Analysis of Boolean Functions

Boolean functions are perhaps the most basic objects of study in theoretical computer science. They also arise in other areas of mathematics, including combinatorics, statistical physics, and mathematical social choice. The field of analysis of Boolean functions seeks to understand them via their Fourier transform and other analytic methods. This text gives a thorough overview of the field, beginning with the most basic definitions and proceeding to advanced topics such as hypercontractivity and isoperimetry. Each chapter includes a "highlight application" such as Arrow's theorem from economics, the Goldreich-Levin algorithm from cryptography/learning theory, Håstad's NP-hardness of approximation results, and "sharp threshold" theorems for random graph properties. The book includes nearly 500 exercises and can be used as the basis of a one-semester graduate course. It should appeal to advanced undergraduates, graduate students, and researchers in computer science theory and related mathematical fields.

RYAN O'DONNELL is an Associate Professor in the Computer Science Department at Carnegie Mellon University.

Analysis of Boolean Functions

RYAN O'DONNELL

Carnegie Mellon University, Pittsburgh, Pennsylvania

CAMBRIDGE UNIVERSITY PRESS

32 Avenue of the Americas, New York, NY 10013-2473, USA

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107038325

© Ryan O'Donnell 2014

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2014

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication Data O'Donnell, Ryan, 1979– author. Analysis of Boolean functions / Ryan O'Donnell, Carnegie Mellon University, Pittsburgh, Pennsylvania. pages cm

Includes bibliographical references and index. ISBN 978-1-107-03832-5 (hardback : acid-free paper) 1. Computer science – Mathematics. 2. Algebra, Boolean. I. Title. QA76.9.M35O36 2014 004.01′51–dc23 2013050033

ISBN 978-1-107-03832-5 Hardback

Additional resources for this publication at http://analysisofbooleanfunctions.org

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To Zeynep, for her unending support and encouragement.

Contents

Prej	face	<i>page</i> xi
List	of Notation	XV
1.	Boolean Functions and the Fourier Expansion	1
	1.1. On Analysis of Boolean Functions1.2. The "Fourier Expansion": Functions as Multilinear	1
	Polynomials	2
	1.3. The Orthonormal Basis of Parity Functions	5
	1.4. Basic Fourier Formulas	7
	1.5. Probability Densities and Convolution	12
	1.6. Highlight: Almost Linear Functions and the BLR Test	14
	1.7. Exercises and Notes	17
2.	Basic Concepts and Social Choice	26
	2.1. Social Choice Functions	26
	2.2. Influences and Derivatives	29
	2.3. Total Influence	32
	2.4. Noise Stability	36
	2.5. Highlight: Arrow's Theorem	41
	2.6. Exercises and Notes	45
3.	Spectral Structure and Learning	54
	3.1. Low-Degree Spectral Concentration	54
	3.2. Subspaces and Decision Trees	56
	3.3. Restrictions	59
	3.4. Learning Theory	64
	3.5. Highlight: The Goldreich-Levin Algorithm	68
	3.6. Exercises and Notes	71

viii

4.	DNF Formulas and Small-Depth Circuits	79
	4.1. DNF Formulas	79
	4.2. Tribes	82
	4.3. Random Restrictions	84
	4.4. Håstad's Switching Lemma and the Spectrum of DNFs	86
	4.5. Highlight: LMN's Work on Constant-Depth Circuits	89
	4.6. Exercises and Notes	94
5.	Majority and Threshold Functions	99
	5.1. Linear Threshold Functions and Polynomial Threshold	
	Functions	99
	5.2. Majority, and the Central Limit Theorem	104
	5.3. The Fourier Coefficients of Majority	108
	5.4. Degree-1 Weight	111
	5.5. Highlight: Peres's Theorem and Uniform Noise Stability	118
	5.6. Exercises and Notes	122
6.	Pseudorandomness and \mathbb{F}_2 -Polynomials	131
	6.1. Notions of Pseudorandomness	131
	6.2. \mathbb{F}_2 -Polynomials	136
	6.3. Constructions of Various Pseudorandom Functions	140
	6.4. Applications in Learning and Testing	144
	6.5. Highlight: Fooling \mathbb{F}_2 -Polynomials	149
	6.6. Exercises and Notes	153
7.	Property Testing, PCPPs, and CSPs	162
	7.1. Dictator Testing	162
	7.2. Probabilistically Checkable Proofs of Proximity	167
	7.3. CSPs and Computational Complexity	173
	7.4. Highlight: Håstad's Hardness Theorems	180
	7.5. Exercises and Notes	186
8.	Generalized Domains	197
	8.1. Fourier Bases for Product Spaces	197
	8.2. Generalized Fourier Formulas	201
	8.3. Orthogonal Decomposition	207
	8.4. <i>p</i> -Biased Analysis	211
	8.5. Abelian Groups	218
	8.6. Highlight: Randomized Decision Tree Complexity	222
	8.7. Exercises and Notes	228

