Foundations of Signal Processing

This comprehensive and engaging textbook introduces the basic principles and techniques of signal processing, from the fundamental ideas of signals and systems theory to real-world applications.

- Introduces students to the powerful foundations of modern signal processing, including the basic geometry of Hilbert space, the mathematics of Fourier transforms, and essentials of sampling, interpolation, approximation, and compression.
- Discusses issues in real-world use of these tools such as effects of truncation and quantization, limitations on localization, and computational costs.
- Includes over 160 homework problems and over 220 worked examples, specifically designed to test and expand students' understanding of the fundamentals of signal processing.
- Accompanied by extensive online materials designed to aid learning, including Mathematica® resources and interactive demonstrations.

**Martin Vetterli** is a Professor of Computer and Communication Sciences at the École Polytechnique Fédérale de Lausanne, and the President of the Swiss National Science Foundation. He has formerly held positions at Columbia University and the University of California, Berkeley, and has received the IEEE Signal Processing Society Technical Achievement Award (2001) and Society Award (2010). He is a Fellow of the ACM, EURASIP, and the IEEE, and is a Thomson Reuters Highly Cited Researcher in Engineering.

**Jelena Kovacević** is the David Edward Schramm Professor and Head of Electrical and Computer Engineering, and a Professor of Biomedical Engineering, at Carnegie Mellon University. She has been awarded the Belgrade October Prize (1986), the E. I. Jury Award (1991) from Columbia University, and the 2010 Philip L. Dowd Fellowship at Carnegie Mellon University. She is a former Editor-in-Chief of *IEEE Transactions on Image Processing* and a Fellow of the IEEE and EURASIP.

**Vivek K Goyal** is an Assistant Professor of Electrical and Computer Engineering at Boston University, and a former Esther and Harold E. Edgerton Associate Professor of Electrical Engineering at the Massachusetts Institute of Technology. He has been awarded the IEEE Signal Processing Society Magazine Award (2002) and the Eliahu Jury Award (1998) from the University of California, Berkeley, for outstanding achievement in systems, communications, control, and signal processing. He is a Fellow of the IEEE.
“Foundations of Signal Processing by Martin Vetterli, Jelena Kovacevic, and Vivek K Goyal lives up to its title by providing a thorough tour of the subject matter based on selected tools from real analysis which allow sufficient generality to develop the foundations of the classical Fourier methods along with modern wavelet approaches. A key distinction of the book is the use of Hilbert space ideas to provide a geometric interpretation and intuition that enhances both the classic and modern approaches by providing a unified view of their similarities and relative merits in the most important special cases. Many of the specific examples of signal processing considered can be viewed as examples of projections onto subspaces, which yield immediate properties and descriptions from the underlying fundamentals. The development is both pedagogically and theoretically sound, proceeding from the underlying mathematics through discrete-time systems to the more complicated continuous time systems into a wonderfully general and enlightening treatment of sampling and interpolation operations connecting discrete and continuous time. All of the important signal classes are considered and their basic properties and interrelations developed and summarized. The book then develops important topics not ordinarily found in signal processing texts—the accuracy of approximations involving the truncation of series expansions and the quantization of series coefficients, and the localization of signals in the time-frequency plane.

The completeness of the book results in a lengthy volume of roughly 800 pages, but it is easy to navigate to extract portions of interest while saving the many byways and special topics for future reference. The chapter introductions are particularly good at setting the stage in a simple but informative context and then sketching the details to come for the remainder of the chapter. Each chapter closes with a ‘Chapter at a glance’ section highlighting the primary ideas and results. The book will be a welcome addition to the library of students, practitioners, and researchers in signal processing for learning, reviewing, and referencing the broad array of tools and properties now available to analyze, synthesize, and understand signal processing systems.”

Robert M. Gray, Stanford University and Boston University

“Finally a wonderful and accessible book for teaching modern signal processing to undergraduate students.”

Stéphane Mallat, École Normale Supérieure

“This is a major book about a serious subject—the combination of engineering and mathematics that goes into modern signal processing: discrete time, continuous time, sampling, filtering, and compression. The theory is beautiful and the applications are so important and widespread.”

Gil Strang, Massachusetts Institute of Technology

“This book (FSP) and its companion (FWSP) bring a refreshing new, and comprehensive approach to teaching the fundamentals of signal processing, from analysis and decompositions, to multi-scale representations, approximations, and many other aspects that have a tremendous impact in modern information technology. Whereas classical texts were usually written for students in electrical or communication engineering programs, FSP and FWSP start from basic concepts in algebra and geometry, with the benefit of being easily accessible to a much broader set of readers, and also help those readers develop strong abstract reasoning and intuition about signals and processing operators. A must-read!”

Rico Malvar, Microsoft Research

“This is a wonderful book that connects together all the elements of modern signal processing. From functional analysis and probability theory, to linear algebra and computational methods, it’s all here and seamlessly integrated, along with a summary of history and developments in the field. A real tour-de-force, and a must-have on every signal processor’s shelf!”

Robert D. Nowak, University of Wisconsin–Madison
“Most introductory signal processing textbooks focus on classical transforms, and study how these can be used. Instead, Foundations of Signal Processing encourages readers to think of signals first. It develops a ‘signal-centric’ view, one that focuses on signals, their representation and approximation, through the introduction of signal spaces. Unlike most entry-level signal processing texts, this general view, which can be applied to many different signal classes, is introduced right at the beginning. From this, starting from basic concepts, and placing an emphasis on intuition, this book develops mathematical tools that give the readers a fresh perspective on classical results, while providing them with the tools to understand many state-of-the-art signal representation techniques.”

