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Boolean functions are perhaps the most basic objects of study in theoretical computer
science. They also arise in other areas of mathematics, including combinatorics, statisti-
cal physics, and mathematical social choice. The field of analysis of Boolean functions
seeks to understand them via their Fourier transform and other analytic methods. This
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Preface

The subject of this textbook is the analysis of Boolean functions. Roughly
speaking, this refers to studying Boolean functions f : {0, 1}n→ {0, 1} via
their Fourier expansion and other analytic means. Boolean functions are perhaps
the most basic object of study in theoretical computer science, and Fourier
analysis has become an indispensable tool in the field. The topic has also played
a key role in several other areas of mathematics, from combinatorics, random
graph theory, and statistical physics, to Gaussian geometry, metric/Banach
spaces, and social choice theory.

The intent of this book is both to develop the foundations of the field and
to give a wide (though far from exhaustive) overview of its applications. Each
chapter ends with a “highlight” showing the power of analysis of Boolean func-
tions in different subject areas: property testing, social choice, cryptography,
circuit complexity, learning theory, pseudorandomness, hardness of approxi-
mation, concrete complexity, and random graph theory.

The book can be used as a reference for working researchers or as the basis
of a one-semester graduate-level course. The author has twice taught such a
course at Carnegie Mellon University, attended mainly by graduate students
in computer science and mathematics but also by advanced undergraduates,
postdocs, and researchers in adjacent fields. In both years most of Chap-
ters 1–5 and 7 were covered, along with parts of Chapters 6, 8, 9, and 11,
and some additional material on additive combinatorics. Nearly 500 exercises
are provided at the ends of the book’s chapters.

Additional material related to the book can be found at its website:

http://analysisofbooleanfunctions.org

This includes complete lecture notes from the author’s 2007 course, complete
lecture videos from the author’s 2012 course, blog updates related to analysis
of Boolean functions, an electronic draft of the book, and errata. The author
would like to encourage readers to post any typos, bugs, clarification requests,
and suggestions to this website.

xi

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-03832-5 - Analysis of Boolean Functions 
Ryan O’Donnell
Frontmatter
More information

http://www.cambridge.org/9781107038325
http://www.cambridge.org
http://www.cambridge.org


xii Preface

Acknowledgments

My foremost acknowledgment is to all of the people who have taught me anal-
ysis of Boolean functions, especially Guy Kindler and Elchanan Mossel. I also
learned a tremendous amount from my advisor Madhu Sudan, and my coauthors
and colleagues Per Austrin, Eric Blais, Nader Bshouty, Ilias Diakonikolas, Irit
Dinur, Uri Feige, Ehud Friedgut, Parikshit Gopalan, Venkat Guruswami, Johan
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List of Notation

◦ entry-wise multiplication of vectors
∇ the gradient: ∇f (x) = (D1f (x), . . . ,Dnf (x))
¬ logical NOT
� S � i is equivalent to i ∈ S
⊕ logical XOR (exclusive-or)
‖̂f ‖̂p (

∑
γ∈F̂n

2
|f̂ (γ )|p)1/p


 symmetric difference of sets;
i.e., S
T = {i : i is in exactly one of S, T }

∨ logical OR
∧ logical AND
∗ the convolution operator
[zk]F (z) coefficient on zk in the power series F (z)
1A 0-1 indicator function for A
1B 0-1 indicator random variable for event B
2A the set of all subsets of A
#α if α is a multi-index, denotes the number of nonzero com-

ponents of α
|α| if α is a multi-index, denotes

∑
i αi

ANDn the logical AND function on n bits: False unless all inputs
are True

A⊥ {γ : γ · x = 0 for all x ∈ A}
Aut(f ) the group of automorphisms of Boolean function f

BitsToGaussiansdM on input the bit matrix x ∈ {−1, 1}d×M has output z ∈ Rd

equal to 1√
M

times the column-wise sum of x; if d is
omitted it’s taken to be 1

C the complex numbers
χ (b) when b ∈ Fn

2, denotes (−1)b ∈ R

xv
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xvi List of Notation

χS(x) when x ∈ Rn, denotes
∏

i∈S xi , where S ⊆ [n];
when x ∈ Fn

2, denotes (−1)
∑

i∈S xi

codimH for a subspace H ≤ Fn, denotes n− dimH

Cov[f, g] the covariance of f and g, Cov[f ] = E[fg]− E[f ] E[g]

Di the ith discrete derivative: Dif (x) = f (x(i �→1))−f (x(i �→−1))
2

dχ2 (ϕ, 1) chi-squared distance of the distribution with density ϕ

from the uniform distribution
deg(f ) the degree of f ; the least k such that f is a real linear

combination of k-juntas
degF2

(f ) for Boolean-valued f , the degree of its F2-polynomial
representation

�(x, y) the Hamming distance, #{i : xi �= yi}
�(π)(f ) the expected number of queries made by the best decision

tree computing f when the input bits are chosen from the
distribution π

δ(π)(f ) the revealment of f ;
i.e., min{maxi δ

(π)
i (T) : T computes f }

�(π)(T) the expected number of queries made by randomized deci-
sion tree T when the input bits are chosen from the dis-
tribution π

