abel’s theorem 209
8.4 Notational rupture for matrix multiplication 212
8.5 Multiplication as a change in units 222
8.6 Multiplication as sequential addition or as dilation 223
Series Foreword

This series for Cambridge University Press is widely known as an international forum for studies of situated learning and cognition. Innovative contributions are being made by anthropology; by cognitive, developmental and cultural psychology; by computer science; by education; and by social theory. These contributions are providing the basis for new ways of understanding the social, historical and contextual nature of learning, thinking and practice that emerges from human activity. The empirical settings of these research inquiries range from the classroom to the workplace, to the high-technology office, and to learning in the streets and in other communities of practice. The situated nature of learning and remembering through activity is a central fact. It may appear obvious that human minds develop in social situations and extend their sphere of activity and communicative competencies. But cognitive theories of knowledge representation and learning alone have not provided sufficient insight into these relationships. This series was born of the conviction that new, exciting interdisciplinary syntheses are underway, as scholars and practitioners from diverse fields seek to develop theory and empirical investigations adequate for characterizing the complex relations between social and mental life and for understanding successful learning wherever it occurs. The series invites contributions that advance our understanding of these seminal issues.

Roy Pea
Christian Heath
Lucy A. Suchman
Elizabeth de Freitas and Nathalie Sinclair have written an admirable and provocative book. Ambitious, original and theoretically accomplished, its purpose is to develop a new materialist approach, what they call ‘inclusive materialism’, to the learning of mathematics – one that includes and foregrounds the activity of the body against the long-standing mentalist conception of mathematics as an activity of pure, abstract thought. Extending the current turn to materialism in philosophy and the humanities to mathematics, they reject Kantian-based epistemological schemes that understand knowledge as perception filtered through internal, \textit{a priori} intuitions and the conceptual categories, in favour of a more Humean, empiricist approach that gives primacy to external sensation; ontologically, they reject Platonic realism, the belief that mathematical objects – points, numbers, lines and so on – are immaterial entities that exist in some Platonic heaven – ‘out there’, beyond time, space, matter – while mathematical activity consists of discovering truths about those objects, which is analogous to scientists studying external reality. Despite numerous critiques – the chief of which asks how material beings can make contact with things in a transcendent heaven – this metaphysical idealism remains the conventional belief, defended and widely embraced by mathematicians and others.

\textit{Mathematics and the Body} is directed to mathematics educators and validates, as well as explicates, its ideas by critically examining a series of experimental classroom lessons designed by the authors and by others, which focus on fundamental mathematical concepts such as number, parallelism, circles and diagrams. As the authors observe, the issue of embodied mathematics in education is topical. In the last decade or so, a growing number of differently oriented initiatives – cognitive, phenomenological, enactive, communication-based approaches – have been devoted to examining the role played by students’ bodies: their gestures; hand, eye and limb
movements; their verbalizations; their drawings and diagrams; and their relation to the tokens, devices, physical objects and surfaces with which they interact. The book aims to explore the assumptions and consequences of this work. To do so, and to go beyond it, they pose and confront the fundamental question: ‘How are the physical aspects of mathematical activity – be it that of students or mathematicians – transformed into the so-called abstractions and generalisations of formal mathematics?’ Their answer involves formulating a new, extended notion of ‘body’ and correlatively a material understanding of the mathematical concepts with which such a body engages. The inclusion of mathematicians’ physical activity in their question indicates a possible parallel between the creation of mathematics and its re-creation by students in the classroom – a link, that is, between the history of mathematics and the learning of it. Such is indeed the case, as is evident in their opening sentence: ‘The idea for this book began as we read Gilles Châtelet’s (1993/2000) stunning book on the history of mathematics, which challenges many long-standing, as well as contemporary, philosophies of mathematics.’ Châtelet’s book, *Figuring Space*, opens up several key moments in the historical development of the subject, demonstrating how the interrelation of gesture – resulting from ‘disciplined movements of a body’ – and physical diagrams operate at the heart of mathematical invention. De Freitas and Sinclair embrace Châtelet’s linking of gestural bodies and formal abstractions and work to import it into the mathematics classroom.