Antonio Ortega, University of Southern California

“Foundations of Signal Processing by Vetterli, Kovačević, and Goyal, is a pleasure to read. Drawing on the authors’ rich experience of research and teaching of signal processing and signal representations, it provides an intellectually cohesive and modern view of the subject from the geometric point of view of vector spaces. Emphasizing Hilbert spaces, where fine technicalities can be relegated to backstage, this textbook strikes an excellent balance between intuition and mathematical rigor, that will appeal to both undergraduate and graduate engineering students. The last two chapters, on sampling and interpolation, and on localization and uncertainty, take full advantage of the machinery developed in the previous chapters to present these two very important topics of modern signal processing, that previously were only found in specialized monographs. The explanations of advanced topics are exceptionally lucid, exposing the reader to the ideas and thought processes behind the results and their derivation. Students will learn not only a substantial body of knowledge and techniques, but also why things work, at a deep level, which will equip them for independent further reading and research. I look forward to using this text in my own teaching.”

Yoram Bresler, University of Illinois at Urbana-Champaign
Foundations of Signal Processing

MARTIN VETTERLI
École Polytechnique Fédérale de Lausanne, Switzerland
University of California, Berkeley, USA

JELENA KOVAČEVIĆ
Carnegie Mellon University, USA

VIVEK K GOYAL
Boston University, USA
Massachusetts Institute of Technology, USA
To Marie-Laure, for her patience and many other qualities, Thomas and Noémie, whom I might still convince of the beauty of this material, and my parents, who gave me all the opportunities one can wish for.

— MV

To Danica and Giovanni, who make life beautiful. To my parents, who made me who I am.

— JK

To Allie, Sundeeep, and my family, who encourage me unceasingly, and to the educators who made me want to be one of them.

— VKG
The cover illustration captures an experiment first described by Isaac Newton in *Opticks* in 1730, showing that white light can be split into its color components and then synthesized back into white light. It is a physical implementation of a decomposition of white light into its Fourier components – the colors of the rainbow – followed by a synthesis to recover the original.
## Contents

Quick reference  \hfill page xvii  
Acknowledgments  \hfill xxiii  
Preface  \hfill xxv  