Contents

	Contents	ix
9.	Basics of Hypercontractivity	240
	9.1. Low-Degree Polynomials Are Reasonable	241
	9.2. Small Subsets of the Hypercube Are Noise-Sensitive	246
	9.3. $(2, q)$ - and $(p, 2)$ -Hypercontractivity for a Single Bit	250
	9.4. Two-Function Hypercontractivity and Induction	254
	9.5. Applications of Hypercontractivity	256
	9.6. Highlight: The Kahn-Kalai-Linial Theorem	260
	9.7. Exercises and Notes	266
10.	Advanced Hypercontractivity	278
	10.1. The Hypercontractivity Theorem for Uniform ± 1 Bits	278
	10.2. Hypercontractivity of General Random Variables	283
	10.3. Applications of General Hypercontractivity	288
	10.4. More on Randomization/Symmetrization	293
	10.5. Highlight: General Sharp Threshold Theorems	301
	10.6. Exercises and Notes	310
11.	Gaussian Space and Invariance Principles	325
	11.1. Gaussian Space and the Gaussian Noise Operator	326
	11.2. Hermite Polynomials	335
	11.3. Borell's Isoperimetric Theorem	339
	11.4. Gaussian Surface Area and Bobkov's Inequality	343
	11.5. The Berry–Esseen Theorem	350
	11.6. The Invariance Principle	359
	11.7. Highlight: Majority Is Stablest Theorem	366
	11.8. Exercises and Notes	373
Son	ne Tips	393
Bibl	liography	395
Inde	2X	417

Preface

The subject of this textbook is the *analysis of Boolean functions*. Roughly speaking, this refers to studying Boolean functions $f : \{0, 1\}^n \rightarrow \{0, 1\}$ via their Fourier expansion and other analytic means. Boolean functions are perhaps the most basic object of study in theoretical computer science, and Fourier analysis has become an indispensable tool in the field. The topic has also played a key role in several other areas of mathematics, from combinatorics, random graph theory, and statistical physics, to Gaussian geometry, metric/Banach spaces, and social choice theory.

The intent of this book is both to develop the foundations of the field and to give a wide (though far from exhaustive) overview of its applications. Each chapter ends with a "highlight" showing the power of analysis of Boolean functions in different subject areas: property testing, social choice, cryptography, circuit complexity, learning theory, pseudorandomness, hardness of approximation, concrete complexity, and random graph theory.

The book can be used as a reference for working researchers or as the basis of a one-semester graduate-level course. The author has twice taught such a course at Carnegie Mellon University, attended mainly by graduate students in computer science and mathematics but also by advanced undergraduates, postdocs, and researchers in adjacent fields. In both years most of Chapters 1–5 and 7 were covered, along with parts of Chapters 6, 8, 9, and 11, and some additional material on additive combinatorics. Nearly 500 exercises are provided at the ends of the book's chapters.