But before they can accomplish this, they need to establish the nature of embodiment. ‘When’, they ask, ‘does a body become a body?’ A survey of the mathematical embodiment literature finds them critical of approaches that fail to escape the ‘dualistic tradition of the mind/body split’; or that ‘demote the body to acting merely as the vessel or container of some higher act of cognition’; or that ‘centre human will or intention in the orchestrating of experience’, assuming the human body to be ‘the principal administrator of its own participation’. Moreover, locating knowing and agency in the individual body does not adequately address the collective social body. Where, then, are the boundaries of a body? Against the common-sense view that ‘the body is an individual, discrete entity and that cognition occurs within its borders’, the authors turn to posthumanist discourses of subjectivity and agency, according to which subjects are dynamic assemblages of dispersed social networks, and the ‘human body itself must be conceived in terms of malleable borders and distributed networks’; that is, a body understood as a ‘set of material relations that seems to structure the other material relations around it’. In the classroom, as they illustrate
in their analyses of students’ activities, such an assemblage-body will be composed of ‘humans, writing implements, writing surfaces, texts, desks, doors, chips, as well as disciplinary forces and habits of control and capitulation’. A consequence of conceiving the body in this way is that agency and thought become distributed across multiple sources in the students’ physical and psycho-social environment. Thus, analogous to Nietzsche’s insistence on ‘deeds without a doer’, one can have ‘thoughts without a thinker’, in the sense that the source of thought can come from material relations outside or beside the isolated thinking self, a phenomenon that Gilles Deleuze, whose materialist ideas exert a profound effect on the authors’ project, calls the ‘exteriority of thought’. In short, the power and efficacy of a body in relation to mathematics must be understood as distributed across an assemblage of heterogeneous relations, a posthumanist understanding not to be identified with the capacity that is ‘localized in a human body or in a collective produced (only) by human efforts’.

But how does this material body-assemblage become entangled with mathematical concepts? In what sense can we consider concepts, mathematical or otherwise, to be related to matter? The question goes to the theoretical heart of Mathematics and the Body. The authors’ aim is to show how ‘mathematical concepts partake of the material in operative, agential ways’. In order to accomplish this, they need to go outside a humanist conception of matter and ‘materiality’, as well as construct a new approach to the nature of concepts. They derive this from contemporary feminist philosophers, principally Karen Barad, but also Jane Bennett, and Diana Coole and Samantha Frost, whose common aim is to reorient how we think about ‘matter’ and the material world. From Barad’s theory of ‘agential realism’, derived from Niels Bohr’s explication of quantum phenomena, they take the understanding of a concept not as an immaterial mental object, but as ‘a material arrangement of things’ and of relations preceding, and in some sense constituting, that to which they relate, so that things are always ‘intra-related’, rather than interrelated. Jane Bennett’s concept of ‘vibrant matter’, a (non-animistic) understanding that credits matter with agency, and the ‘inclusive materialism’ of Coole and Frost provide the wherewithal for constructing a body-concept nexus. This, along with the anthropological work of Lambros Malafouris and Bruno Latour, allows them to rethink the concept of ‘mere’ matter. Rejecting the Cartesian split between the active, cognizing human mind and inert, ‘dead’ matter – the contemporary orthodoxy underpinning the physical sciences’ engagement with matter – these various thinkers urge materialisms in which the freedom and agency that Descartes restricted to the embodied human mind is opened...
up and dispersed across human and non-human agents. The ontology of mathematics that the authors weave from these diverse materialisms, with their insistence on the extra-human and material dimensions of thought, complements the authors’ construction of the assemblage-body. With this theoretical meshing in place, de Freitas and Sinclair are ready to expand on how the two – bodies and formal mathematical concepts – might in practice become entangled. They accomplish this through the essay of Châtelet that inspired them to pursue their ambitious body-mathematics project.

Châtelet’s interest is in how mathematics comes into being – its genesis, its becoming rather than ‘being’ – and his essay is a series of analyses of specific mathematical inventions, such as Grassmann’s creation of algebras over vector fields and Cauchy’s method of integrating complex functions, that reveal the physico-conceptual movements that constitute them.