1 On rainbows and spectra  \hfill 1  

2 From Euclid to Hilbert  \hfill 9  
\hspace{0.5cm} 2.1 Introduction  \hfill 10  
\hspace{0.5cm} 2.2 Vector spaces  \hfill 18  
\hspace{1cm} 2.2.1 Definition and properties  \hfill 18  
\hspace{1cm} 2.2.2 Inner product  \hfill 23  
\hspace{1cm} 2.2.3 Norm  \hfill 27  
\hspace{1cm} 2.2.4 Standard spaces  \hfill 30  
\hspace{0.5cm} 2.3 Hilbert spaces  \hfill 35  
\hspace{1cm} 2.3.1 Convergence  \hfill 36  
\hspace{1cm} 2.3.2 Completeness  \hfill 37  
\hspace{1cm} 2.3.3 Linear operators  \hfill 40  
\hspace{0.5cm} 2.4 Approximations, projections, and decompositions  \hfill 50  
\hspace{1cm} 2.4.1 Projection theorem  \hfill 51  
\hspace{1cm} 2.4.2 Projection operators  \hfill 54  
\hspace{1cm} 2.4.3 Direct sums and subspace decompositions  \hfill 60  
\hspace{1cm} 2.4.4 Minimum mean-squared error estimation  \hfill 63  
\hspace{0.5cm} 2.5 Bases and frames  \hfill 69  
\hspace{1cm} 2.5.1 Bases and Riesz bases  \hfill 69  
\hspace{1cm} 2.5.2 Orthonormal bases  \hfill 76  
\hspace{1cm} 2.5.3 Biorthogonal pairs of bases  \hfill 86  
\hspace{1cm} 2.5.4 Frames  \hfill 101  
\hspace{1cm} 2.5.5 Matrix representations of vectors and linear operators  \hfill 109  
\hspace{0.5cm} 2.6 Computational aspects  \hfill 119  
\hspace{1cm} 2.6.1 Cost, complexity, and asymptotic notations  \hfill 120  
\hspace{1cm} 2.6.2 Precision  \hfill 123  
\hspace{1cm} 2.6.3 Conditioning  \hfill 126  
\hspace{1cm} 2.6.4 Solving systems of linear equations  \hfill 129  
\hspace{0.5cm} 2.A Elements of analysis and topology  \hfill 135  
\hspace{1cm} 2.A.1 Basic definitions  \hfill 135
## Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.A.2</td>
<td>Convergence</td>
<td>136</td>
</tr>
<tr>
<td>2.A.3</td>
<td>Interchange theorems</td>
<td>138</td>
</tr>
<tr>
<td>2.A.4</td>
<td>Inequalities</td>
<td>139</td>
</tr>
<tr>
<td>2.A.5</td>
<td>Integration by parts</td>
<td>140</td>
</tr>
<tr>
<td>2.B</td>
<td>Elements of linear algebra</td>
<td>141</td>
</tr>
<tr>
<td>2.B.1</td>
<td>Basic definitions and properties</td>
<td>141</td>
</tr>
<tr>
<td>2.B.2</td>
<td>Special matrices</td>
<td>147</td>
</tr>
<tr>
<td>2.C</td>
<td>Elements of probability</td>
<td>151</td>
</tr>
<tr>
<td>2.C.1</td>
<td>Basic definitions</td>
<td>151</td>
</tr>
<tr>
<td>2.C.2</td>
<td>Standard distributions</td>
<td>154</td>
</tr>
<tr>
<td>2.C.3</td>
<td>Estimation</td>
<td>155</td>
</tr>
<tr>
<td>2.D</td>
<td>Basis concepts</td>
<td>159</td>
</tr>
<tr>
<td>3</td>
<td>Sequences and discrete-time systems</td>
<td>181</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>182</td>
</tr>
<tr>
<td>3.2</td>
<td>Sequences</td>
<td>185</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Infinite-length sequences</td>
<td>185</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Finite-length sequences</td>
<td>192</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Two-dimensional sequences</td>
<td>193</td>
</tr>
<tr>
<td>3.3</td>
<td>Systems</td>
<td>195</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Discrete-time systems and their properties</td>
<td>195</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Difference equations</td>
<td>202</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Linear shift-invariant systems</td>
<td>205</td>
</tr>
<tr>
<td>3.4</td>
<td>Discrete-time Fourier transform</td>
<td>216</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Definition of the DTFT</td>
<td>216</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Existence and convergence of the DTFT</td>
<td>218</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Properties of the DTFT</td>
<td>221</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Frequency response of filters</td>
<td>227</td>
</tr>
<tr>
<td>3.5</td>
<td>$\mathcal{Z}$-transform</td>
<td>233</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Definition of the $\mathcal{Z}$-transform</td>
<td>234</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Existence and convergence of the $\mathcal{Z}$-transform</td>
<td>235</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Properties of the $\mathcal{Z}$-transform</td>
<td>240</td>
</tr>
<tr>
<td>3.5.4</td>
<td>$\mathcal{Z}$-transform of filters</td>
<td>249</td>
</tr>
<tr>
<td>3.6</td>
<td>Discrete Fourier transform</td>
<td>252</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Definition of the DFT</td>
<td>252</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Properties of the DFT</td>
<td>255</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Frequency response of filters</td>
<td>259</td>
</tr>
<tr>
<td>3.7</td>
<td>Multirate sequences and systems</td>
<td>264</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Downsampling</td>
<td>265</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Upsampling</td>
<td>268</td>
</tr>
<tr>
<td>3.7.3</td>
<td>Combinations of downsampling and upsampling</td>
<td>270</td>
</tr>
<tr>
<td>3.7.4</td>
<td>Combinations of downsampling, upsampling, and filtering</td>
<td>272</td>
</tr>
<tr>
<td>3.7.5</td>
<td>Polyphase representation</td>
<td>278</td>
</tr>
<tr>
<td>3.8</td>
<td>Stochastic processes and systems</td>
<td>285</td>
</tr>
<tr>
<td>3.8.1</td>
<td>Stochastic processes</td>
<td>285</td>
</tr>
<tr>
<td>Contents</td>
<td>xiii</td>
<td></td>
</tr>
<tr>
<td>------------------------------------------------------------------------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>3.8.2 Systems</td>
<td>288</td>
<td></td>
</tr>
<tr>
<td>3.8.3 Discrete-time Fourier transform</td>
<td>292</td>
<td></td>
</tr>
<tr>
<td>3.8.4 Multirate sequences and systems</td>
<td>294</td>
<td></td>
</tr>
<tr>
<td>3.8.5 Minimum mean-squared error estimation</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>3.9 Computational aspects</td>
<td>303</td>
<td></td>
</tr>
<tr>
<td>3.9.1 Fast Fourier transforms</td>
<td>303</td>
<td></td>
</tr>
<tr>
<td>3.9.2 Convolution</td>
<td>307</td>
<td></td>
</tr>
<tr>
<td>3.9.3 Multirate operations</td>
<td>311</td>
<td></td>
</tr>
<tr>
<td>3.8.6 Elements of analysis</td>
<td>313</td>
<td></td>
</tr>
<tr>
<td>3.8.6.1 Complex numbers</td>
<td>313</td>
<td></td>
</tr>
<tr>
<td>3.8.6.2 Difference equations</td>
<td>315</td>
<td></td>
</tr>
<tr>
<td>3.8.6.3 Convergence of the convolution sum</td>
<td>316</td>
<td></td>
</tr>
<tr>
<td>3.8.6.4 Dirac delta function</td>
<td>316</td>
<td></td>
</tr>
<tr>
<td>3.8.7 Elements of algebra</td>
<td>318</td>
<td></td>
</tr>
<tr>
<td>3.8.7.1 Polynomials</td>
<td>318</td>
<td></td>
</tr>
<tr>
<td>3.8.7.2 Vectors and matrices of polynomials</td>
<td>321</td>
<td></td>
</tr>
<tr>
<td>3.8.7.3 Kronecker product</td>
<td>324</td>
<td></td>
</tr>
<tr>
<td>Chapter at a glance</td>
<td>325</td>
<td></td>
</tr>
<tr>
<td>Historical remarks</td>
<td>328</td>
<td></td>
</tr>
<tr>
<td>Further reading</td>
<td>328</td>
<td></td>
</tr>
<tr>
<td>Exercises with solutions</td>
<td>329</td>
<td></td>
</tr>
<tr>
<td>Exercises</td>
<td>336</td>
<td></td>
</tr>
<tr>
<td>4 Functions and continuous-time systems</td>
<td>343</td>
<td></td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>344</td>
<td></td>
</tr>
<tr>
<td>4.2 Functions</td>
<td>345</td>
<td></td>
</tr>
<tr>
<td>4.2.1 Functions on the real line</td>
<td>345</td>
<td></td>
</tr>
<tr>
<td>4.2.2 Periodic functions</td>
<td>351</td>
<td></td>
</tr>
<tr>
<td>4.3 Systems</td>
<td>351</td>
<td></td>
</tr>
<tr>
<td>4.3.1 Continuous-time systems and their properties</td>
<td>352</td>
<td></td>
</tr>
<tr>
<td>4.3.2 Differential equations</td>
<td>355</td>
<td></td>
</tr>
<tr>
<td>4.3.3 Linear shift-invariant systems</td>
<td>355</td>
<td></td>
</tr>
<tr>
<td>4.4 Fourier transform</td>
<td>359</td>
<td></td>
</tr>
<tr>
<td>4.4.1 Definition of the Fourier transform</td>
<td>359</td>
<td></td>
</tr>
<tr>
<td>4.4.2 Existence and inversion of the Fourier transform</td>
<td>360</td>
<td></td>
</tr>
<tr>
<td>4.4.3 Properties of the Fourier transform</td>
<td>365</td>
<td></td>
</tr>
<tr>
<td>4.4.4 Frequency response of filters</td>
<td>373</td>
<td></td>
</tr>
<tr>
<td>4.4.5 Regularity and spectral decay</td>
<td>374</td>
<td></td>
</tr>
<tr>
<td>4.4.6 Laplace transform</td>
<td>379</td>
<td></td>
</tr>
<tr>
<td>4.5 Fourier series</td>
<td>380</td>
<td></td>
</tr>
<tr>
<td>4.5.1 Definition of the Fourier series</td>
<td>381</td>
<td></td>
</tr>
<tr>
<td>4.5.2 Existence and convergence of the Fourier series</td>
<td>383</td>
<td></td>
</tr>
<tr>
<td>4.5.3 Properties of the Fourier series</td>
<td>385</td>
<td></td>
</tr>
<tr>
<td>4.5.4 Frequency response of filters</td>
<td>394</td>
<td></td>
</tr>
<tr>
<td>4.6 Stochastic processes and systems</td>
<td>395</td>
<td></td>
</tr>
<tr>
<td>4.6.1 Stochastic processes</td>
<td>395</td>
<td></td>
</tr>
<tr>
<td>4.6.2 Systems</td>
<td>397</td>
<td></td>
</tr>
<tr>
<td>4.6.3 Fourier transform</td>
<td>399</td>
<td></td>
</tr>
<tr>
<td>Chapter at a glance</td>
<td>401</td>
<td></td>
</tr>
<tr>
<td>Historical remarks</td>
<td>403</td>
<td></td>
</tr>
</tbody>
</table>
## 5 Sampling and interpolation