Additional material related to the book can be found at its website:

http://analysisofbooleanfunctions.org

This includes complete lecture notes from the author's 2007 course, complete lecture videos from the author's 2012 course, blog updates related to analysis of Boolean functions, an electronic draft of the book, and errata. The author would like to encourage readers to post any typos, bugs, clarification requests, and suggestions to this website.

xii

Preface

Acknowledgments

My foremost acknowledgment is to all of the people who have taught me analysis of Boolean functions, especially Guy Kindler and Elchanan Mossel. I also learned a tremendous amount from my advisor Madhu Sudan, and my coauthors and colleagues Per Austrin, Eric Blais, Nader Bshouty, Ilias Diakonikolas, Irit Dinur, Uri Feige, Ehud Friedgut, Parikshit Gopalan, Venkat Guruswami, Johan Håstad, Gil Kalai, Daniel Kane, Subhash Khot, Adam Klivans, James Lee, Assaf Naor, Joe Neeman, Krzysztof Oleszkiewicz, Yuval Peres, Oded Regev, Mike Saks, Oded Schramm, Rocco Servedio, Amir Shpilka, Jeff Steif, Benny Sudakov, Li-Yang Tan, Avi Wigderson, Karl Wimmer, John Wright, Yi Wu, Yuan Zhou, and many others. Ideas from all of them have strongly informed this book.

Many thanks to my PhD students who suffered from my inattention during the completion of this book: Eric Blais, Yuan Zhou, John Wright, and David Witmer. I'd also like to thank the students who took my 2007 and 2012 courses on analysis of Boolean functions; special thanks to Deepak Bal, Carol Wang, and Patrick Xia for their very helpful course writing projects.

Thanks to my editor Lauren Cowles for her patience and encouragement, to the copyediting team of David Anderson and Rishi Gupta, and to Cambridge University Press for welcoming the free online publication of this book. Thanks also to Amanda Williams for the use of the cover image on the book's website.

I'm very grateful to all of the readers of the blog serialization who suggested improvements and pointed out mistakes in the original draft of this work: Amirali Abdullah, Stefan Alders, anon, Arda Antikacıoğlu, Albert Atserias, Deepak Bal, Paul Beame, Tim Black, Ravi Boppana, Sankardeep Chakraborty, Bireswar Das, Andrew Drucker, John Engbers, Diodato Ferraioli, Magnus Find, Michael Forbes, David García Soriano, Dmitry Gavinsky, Daniele Gewurz, Sivakanth Gopi, Tom Gur, Zachary Hamaker, Prahladh Harsha, Justin Hilyard, Dmitry Itsykson, Hamidreza Jahanjou, Mitchell Johnston, Gautum Kamath, Shiva Kaul, Brian Kell, Pravesh Kothari, Chin Ho Lee, Euiwoong Lee, Noam Lifshitz, Tengyu Ma, Aleksandar Nikolov, David Pritchard, Swagato Sanyal, Pranav Senthilnathan, Igor Shinkar, Lior Silberman, Marla Slusky, Avishay Tal, Li-Yang Tan, Roei Tell, Suresh Venkatasubramanian, Emanuele Viola, Poorvi Vora, Amos Waterland, Karl Wimmer, Chung Hoi Wong, Xi Wu, Yi Wu, Mingji Xia, Yuichi Yoshida, Shengyu Zhang, and Yu Zhao. Special thanks in this group to Albert Atserias, Dima Gavinsky, and Tim Black; extraspecial thanks in this group to Li-Yang Tan; super-extra-special thanks in this group to Noam Lifshitz.

I'm grateful to Denis Thérien for inviting me to lecture at the Barbados Complexity Workshop, to Cynthia Dwork and the STOC 2008 PC for inviting

Preface

me to give a tutorial, and to the Simons Foundation who arranged for me to co-organize a symposium together with Elchanan Mossel and Krzysztof Oleskiewicz, all on the topic of analysis of Boolean functions. These opportunities greatly helped me to crystallize my thoughts on the topic.

I worked on this book while visiting the Institute for Advanced Study in 2010–2011 (supported by the Von Neumann Fellowship and in part by NSF grants DMS-0835373 and CCF-0832797); I'm very grateful to them for having me and for the wonderful working environment they provided. The remainder of the work on this book was done at Carnegie Mellon; I'm of course very thankful to my colleagues there and to the Department of Computer Science. "Reasonable" random variables were named after the department's "Reasonable Person Principle." I was also supported in this book-writing endeavor by the National Science Foundation, specifically grants CCF-0747250 and CCF-1116594. As usual: "This material is based upon work supported by the National Science Foundation under grant numbers listed above. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation (NSF)."