His starting point is actual, physical movement. According to Châtelet, the ‘amplifying abstractions’ of mathematics, whatever their ultimate immaterial representation as formal constructs may be, have bodily beginnings. They originate in gestures, ‘disciplined distributions of mobility’, that are not signs or representations of anything prior to or outside themselves, but instead are material events that, through their actions and by the fact of their occurrence, bring new mathematical meanings into being. They are not, Châtelet insists, describable by formal languages, cannot be determined by algorithms, are not expressions of an intention (although they can be retrospectively seen as such), and are not in fact consciously produced: ‘One is’, he says, ‘infused with the gesture before knowing it.’ And they do not work through reference or signification, but rather by pointing, through allusions that – in interaction with diagrams (which are themselves responses to problems) – give rise to ‘dynasties of problems’ and correlative families of ever more precise allusions. A diagram, for Châtelet, is a frozen gesture, a gesture caught mid-flight in its path towards a formal abstraction: it can ‘transfix a gesture, bring it to rest, long before it curls up into a sign’. Diagrams are intermediaries between bodies and mathematical objects and operations. They are, like gestures, material events. Contrary to the customary view of them, they are not depictions, illustrations or visual icons of mathematical objects or concepts (although they can be), but instead are pivotal devices in the creation of mathematical meaning – ‘kinematic capturing devices’, as the authors neatly describe them, ‘for direct sampling that cut up space and allude to new dimensions and new structures’.

In a sense, diagrams are works in progress, never complete in themselves: ‘[I]f [a diagram] immobilizes a gesture in order to set down an operation,
it does so by sketching a gesture that then cuts out another.’ Diagrams and gestures interact, mutually presupposing each other, participating in what the authors call each other’s ‘provisional ontology’. Overall, the gesture-diagram nexus operates as a ‘dynamic process of excavation that conjures the sensible in sensible matter’. The authors relate this conjuring to Barad’s realist understanding of concepts as material arrangements. ‘The concept itself’, they observe, ‘is entailed in the hands that gesture, the mouth that speaks, and the affect that circulates across an interaction.’ They concretize this entailment through a variety of examples that range from discussing how ‘the point at infinity’ is cognized in projective geometry to describing at length the results of an experiment with a class of undergraduates asked to draw diagrams in response to a simple film of moving circles.

The gesture-diagram apparatus of allusions to mathematical meanings is one-half of what the authors find valuable in Châtelet’s approach; the other is his deployment of the notion of the virtual. He takes this from Deleuze’s materialist and immanentist philosophy, according to which the physical world of matter constantly comes into being – becomes – by making actual that which is virtual: ‘The virtual must be defined as strictly a part of the real object – as though the object had one part of itself in the virtual into which it is plunged as though into an objective dimension.’ The virtual is that which is latent in matter, the source of all that it could become, which the authors interpret as its ‘mobility, vibration, potentiality and indeterminacy’, and it is the link Châtelet provides between the mathematical and physical worlds.

Following Gottfried Leibniz in conceiving space as ‘a flexible, folding and animated substance’, Châtelet observes that the supposedly immovable objects of mathematics divorced from ‘sensible matter’ are, on the contrary, always in a state of potential movement and change; a geometrical point (line, circle) cannot be confined to a designated entity, the representation of a position within a fixed, absolute space. As he observes in the case of Cauchy’s treatment of a singular point in the complex plane, the virtuality of a point, probed by mathematicians within ‘thought-experiments’, becomes the source of radically new concepts. A point is the simplest example of a diagram, but the effect is quite general. As the authors observe, ‘the virtual or potentiality of a[n]y diagram consists of all the gestures and future alterations that are in some fashion “contained” in it’. Mathematical entities, then, are material objects with virtual and actual dimensions. The virtual is not so much a bridge – an interrelation between mathematics and the physical world, as if they were initially separate and then joined – as an ‘intra-relation’ – which Barad defines as a mutual fabrication
or co-constitution, wherein the two are thoroughly entangled. This means that mathematical concepts engage in a process of becoming which binds them to the actions of mathematicians, leading to the authors’ striking conclusion that ‘[t]he mathematical body comes into being through actualizing the virtual – through gestures, diagrams and digital networks, we become mathematics; we incorporate and are incorporated by mathematics” (emphasis in original).