### 5.1 Introduction

### 5.2 Finite-dimensional vectors

- 5.2.1 Sampling and interpolation with orthonormal vectors
- 5.2.2 Sampling and interpolation with nonorthogonal vectors

### 5.3 Sequences

- 5.3.1 Sampling and interpolation with orthonormal sequences
- 5.3.2 Sampling and interpolation for bandlimited sequences
- 5.3.3 Sampling and interpolation with nonorthogonal sequences

### 5.4 Functions

- 5.4.1 Sampling and interpolation with orthonormal functions
- 5.4.2 Sampling and interpolation for bandlimited functions
- 5.4.3 Sampling and interpolation with nonorthogonal functions

### 5.5 Periodic functions

- 5.5.1 Sampling and interpolation with orthonormal periodic functions
- 5.5.2 Sampling and interpolation for bandlimited periodic functions

### 5.6 Computational aspects

- 5.6.1 Projection onto convex sets

## 6 Approximation and compression

### 6.1 Introduction

### 6.2 Approximation of functions on finite intervals by polynomials

- 6.2.1 Least-squares approximation
- 6.2.2 Lagrange interpolation: Matching points
- 6.2.3 Taylor series expansion: Matching derivatives
- 6.2.4 Hermite interpolation: Matching points and derivatives
- 6.2.5 Minimax polynomial approximation
- 6.2.6 Filter design

### 6.3 Approximation of functions by splines

- 6.3.1 Splines and spline spaces
- 6.3.2 Bases for uniform spline spaces
- 6.3.3 Strang–Fix condition for polynomial representation
- 6.3.4 Continuous-time operators in spline spaces implemented with discrete-time processing

### 6.4 Approximation of functions and sequences by series truncation

- 6.4.1 Linear and nonlinear approximations
- 6.4.2 Linear approximation of random vectors and stochastic processes
- 6.4.3 Linear and nonlinear diagonal estimators

### 6.5 Compression

- 6.5.1 Lossless compression
- 6.5.2 Scalar quantization
6.5.3 Transform coding 584

6.6 Computational aspects 591
   6.6.1 Huffman algorithm for lossless code design 591
   6.6.2 Iterative design of quantizers 593
   6.6.3 Estimating from quantized samples 594

Chapter at a glance 597
Historical remarks 598
Further reading 599
Exercises with solutions 600
Exercises 606

Chapter at a glance 597
Historical remarks 598
Further reading 599
Exercises with solutions 600
Exercises 606

7 Localization and uncertainty 615

7.1 Introduction 616
7.2 Localization for functions 619
   7.2.1 Localization in time 620
   7.2.2 Localization in frequency 622
   7.2.3 Uncertainty principle for functions 624
7.3 Localization for sequences 627
   7.3.1 Localization in time 629
   7.3.2 Localization in frequency 630
   7.3.3 Uncertainty principle for sequences 633
   7.3.4 Uncertainty principle for finite-length sequences 637
7.4 Tiling the time–frequency plane 638
   7.4.1 Localization for structured sets of functions 638
   7.4.2 Localization for structured sets of sequences 640
7.5 Examples of local Fourier and wavelet bases 645
   7.5.1 Local Fourier and wavelet bases for functions 645
   7.5.2 Local Fourier and wavelet bases for sequences 651
7.6 Recap and a glimpse forward 656
   7.6.1 Tools 657
   7.6.2 Adapting tools to real-world problems 658
   7.6.3 Music analysis, communications, and compression 659