Finally, I'd like to thank all of my colleagues, friends, and relatives who encouraged me to write and to finish the book, Zeynep most of all.

Ryan O'Donnell Pittsburgh October 2013

List of Notation

0	entry-wise multiplication of vectors
∇	the gradient: $\nabla f(x) = (D_1 f(x), \dots, D_n f(x))$
-	logical NOT
Э	$S \ni i$ is equivalent to $i \in S$
\oplus	logical XOR (exclusive-or)
$\bigoplus_{\hat{\parallel}f\hat{\parallel}_p}$	$(\sum_{\gamma \in \widehat{\mathbb{F}}_{2}^{n}} \widehat{f}(\gamma) ^{p})^{1/p}$
Δ	symmetric difference of sets;
	i.e., $S \triangle T = \{i : i \text{ is in exactly one of } S, T\}$
\vee	logical OR
\wedge	logical AND
*	the convolution operator
$[z^k]F(z)$	coefficient on z^k in the power series $F(z)$
1_A	0-1 indicator function for A
1_B	0-1 indicator random variable for event B
2^A	the set of all subsets of A
#α	if α is a multi-index, denotes the number of nonzero com-
	ponents of α
$ \alpha $	if α is a multi-index, denotes $\sum_i \alpha_i$
AND_n	the logical AND function on n bits: False unless all inputs
	are True
A^{\perp}	$\{\gamma : \gamma \cdot x = 0 \text{ for all } x \in A\}$
$\operatorname{Aut}(f)$	the group of automorphisms of Boolean function f
BitsToGaussians $_M^d$	on input the bit matrix $x \in \{-1, 1\}^{d \times M}$ has output $z \in \mathbb{R}^d$
	equal to $\frac{1}{\sqrt{M}}$ times the column-wise sum of x; if d is
	omitted it's taken to be 1
\mathbb{C}	the complex numbers
$\chi(b)$	when $b \in \mathbb{F}_2^n$, denotes $(-1)^b \in \mathbb{R}$

xvi	List of Notation
$\chi_{S}(x)$	when $x \in \mathbb{R}^n$, denotes $\prod_{i \in S} x_i$, where $S \subseteq [n]$; when $x \in \mathbb{F}_2^n$, denotes $(-1)^{\sum_{i \in S} x_i}$
codim H	for a subspace $H \leq \mathbb{F}^n$, denotes $n - \dim H$
Cov [<i>f</i> , <i>g</i>]	the covariance of f and g, $\mathbf{Cov}[f] = \mathbf{E}[fg] - \mathbf{E}[f]\mathbf{E}[g]$
D_i	the <i>i</i> th discrete derivative: $D_i f(x) = \frac{f(x^{(i \mapsto 1)}) - f(x^{(i \mapsto -1)})}{2}$
$d_{\chi^2}(\varphi, 1)$	chi-squared distance of the distribution with density φ from the uniform distribution
$\deg(f)$	the degree of f ; the least k such that f is a real linear combination of k -juntas
$\deg_{\mathbb{F}_2}(f)$	for Boolean-valued f , the degree of its \mathbb{F}_2 -polynomial
$\Delta(x, y)$	representation the Hamming distance, $\#\{i : x_i \neq y_i\}$
$\frac{\Delta(x, y)}{\Delta^{(\pi)}(f)}$	the expected number of queries made by the best decision
	tree computing f when the input bits are chosen from the distribution π
$\delta^{(\pi)}(f)$	
$\partial(f)$	the revealment of f ; i.e., min{max _i $\delta_i^{(\pi)}(\mathcal{T}) : \mathcal{T}$ computes f }
$\Delta^{(\pi)}(\mathscr{T})$	the expected number of queries made by randomized deci-
	sion tree \mathcal{T} when the input bits are chosen from the dis-
	tribution π
$\delta_i^{(\pi)}(\mathscr{T})$	the probability randomized decision tree $\mathcal T$ queries coor-
r	dinate <i>i</i> when the input bits are chosen from the distribu-
	tion π
$\Delta_y f$	for $f: \mathbb{F}_2^n \to \mathbb{F}_2$, the function $\mathbb{F}_2^n \to \mathbb{F}_2$ defined by
	$\Delta_y f(x) = f(x+y) - f(x)$
dist(g, h)	the relative Hamming distance; i.e., the fraction of inputs
	on which g and h disagree
$\text{DNF}_{\text{size}}(f)$	least possible size of a DNF formula computing f
$\text{DNF}_{\text{width}}(f)$	least possible width of a DNF formula computing f
DT(f) $DT \cdot (f)$	least possible depth of a decision tree computing f least possible size of a decision tree computing f
$DT_{size}(f)$ $d_{TV}(\varphi, \psi)$	total variation distance between the distributions with den-
$u_{IV}(\varphi, \varphi)$	sities φ, ψ
E_i	the <i>i</i> th expectation operator:
t	$E_i f(x) = E_{x_i}[f(x_1,, x_{i-1}, x_i, x_{i+1},, x_n))]$
E_{I}	the expectation over coordinates <i>I</i> operator
Ent [<i>f</i>]	for a nonnegative function on a probability space, denotes
	$\mathbf{E}[f \ln f] - \mathbf{E}[f] \ln \mathbf{E}[f]$
$\mathbf{E}_{\pi_p}[\cdot]$	an abbreviation for $\mathbf{E}_{\boldsymbol{x} \sim \pi_p^{\otimes n}}[\cdot]$