Summarized in this way and taken in isolation, the concept of ‘becoming’ mathematics will doubtless strike many potential readers of Mathematics and the Body as a strange and counter-intuitive characterization of ‘we’ and of mathematics, but hopefully this will not be their experience. Throughout, de Freitas and Sinclair seem fully aware of the unfamiliarity of the ideas they mobilize and of the conceptual demands of their thesis; they go to considerable lengths to present matters as accessibly as possible. Not only does their book carefully develop the ideas of the body-as-assemblage and the body’s dynamic relation with abstract concepts that forms the basis of how we become mathematics, but it also contains a wealth of material and a rich texture of connections that elaborate and contextualize their thesis. Thus, beside constantly rooting their ideas in the concrete classroom observations and experiments which feature throughout, they step back and offer a series of illuminating and provocative chapter-length discussions of key aspects of their field, ranging from the ‘sensory politics of the body mathematical’ and ‘mapping the mathematical aesthetic’ to the ‘materiality of language’ and the material dimension of ‘inventiveness in the mathematics classroom’.

In a final reflection on what becoming mathematics might mean, both generally and in the context of the classroom, they invoke Deleuze’s concept of a ‘minor science’, a ‘minor literature’, and indeed a ‘minor mathematics’ – forms of thought and creation which escape the constrictions of the dominant ‘state’, or orthodox version. They describe ‘a mathematics that is not the state-sanctioned discourse of school mathematics, but that might be full of surprises, non-sense and paradox’ and which, although at odds with institutional demands and the domination of a fixed curriculum, ‘is likely to engage students and teachers in more expansive ways, and [their] hope is that it would engage more students in mathematics’. Whether or not it does remains, of course, to be seen, but in any event the minor mathematics that Elizabeth de Freitas and Nathalie Sinclaire usher onto the mathematics education scene constitutes a major theoretical intervention in their field. Mathematics and the Body is a valuable, radical and challenging work.
Acknowledgements

We are deeply grateful to those friends and colleagues who spurred us to write this book. Their words of support and challenge were crucial in developing our ideas and in helping us weave together many different theoretical threads. We set out to write an exploratory book about mathematics and the body and were instantly humbled by the incredible amount of insightful work already in progress on this topic. We want to thank Tony Brown in particular for pressing us to continue with our own vision and commitment to philosophical concerns in this area. The ‘Contemporary Theories in Mathematics Education’ conference in Manchester in 2011, which was jointly organised by Tony, Yvette Solomon and Julian Williams, first ignited our work together and gave us the opportunity to present some of the main ideas found in Chapter 3. We would also like to thank Ricardo Nemirovsky for his detailed and careful reading of the manuscript and his exceptional ideas for how to better frame questions about the body. We benefitted a great deal from our visit to UCSD, during which, through lectures and discussions, we were able to work out many wrinkles that emerged in the writing of Chapters 1 and 2. We are tremendously in debt to David Pimm for his excellent suggestions on how to revise various arguments throughout the book, his ongoing enthusiasm for the project, and his help with both mathematical and historical details. We are also grateful to those who read chapters throughout the process and who offered their time in submitting lots of astute and discerning comments, in particular Alf Coles, Beth Herbel-Eisenmann, Francesca Ferrara, Michael Harris, Lulu Healy and Margaret Walshaw. Some of the ideas that we develop in this book were initially explored in articles published in Educational Studies in Mathematics, ZDM, Educational Philosophy and Theory, and the Journal of Humanistic Mathematics, and we are grateful to the reviewers and editors of these publications for that opportunity. Two names that come up a number
of times throughout the book, attached to people who generously reviewed and corresponded about this work, are Luis Radford and Michael-Wolff Roth. We would also like to thank Oi-Lam Ng for her valuable assistance in preparing the manuscript. Finally, we are very grateful to Cambridge University Press for its support in bringing our writing to publication; we are particularly grateful to Kori Lisa Yee Litt of PETT Fox, Inc., for outstanding editorial work.

Nathalie wishes to also acknowledge the support she received from the Canada Research Chair program, which enabled her to devote long, continuous hours to reading and writing. She would also like to thank Sean Chorney for many engaging conversations on the topics of agency, new materialism and posthumanism. Elizabeth would like to thank Paola Valero for organising the body-course in Denmark, and also Hillevi Lenz Taguchi, Anna Palmer, Lisa Mazzei and Lisa Björklund Boistrup for organising various stimulating conversations about materiality, virtuality and concepts at the Stockholm Event. She would also like to thank Jerry Rosiek for the enjoyable speculative conversations about theory, as well as her friends in the Deleuze Reading Group in Brooklyn.