Chapter at a glance 666
Historical remarks 667
Further reading 667
Exercises with solutions 668
Exercises 671

Image and quote attribution 673

References 675

Index 681
Quick reference

Abbreviations

AR       Autoregressive
ARMA     Autoregressive moving average
AWGN     Additive white Gaussian noise
BIBO     Bounded input, bounded output
CDF      Cumulative distribution function
DCT      Discrete cosine transform
DFT      Discrete Fourier transform
DTFT     Discrete-time Fourier transform
DWT      Discrete wavelet transform
FFT      Fast Fourier transform
FIR      Finite impulse response
i.i.d.    Independent and identically distributed
IIR      Infinite impulse response
KLT      Karhunen–Loève transform
LMMSE    Linear minimum mean-squared error
LPSV     Linear periodically shift-varying
LSI      Linear shift-invariant
MA       Moving average
MAP      Maximum a posteriori probability
ML       Maximum likelihood
MMSE     Minimum mean-squared error
MSE      Mean-squared error
PDF      Probability density function
PMF      Probability mass function
POCS     Projection onto convex sets
rad      Radians
ROC      Region of convergence
SNR      Signal-to-noise ratio
SVD      Singular value decomposition
WSCS     Wide-sense cyclostationary
WSS      Wide-sense stationary

Abbreviations used in tables and captions but not in the text

FT       Fourier transform
FS       Fourier series
LT       Laplace transform
Sets
natural numbers \( \mathbb{N} \) \( 0, 1, \ldots \)
integers \( \mathbb{Z} \) \( \ldots, -1, 0, 1, \ldots \)
positive integers \( \mathbb{Z}^+ \) \( 1, 2, \ldots \)
rational numbers \( \mathbb{Q} \) \( p/q, \ p, q \in \mathbb{Z}, \ q \neq 0 \)
real numbers \( \mathbb{R} \) \( (-\infty, \infty) \)
positive real numbers \( \mathbb{R}^+ \) \( (0, \infty) \)
complex numbers \( \mathbb{C} \) \( a + jb \) or \( re^{j\theta} \) with \( a, b, r, \theta \in \mathbb{R} \)
a generic index set \( I \)
a generic vector space \( V \)
a generic Hilbert space \( H \)
closure of set \( S \)

Real and complex analysis
sequence \( x_n \) argument \( n \) is an integer, \( n \in \mathbb{Z} \)
function \( x(t) \) argument \( t \) is continuous-valued, \( t \in \mathbb{R} \)
ordered sequence \( (x_n)_n \)
set containing \( x_n \) \( \{x_n\}_n \)
vector \( x \) with \( x_n \) as elements \([x_n]\)
Kronecker delta sequence \( \delta_n \) \( \delta_n = 1 \) for \( n = 0; \delta_n = 0 \) otherwise
Dirac delta function \( \delta(t) \) \( \int_{-\infty}^{\infty} x(t) \delta(t) dt = x(0) \) for \( x \) continuous at \( 0 \)
indicator function of interval \( I \) \( 1_I \) \( 1_I(t) = 1 \) for \( t \in I; 1_I(t) = 0 \) otherwise
integration by parts \( \int udv = uv - \int vdu \)
complex number \( z \) \( a + jb, \ re^{j\theta}, \ a, b \in \mathbb{R}, \ r \in [0, \infty), \ \theta \in [0, 2\pi) \)
conjugation \( z^* \) \( a - jb, \ re^{-j\theta} \)
real part of \( \Re(\cdot) \) \( \Re(a + jb) = a, \ a, b \in \mathbb{R} \)
imaginary part of \( \Im(\cdot) \) \( \Im(a + jb) = b, \ a, b \in \mathbb{R} \)
conjugation of coefficients \( X_n(z) \) \( X^*(z^*) \)
principal root of unity \( W_N \) \( e^{-j2\pi/N} \)

Asymptotic notation
big O \( x \in O(y) \) \( 0 \leq x_n \leq \gamma y_n \) for all \( n \geq n_0; \) some \( n_0 \) and \( \gamma > 0 \)
little o \( x \in o(y) \) \( 0 \leq x_n \leq \gamma y_n \) for all \( n \geq n_0; \) some \( n_0 \) and \( \gamma > 0 \)
Omega \( x \in \Omega(y) \) \( x_n \geq \gamma y_n \) for all \( n \geq n_0; \) some \( n_0 \) and \( \gamma > 0 \)
Theta \( x \in \Theta(y) \) \( x \in O(y) \) and \( x \in \Omega(y) \)
asymptotic equivalence \( x \asymp y \) \( \lim_{n \to \infty} x_n/y_n = 1 \)
Quick reference

**Standard vector spaces**

Hilbert space of square-summable sequences

\[ \ell^2(\mathbb{Z}) = \left\{ x : \mathbb{Z} \to \mathbb{C} \mid \sum_n |x_n|^2 < \infty \right\} \]

with inner product \( \langle x, y \rangle = \sum_n x_n y_n^* \)

Hilbert space of square-integrable functions

\[ L^2(\mathbb{R}) = \left\{ x : \mathbb{R} \to \mathbb{C} \mid \int |x(t)|^2 dt < \infty \right\} \]

with inner product \( \langle x, y \rangle = \int x(t) y(t)^* dt \)

Normed vector space of sequences with finite \( \ell^p \) norm, \( 1 \leq p < \infty \)

\[ \ell^p(\mathbb{Z}) = \left\{ x : \mathbb{Z} \to \mathbb{C} \mid \sum_n |x_n|^p < \infty \right\} \]

with norm \( \|x\|_p = \left( \sum_n |x_n|^p \right)^{1/p} \)