List of Notation

xvii

$f \oplus g$	if $f : \{-1, 1\}^m \to \{-1, 1\}$ and $g : \{-1, 1\}^n \to \{-1, 1\}$, denotes the function $h : \{-1, 1\}^{m+n} \to \{-1, 1\}$ defined
	by $h(x, y) = f(x)g(y)$
$f \otimes g$	if $f : \{-1, 1\}^m \to \{-1, 1\}$ and $g : \{-1, 1\}^n \to \{-1, 1\}$,
5 - 0	denotes the function $h : \{-1, 1\}^{mn} \to \{-1, 1\}$ defined by
	$h(x^{(1)}, \dots, x^{(m)}) = f(g(x^{(1)}), \dots, g(x^{(m)}))$
$f^{\otimes d}$	if $f: \{-1, 1\}^n \to \{-1, 1\}$, then $f^{\otimes d}: \{-1, 1\}^{n^d} \to \{-1, 1\}^{n^d}$
	$\{-1, 1\}$ is defined inductively by $f^{\otimes 1} = f$, $f^{\otimes (d+1)} =$
	$f \otimes f^{\otimes d}$
f^{*n}	the <i>n</i> -fold convolution, $f * f * \cdots * f$
$f^{\dagger} f^{+z}$	the Boolean dual defined by $f^{\dagger}(x) = -f(-x)$
f^{+z}	if $f : \mathbb{F}_2^n \to \mathbb{R}, z \in \mathbb{F}_2^n$, denotes the function $f^{+z}(x) =$
	f(x+z)
f_H^{+z}	denotes $(f^{+z})_H$
$\mathbb{F}_2 \\ \widehat{\mathbb{F}_2^n}$	the finite field of size 2
\mathbb{F}_2^n	the group (vector space) indexing the Fourier characters
f ^{even}	of functions $f : \mathbb{F}_2^n \to \mathbb{R}$ the even part of $f = (f(x) + f(-x))/2$
$\langle f, g \rangle$	the even part of f , $(f(x) + f(-x))/2$ $\mathbf{E}_{\mathbf{x}}[f(\mathbf{x})g(\mathbf{x})]$
(J, g) f_H	if $f: \mathbb{F}_2^n \to \mathbb{R}, H \leq \mathbb{F}_2^n$, denotes the restriction of f to H
$\hat{f}(i)$	shorthand for $\widehat{f}(\{i\})$ when $i \in \mathbb{N}$
$f^{\subseteq J}$	the function (depending only on the J coordinates)
0	defined by $f^{\subseteq J}(x) = \mathbf{E}_{x_{\mathcal{T}}}[f(x_J, \mathbf{x}_{\mathcal{T}}')];$ in particular, it's
	$\sum_{S \subseteq J} \widehat{f}(S) \chi_S$ when $f : \{-1, 1\}^n \to \mathbb{R}$
$f_{ z }$	if $f: \Omega^n \to \mathbb{R}, J \subseteq [n]$, and $z \in \Omega^{\overline{J}}$, denotes the restric-
. 1.	tion of f given by fixing the coordinates in \overline{J} to z
$f_{J z}$	if $f: \Omega^n \to \mathbb{R}, J \subseteq [n]$, and $z \in \Omega^{\overline{J}}$, denotes the restric-
	tion of f given by fixing the coordinates in \overline{J} to z
$f^{=k}$	$\sum_{ S =k} \widehat{f}(S) \chi_S$
$f^{\leq k}$	$\sum_{ S \leq k} f(S) \chi_S$
$f^{ m odd}$	the odd part of f , $(f(x) - f(-x))/2$
\mathbb{F}_{p^ℓ}	for p prime and $\ell \in \mathbb{N}^+$, denotes the finite field of p^{ℓ}
	elements
$\widehat{f}(S)$	the Fourier coefficient of f on character χ_s
$ F_{\substack{S \mid \overline{J}}} f(z) $	for $S \subseteq J \subseteq [n]$, denotes $\widehat{f_{J z}}(S)$ the rendemination symmetrization of f defined by
J	the randomization/symmetrization of f , defined by $\widetilde{f}(r, x) = \sum_{S} r^{S} f^{=S}(x)$
$\gamma^+(\partial A)$	$f(\mathbf{r}, x) = \sum_{S} \mathbf{r}^{-1} f^{-1}(\mathbf{x})$ the Gaussian Minkowski content of ∂A
• • •	
$\mathscr{G}(v, p)$	the Erdős–Rényi random graph distribution, $\pi_p^{\otimes \binom{v}{2}}$