Normed vector space of functions with finite \( L^p \) norm, \( 1 \leq p < \infty \)

\[ L^p(\mathbb{R}) = \left\{ x : \mathbb{R} \to \mathbb{C} \mid \int |x(t)|^p dt < \infty \right\} \]

with norm \( \|x\|_p = \left( \int |x(t)|^p dt \right)^{1/p} \)

Normed vector space of bounded sequences with supremum norm

\[ \ell^\infty(\mathbb{Z}) = \left\{ x : \mathbb{Z} \to \mathbb{C} \mid \sup_n |x_n| < \infty \right\} \]

with norm \( \|x\|_\infty = \sup_n |x_n| \)

Normed vector space of bounded functions with supremum norm

\[ L^\infty(\mathbb{R}) = \left\{ x : \mathbb{R} \to \mathbb{C} \mid \text{ess sup}_t |x(t)| < \infty \right\} \]

with norm \( \|x\|_\infty = \text{ess sup}_t |x(t)| \)

**Bases and frames for sequences**

Standard basis \( \{ e_k \} \)

vector, element of basis or frame \( \varphi \)

basis or frame \( \Phi \)

operator \( \tilde{\Phi} \)

vector, element of dual basis or frame \( \tilde{\varphi} \)

operator \( \tilde{\Phi} \)

expansion with a basis or frame \( x = \Phi \tilde{\Phi}^* x \)
### Discrete-time signal processing

**Sequence** \( x_n \) signal, vector

**Convolution**

linear \( h \ast x \) \[ \sum_{k \in \mathbb{Z}} x_k h_{n-k} \]

circular \( h \odot x \) \[ \sum_{k=0}^{N-1} x_k h_{(n-k) \mod N} \]

\((N\text{-periodic sequences})\) \((h \ast x)_n\) convolution result at \( n \)

**Eigensequence**

infinite time \( v_n \) eigenvector \( h \ast v = H(e^{j\omega}) v \)

finite time \( v_n = e^{j2\pi kn/N} \) \( h \odot v = H_k v \)

**Frequency response**

infinite time \( H(e^{j\omega}) \) \[ \sum_{n \in \mathbb{Z}} h_n e^{-j\omega n} \]

finite time \( H_k \) \[ \sum_{n=0}^{N-1} h_n e^{-j2\pi kn/N} = \sum_{n=0}^{N-1} h_n W_N^{kn} \]

### Continuous-time signal processing

**Function** \( x(t) \) signal

**Convolution**

linear \( h \ast x \) \[ \int_{-\infty}^{\infty} x(\tau) h(t-\tau) \, d\tau \]

circular \( h \odot x \) \[ \int_{-T/2}^{T/2} x(\tau) h(t-\tau) \, d\tau \]

\((T\text{-periodic functions})\) \((h \ast x)(t)\) convolution result at \( t \)

**Eigenfunction**

infinite time \( v(t) = e^{j\omega t} \) eigenvector \( h \ast v = H(\omega) v \)

finite time \( v(t) = e^{j2\pi kt/T} \) \( h \odot v = H_k v \)

**Frequency response**

infinite time \( H(\omega) \) \[ \int_{-\infty}^{\infty} h(t) e^{-j\omega t} \, dt \]

finite time \( H_k \) \[ \int_{-T/2}^{T/2} h(\tau) e^{-j2\pi k\tau/T} \, d\tau \]
Quick reference

Spectral analysis

Fourier transform

\[ x(t) \xrightarrow{FT} X(\omega) \]
\[ X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} \, dt \]
\[ x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} \, d\omega \]

Fourier series coefficients

\[ x(t) \xrightarrow{FS} X_k \]
\[ X_k = \frac{1}{T} \int_{-T/2}^{T/2} x(t) e^{-j(2\pi/T)k t} \, dt \]
\[ x(t) = \sum_{k \in \mathbb{Z}} X_k e^{j(2\pi/T)k t} \]

Discrete-time Fourier transform

\[ x_n \xrightarrow{DTFT} X(e^{j\omega}) \]
\[ X(e^{j\omega}) = \sum_{n \in \mathbb{Z}} x_n e^{-j\omega n} \]
\[ x_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} \, d\omega \]

Discrete Fourier transform

\[ x_n \xrightarrow{DFT} X_k \]
\[ X_k = \sum_{n=0}^{N-1} x_n W_N^{kn} \]
\[ x_n = \frac{1}{N} \sum_{k=0}^{N-1} X_k W_N^{-kn} \]

Z-transform

\[ x_n \xrightarrow{ZT} X(z) \]
\[ X(z) = \sum_{n \in \mathbb{Z}} x_n z^{-n} \]
Acknowledgments

This book would not exist without the help of many people, whom we attempt to list below. We apologize for any omissions and welcome corrections and suggestions.

We are grateful to Professor Libero Zuppiroli of EPFL and Christiane Grimm for the photograph that graces the cover; Professor Zuppiroli proposed an experiment from Newton’s treatise, *Opticks* [70], as emblematic of the book, and Ms. Grimm beautifully photographed the apparatus that he designed. Françoise Behn, Jocelyne Plantefol, and Jacqueline Aeberhard typed parts of the manuscript, Eric Strattman assisted with some of the figures, Krista Van Guilder designed and implemented the initial book web site, and Jorge Albaladejo Pomares designed and implemented the book blog. We thank them for their diligence and patience. S. Grace Chang and Yann Barbotin helped organize and edit the problem companion, while Patrick Vandewalle designed and implemented a number of MATLAB® problems available on the book website. We thank them for their expertise and insight. We are indebted to George Beck for his *Mathematica®* editorial comments on Wolfram Demonstrations inspired by this book. We are grateful to Giovanni Pacifici for the many useful scripts for automating various book-writing processes. We thank John Cozzens of the US National Science Foundation for his unwavering support over the last two decades. At Cambridge University Press, Steven Holt held us to high standards in our writing and typesetting through many corrections and suggestions; Elizabeth Horne and Jonathan Ratcliffe coordinated production expertly; and, last but not least, Phil Meyler repeatedly (and most gracefully) reminded us of our desire to finish the book.