xviii	List of Notation
h_j h_{lpha}	the <i>j</i> th (normalized) Hermite polynomial, $h_j = \frac{1}{\sqrt{j!}}H_j$ for $\alpha \in \mathbb{N}^n$ a multi-index, the <i>n</i> -variate (normalized) Her-
H_j	mite polynomial $h_{\alpha}(z) = \prod_{j=1}^{n} h_{\alpha_j}(z_j)$ the <i>j</i> th probabilists' Hermite polynomial, defined by
$\mathbf{Inf}_i[f]$ $\mathbf{Inf}_i^{(ho)}[f]$	$\exp(tz - \frac{1}{2}t^2) = \sum_{j=0}^{\infty} \frac{1}{j!} H_j(z) t^j$ the influence of coordinate <i>i</i> on <i>f</i> the ρ -stable influence, Stab _{\rho}[D_i f]
$\widetilde{\mathbf{Inf}}_{I}[f]$	the coalitional influence of $J \subseteq [n]$ on $f : \{-1, 1\}^n \rightarrow \{-1, 1\}$, namely $\Pr_{z \sim \{-1, 1\}^{\overline{J}}}[f_{J z} \text{ is not constant}]$
$\widetilde{\mathbf{Inf}}_{J}^{b}[f]$	equals $\mathbf{Pr}_{z \sim \{-1, 1\}^{\overline{J}}}[f_{J z} \not\equiv -b] - \mathbf{Pr}[f = b],$ for $b \in \{-1, 1\}$
\overline{J}	if $J \subseteq [n]$, denotes $[n] \setminus J$
$L^{2}(\{-1, 1\}^{n})$	denotes $L^{2}(\{-1, 1\}^{n}, \pi_{1/2}^{\otimes n})$
$L^2(G^n)$	if <i>G</i> is a finite abelian group, denotes the complex inner product space of functions $G^n \to \mathbb{R}$ with inner product $\langle f, g \rangle = \mathbf{E}_{\mathbf{x} \sim G^n}[f(\mathbf{x})\overline{g(\mathbf{x})}]$
$L^2(\Omega,\pi)$	the inner product space of (square-integrable) functions $\Omega \to \mathbb{R}$ with inner product $\langle f, g \rangle = \mathbf{E}_{\mathbf{x} \sim \pi}[f(\mathbf{x})g(\mathbf{x})]$
$\Lambda_ ho(lpha,eta)$	Pr [$z_1 \le t, z_2 \le t'$], where z_1, z_2 are standard Gaussians with correlation E [z_1z_2] = ρ , and $t = \Phi^{-1}(\alpha)$, $t' = \Phi^{-1}(\beta)$
$\Lambda_{ ho}(lpha)$	denotes $\Lambda_{\rho}(\alpha, \alpha)$
Lf	the Laplacian operator applied to the Boolean function f , defined by $Lf = \sum_{i=1}^{n} L_i f$ (or, the Ornstein–Uhlenbeck operator if f is a function on Gaussian space)
L_i	the <i>i</i> th coordinate Laplacian operator: $L_i f = f - E_i f$
$\ln x$	$\log_e x$
$\log x$	$\log_2 x$
Maj _n	the majority function on <i>n</i> bits
MaxInf[f]	$\max_{i} \{ \mathbf{Inf}_{i}[f] \}$
[<i>n</i>]	$\{1, 2, 3, \ldots, n\}$
\mathbb{N}	$\{0, 1, 2, 3, \ldots\}$
\mathbb{N}^+	$\{1, 2, 3, \ldots\}$
$\mathbb{N}_{\leq m}$	$\{0, 1, \dots, m-1\}$
$N_{ ho}(x)$	when $x \in \{-1, 1\}^n$, denotes the probability distribution
$N_{ ho}(z)$	generating a string ρ -correlated to x when $z \in \mathbb{R}^n$, denotes the probability distribution of $\rho z + \sqrt{1 - \rho^2} g$ where $g \sim N(0, 1)^n$
$\mathbf{NS}_{\delta}[f]$	the noise sensitivity of f at δ ; i.e., $\frac{1}{2} - \frac{1}{2}$ Stab _{1-2δ} [f]

List of Notation

xix

N(0, 1)	the standard Gaussian distribution
$N(0, 1)^d$	the distribution of <i>d</i> independent standard Gaussians; i.e.,
	$N(0, I_{d \times d})$
$N(\mu, \Sigma)$	for $\mu \in \mathbb{R}^d$ and $\Sigma \in \mathbb{R}^{d \times d}$ positive semidefinite, the
	<i>d</i> -variate Gaussian distribution with mean μ and covari-
	ance matrix Σ
OR _n	the logical OR function on n bits: True unless all inputs
	are False
ϕ	the standard Gaussian pdf, $\phi(z) = \frac{1}{\sqrt{2\pi}}e^{-z^2/2}$
Φ	the standard Gaussian cdf, $\Phi(t) = \int_{-\infty}^{t} \phi(z) dz$
$\overline{\Phi}$	the standard Gaussian complementary cdf, $\overline{\Phi}(t) =$
	$\int_{t}^{\infty} \phi(z) dz$
$arphi_A$	the density function for the uniform probability distribu-
	tion on A; i.e., $1_A / \mathbf{E}[1_A]$
ϕ_{lpha}	given functions $\phi_0, \ldots, \phi_{m-1}$ and a multi-index α ,
	denotes $\prod_{i=1}^{n} \phi_{\alpha_i}$
$\pi^{\otimes n}$	if π is a probability distribution on Ω , denotes the asso-
	ciated product probability distribution on Ω^n
$\pi_{1/2}$	the uniform distribution on $\{-1, 1\}$
π_p	the " <i>p</i> -biased" distribution on bits: $\pi_p(-1) = p$,
	$\pi_p(1) = 1 - p$
$\mathbf{Pr}_{\pi_p}[\cdot]$	an abbreviation for $\mathbf{Pr}_{\boldsymbol{x} \sim \pi_p^{\otimes n}}[\cdot]$
\mathbb{R}^{-}	the real numbers
$\mathbb{R}^{\geq 0}$	the nonnegative real numbers
RDT(f)	the zero-error randomized decision tree complexity of f
$\mathbf{RS}_A(\delta)$	the rotation sensitivity of A at δ ; i.e., $\Pr[1_A(z) \neq 1_A(z')]$
	for a $\cos \delta$ -correlated pair (z, z')
$\operatorname{sens}_f(x)$	the number of pivotal coordinates for f at x
sgn(t)	$+1 \text{ if } t \ge 0, -1 \text{ if } t < 0$
S_n	the symmetric group on [<i>n</i>]
sparsity(f)	$\mathbf{Pr}_{\mathbf{x}}[f(\mathbf{x}) \neq 0]$
sparsity(f)	$ \operatorname{supp}(f) $
$\operatorname{Stab}_{\rho}[f]$	the noise stability of f at ρ : $\mathbf{E}[f(\mathbf{x})f(\mathbf{y})]$ where \mathbf{x} , \mathbf{y} are
	a ρ -correlated pair
$supp(\alpha)$	if α is a multi-index, denotes $\{i : \alpha_i \neq 0\}$
$\operatorname{supp}(f)$	if f is a function, denotes the set of inputs where f is
T.	nonzero
$T_{ ho}$	the noise operator: $\mathbf{T}_{\rho} f(x) = \mathbf{E}_{\mathbf{y} \sim N_{\rho}(x)} [f(\mathbf{y})]$
$T^i_{ ho}$	the operator defined by $T^i_{\rho} f(x) = \rho f + (1 - \rho) E_i f$