Many instructors have gamely tested pre-alpha, alpha, and beta versions of this manuscript. Of these, Amina Chebira, Filipe Condeesa, Mihailo Kolundžija, Yue M. Lu, Truong-Thao Nguyen, Reza Parhizkar, and Jayakrishnan Unnikrishnan have done far more than their share in providing invaluable comments and suggestions. We also thank Robert Gray for reviewing the manuscript and providing many important suggestions, in particular a better approach to covering the Dirac delta function; Thierry Blu for, among other things, providing a simple proof for a particular case of the Strang–Fix theorem; Matthew Fickus for consulting on some finer mathematical points; Michael Unser for his notes and teaching approach; and Zoran Cvetković, Minh N. Do, and Philip Schniter for teaching with the manuscript and providing many constructive comments. Useful comments have also been provided

1/http://www.fourierandwavelets.org
Acknowledgments

by Pedro Aguilar, Ganesh Ajjanagadde, A. Avudainayagam, Jerry Bauch, Anirudhha Bhargava, Ozan Çaglayan, André Tomaz de Carvalho, Gustavo Corach, Todd Doucet, S. Esakkirajan, Germán González, Alexandre Haehlen, Mina Karzand, Ulrich Mönich, Juan Pablo Muszkats, Hossein Rouhani, Noah D. Stein, John Z. Sun, Christophe Tournery, and Lav R. Varshney.

Martin Vetterli thanks current and former EPFL graduate students and postdocs who helped develop the material, solve problems, catch typos, and suggest improvements, among other things. They include Florence Bénédit, Amina Chebira, Minh N. Do, Ivan Dokmanić, Pier Luigi Dragotti, Ali Hormati, Ivana Jovanović, Mihailo Kolundžija, Jérôme Lebrun, Yue M. Lu, Pina Marziliano, Fritz Menzer, Reza Parhizkar, Paolo Prandoni, Juri Ranieri, Olivier Roy, Rahul Shukla, Jayakrishnan Unnikrishnan, Patrick Vandewalle and Vladan Veličavljević. He gratefully acknowledges support from EPFL, the Swiss NSF through awards 2000-063664, 200020-103729, and 200021-121935, and the European Research Council through award SPARSAM 247006. In addition, the support from Qualcomm, in particular from Dr. Chong Lee, is gratefully acknowledged.

Jelena Kovacević thanks her present and past graduate students Ramamurthy Bhagavatula, Amina Chebira, Kuan-Chieh Jackie Chen, Siheng Chen, Filipe Condessa, Charles Jackson, Xindian Long, Michael T. McCann, Anupama Kuruvilla, Thomas E. Merryman, Vivek Oak, Aliaksei Sandryhaila, and Gowri Srinivasa, many of whom served as TAs for her classes at CMU, together with Pablo Hennings Yehmans. Thanks are due also to all the students in the following classes at CMU: 42-431/18-496, 42-540/42-698, 42-703/18-799, 42-731/18-795, and 42-732/18-790, taught from 2003 to 2013. She gratefully acknowledges support from the US NSF through awards 1017278, 1130616, 515152, 633775, and 331657; the NIH through awards EB008870, EB009875, and 1DC010283; the Carnegie Institute of Technology at CMU through an Infrastructure for Large-Scale Biomedical Computing award; the Pennsylvania State Tobacco Settlement, the Kamlet–Smith Bioinformatics grant; and the Philip and Marsha Dowd Teaching Fellowship.

Vivek Goyal thanks TAs and students at MIT and BU for suggestions, in particular Giuseppe Bombara, Baris Erkmen, Ying-zong Huang, Zahi Karam, Ahmed Kirmani, Srilalitha Kumaresan, Ranko Sredojević, Ramesh Sridharan, Watcharapan Suwansantisuk, Vincent Tan, Archana Venkataraman, Adam Zelinski, and Serhii Zhak. He gratefully acknowledges support from the US NSF through awards 0643836, 0729069, 1101147, 1115159, and 1161413; Texas Instruments through its Leadership University Program; Hewlett-Packard; Qualcomm; Siemens; MIT through the Esther and Harold E. Edgerton Career Development Chair; and the Centre Bernoulli of EPFL.
Preface

Our main goals in this book and its companion volume, *Fourier and Wavelet Signal Processing (FWSP)* [57], are to enable an understanding of state-of-the-art signal processing methods and techniques, as well as to provide a solid foundation for those hoping to advance the theory and practice of signal processing. We believe that the best way to grasp and internalize the fundamental concepts in signal processing is through the geometry of Hilbert spaces, as this leverages the great innate human capacity for spatial reasoning. While using geometry should ultimately simplify the subject, the connection between signals and geometry is not innate. The reader will have to invest effort to see signals as vectors in Hilbert spaces before reaping the benefits of this view; we believe that effort to be well placed.

Many of the results and techniques presented in the two volumes, while rooted in classic Fourier techniques for signal representation, first appeared during a flurry of activity in the 1980s and 1990s. New constructions of local Fourier transforms and orthonormal wavelet bases during that period were motivated both by theoretical interest and by applications, multimedia communications in particular. New bases with specified time–frequency behavior were found, with impact well beyond the original fields of application. Areas as diverse as computer graphics and numerical analysis embraced some of the new constructions – no surprise given the pervasive role of Fourier analysis in science and engineering.