xx	List of Notation
T_r \mathscr{U} $U_{ ho}$	for $r \in \mathbb{R}^n$, denotes the operator defined by $\mathbf{T}_{r_1}^1 \mathbf{T}_{r_2}^2 \cdots \mathbf{T}_{r_n}^n$ the Gaussian isoperimetric function, $\mathcal{U} = \phi \circ \Phi^{-1}$ the Gaussian noise operator: $\mathbf{U}_{\rho} f(z) = \mathbf{E}_{z' \sim N_{\rho}(z)}[f(z')]$
Var [f] Var _i	the variance of f , $\operatorname{Var}[f] = \operatorname{E}[f^2] - \operatorname{E}[f]^2$ the operator defined by $\operatorname{Var}_i f(x) =$
$vol_{\gamma}(A)$ $W^{k}[f]$ $W^{>k}[f]$ $x^{(i\mapsto b)}$ $x^{\oplus i}$ $x \sim \varphi$ x^{S} $x \sim A$ $x \sim \{-1, 1\}^{n}$ (y, z)	Var _{<i>x</i>_i} [<i>f</i> (<i>x</i> ₁ ,, <i>x</i> _{i-1} , <i>x</i> _i , <i>x</i> _{i+1} ,, <i>x</i> _n))] Pr _{<i>z</i>~N(0,1)ⁿ} [<i>z</i> ∈ <i>A</i>], the Gaussian volume of <i>A</i> the Fourier weight of <i>f</i> at degrees <i>k</i> the Fourier weight of <i>f</i> at degrees above <i>k</i> the string (<i>x</i> ₁ ,, <i>x</i> _{i-1} , <i>b</i> , <i>x</i> _{i+1} ,, <i>x</i> _n) (<i>x</i> ₁ ,, <i>x</i> _{i-1} , - <i>x</i> _i , <i>x</i> _{i+1} ,, <i>x</i> _n) the random variable <i>x</i> is chosen from the probability dis- tribution with density φ $\prod_{i \in S} x_i$, with the convention $x^{\emptyset} = 1$ the random variable <i>x</i> is chosen uniformly from the set <i>A</i> the random variable <i>x</i> is chosen uniformly from $\{-1, 1\}^n$ if $J \subseteq [n], y \in \{-1, 1\}^J, z \in \{-1, 1\}^{\overline{J}}$, denotes the natu-
$\mathbb{Z}_{\widehat{\mathbb{Z}}_m^n}$	ral composite string in $\{-1, 1\}^n$ the additive group of integers modulo <i>m</i> the group indexing the Fourier characters of functions $f: \mathbb{Z}_m^n \to \mathbb{C}$