Many of these new tools for signal processing were developed in the applied harmonic analysis community. The resulting high level of mathematical sophistication was a barrier to entry for many signal processing practitioners. Now that the dust has settled, some of what was new and esoteric has become fundamental; we want to bring these new fundamentals to a broader audience. The Hilbert space formalism gives us a way to begin with the classical Fourier analysis of signals and systems and reach structured representations with time–frequency locality and their varied applications. Whenever possible, we use explanations rooted in elementary analysis over those that would require more advanced background (such as measure theory). We hope to have balanced the competing virtues of accessibility to the student, rigor, and adequate analytical power to reach important conclusions.

The book can be used as a self-contained text on the foundations of signal processing, where discrete and continuous time are treated on equal footing. All the necessary mathematical background is included, with examples illustrating the applicability of the results. In addition, the book serves as a precursor to *FWSP*, which relies on the framework built here; the two books are thus integrally related.
Foundations of Signal Processing  This book covers the foundations for an in-depth understanding of modern signal processing. It contains material that many readers may have seen before scattered across multiple sources, but without the Hilbert space interpretations, which are essential in signal processing. Our aim is to teach signal processing with geometry, that is, to extend Euclidean geometric insights to abstract signals; we use Hilbert space geometry to accomplish that. With this approach, fundamental concepts – such as properties of bases, Fourier representations, sampling, interpolation, approximation, and compression – are often unified across finite dimensions, discrete time, and continuous time, thus making it easier to point out the few essential differences. Unifying results geometrically helps generalize beyond Fourier-domain insights, pushing the understanding farther, faster.

Chapter 2, From Euclid to Hilbert, is our main vehicle for drawing out unifying commonalities; it develops the basic geometric intuition central to Hilbert spaces, together with the necessary tools underlying the constructions of bases and frames.

The next two chapters cover signal processing on discrete-time and continuous-time signals, specializing general concepts from Chapter 2. Chapter 3, Sequences and discrete-time systems, is a crash course on processing signals in discrete time or discrete space together with spectral analysis with the discrete-time Fourier transform and discrete Fourier transform. Chapter 4, Functions and continuous-time systems, is its continuous-time counterpart, including spectral analysis with the Fourier transform and Fourier series.

Chapter 5, Sampling and interpolation, presents the critical link between discrete and continuous domains given by sampling and interpolation theorems. Chapter 6, Approximation and compression, veers from exact representations to approximate ones. The final chapter in the book, Chapter 7, Localization and uncertainty, considers time–frequency behavior of the abstract representation objects studied thus far. It also discusses issues arising in applications as well as ways of adapting the previously introduced tools for use in the real world.

Fourier and Wavelet Signal Processing  The companion volume focuses on signal representations using local Fourier and wavelet bases and frames. It covers the two-channel filter bank in detail, and then uses it as the implementation vehicle for all sequence representations that follow. The local Fourier and wavelet methods are presented side-by-side, without favoring any one in particular; the truth is that each representation is a tool in the toolbox of the practitioner, and the problem or application at hand ultimately determines the appropriate one to use. We end with examples of state-of-the-art signal processing and communication problems, with sparsity as a guiding principle.

Teaching points  Our aim is to present a synergistic view of signal representations and processing, starting from basic mathematical principles and going all the way to actual constructions of bases and frames, always with an eye on concrete applications. While the benefit is a self-contained presentation, the cost is a rather sizable manuscript. Referencing in the main text is sparse; pointers to the bibliography are given in Further reading at the end of each chapter.
The material grew out of teaching signal processing, wavelets, and applications in various settings. Two of us (MV and JK) authored a graduate textbook, *Wavelets and Subband Coding* (originally with Prentice Hall in 1995, now open access), which we and others used to teach graduate courses at various US and European institutions. With the maturing of the field and the interest arising from and for these topics, the time was right for the three of us to write entirely new texts geared toward a broader audience. We and others have taught with these books, in their entirety or in parts, a number of times and to a number of different audiences: from senior undergraduate to graduate level, and from engineering to mixes that include life-science students.

The books and their website provide a number of features for teaching and learning:

- **Exercises** are an integral part of the material and come in two forms: solved exercises with explicit solutions within the text, and regular exercises that allow students to test their knowledge. Regular exercises are marked with (1), (2), or (3) in increasing order of difficulty.
- Numerous examples illustrate concepts throughout the book.
- An electronic version of the text is provided with the printed copy. It includes PDF hyperlinks and an additional color to enhance interpretation of figures.
- A free electronic version of the text without PDF hyperlinks, exercises or solved exercises, and with figures in grayscale, is available at the book website.
- A Mathematica® companion, which contains the code to produce all numerical figures in the book, is provided with the printed version.
- Several interactive Mathematica® demonstrations using the free CDF player are available at the book website.
- Additional material, such as lecture slides, is available at the book website.
- To instructors, we provide a Solutions Manual, with solutions to all regular exercises in the book.

**Notational points** To traverse the book efficiently, it will help to know the various numbering conventions that we have employed. In each chapter, a single counter is used for definitions, theorems, and corollaries (which are all shaded) and another for examples (which are slightly indented). Equations, figures, and tables are also numbered within each chapter. A prefix En.m– in the number of an equation, figure, or table indicates that it is part of Solved Exercise n.m in Chapter n. The letter P is used similarly for statements of regular exercises.

Martin Vetterli, Jelena Kovačević, and Vivek K Goyal

---

2http://waveletsandsubbandcoding.org/
3http://www.fourierandwavelets.org/