δ
(π)
i (T) the probability randomized decision tree T queries coor-

dinate i when the input bits are chosen from the distribu-
tion π

�yf for f : Fn
2 → F2, the function Fn

2 → F2 defined by
�yf (x) = f (x + y)− f (x)

dist(g, h) the relative Hamming distance; i.e., the fraction of inputs
on which g and h disagree

DNFsize(f ) least possible size of a DNF formula computing f

DNFwidth(f ) least possible width of a DNF formula computing f

DT(f ) least possible depth of a decision tree computing f

DTsize(f ) least possible size of a decision tree computing f

dTV(ϕ,ψ) total variation distance between the distributions with den-
sities ϕ, ψ

Ei the ith expectation operator:
Eif (x) = Exi

[f (x1, . . . , xi−1, xi , xi+1, . . . , xn))]
EI the expectation over coordinates I operator
Ent[f ] for a nonnegative function on a probability space, denotes

E[f ln f ]− E[f ] ln E[f ]
Eπp [·] an abbreviation for Ex∼π⊗np

[·]

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-03832-5 - Analysis of Boolean Functions 
Ryan O’Donnell
Frontmatter
More information

http://www.cambridge.org/9781107038325
http://www.cambridge.org
http://www.cambridge.org


List of Notation xvii

f ⊕ g if f : {−1, 1}m→ {−1, 1} and g : {−1, 1}n→ {−1, 1},
denotes the function h : {−1, 1}m+n→ {−1, 1} defined
by h(x, y) = f (x)g(y)

f ⊗ g if f : {−1, 1}m→ {−1, 1} and g : {−1, 1}n→ {−1, 1},
denotes the function h : {−1, 1}mn→ {−1, 1} defined by
h(x(1), . . . , x(m)) = f (g(x(1)), . . . , g(x(m)))

f ⊗d if f : {−1, 1}n→ {−1, 1}, then f ⊗d : {−1, 1}nd →
{−1, 1} is defined inductively by f ⊗1 = f , f ⊗(d+1) =
f ⊗ f ⊗d

f ∗n the n-fold convolution, f ∗ f ∗ · · · ∗ f
f † the Boolean dual defined by f †(x) = −f (−x)
f +z if f : Fn

2 → R, z ∈ Fn
2, denotes the function f +z(x) =

f (x + z)
f +zH denotes (f +z)H
F2 the finite field of size 2
F̂n

2 the group (vector space) indexing the Fourier characters
of functions f : Fn

2 → R
f even the even part of f , (f (x)+ f (−x))/2
〈f, g〉 Ex[f (x)g(x)]
fH if f : Fn

2 → R, H ≤ Fn
2, denotes the restriction of f to H

f̂ (i) shorthand for f̂ ({i}) when i ∈ N
f ⊆J the function (depending only on the J coordinates)

defined by f ⊆J (x) = Ex′
J
[f (xJ , x′

J
)]; in particular, it’s∑

S⊆J f̂ (S)χS when f : {−1, 1}n→ R

f|z if f : 
n→ R, J ⊆ [n], and z ∈ 
J , denotes the restric-
tion of f given by fixing the coordinates in J to z

fJ |z if f : 
n→ R, J ⊆ [n], and z ∈ 
J , denotes the restric-
tion of f given by fixing the coordinates in J to z

f =k
∑
|S|=k f̂ (S)χS

f ≤k
∑
|S|≤k f̂ (S)χS

f odd the odd part of f , (f (x)− f (−x))/2
Fp� for p prime and � ∈ N+, denotes the finite field of p�

elements
f̂ (S) the Fourier coefficient of f on character χS
FS|J f (z) for S ⊆ J ⊆ [n], denotes f̂J |z(S)
f̃ the randomization/symmetrization of f , defined by

f̃ (r, x) =∑
S rSf =S(x)

γ+(∂A) the Gaussian Minkowski content of ∂A

G(v, p) the Erdős–Rényi random graph distribution, π
⊗(v2)
p
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xviii List of Notation

hj the j th (normalized) Hermite polynomial, hj = 1√
j !
Hj

hα for α ∈ Nn a multi-index, the n-variate (normalized) Her-
mite polynomial hα(z) =∏n

j=1 hαj (zj )
Hj the j th probabilists’ Hermite polynomial, defined by

exp(tz− 1
2 t

2) =∑∞
j=0

1
j !Hj (z)t j

Infi[f ] the influence of coordinate i on f

Inf(ρ)
i [f ] the ρ-stable influence, Stabρ[Dif ]

ĨnfJ [f ] the coalitional influence of J ⊆ [n] on f : {−1, 1}n→
{−1, 1}, namely Prz∼{−1,1}J [fJ |z is not constant]

Ĩnf
b

J [f ] equals Prz∼{−1,1}J [fJ |z �≡ −b]− Pr[f = b],
for b ∈ {−1, 1}

J if J ⊆ [n], denotes [n] \ J
L2({−1, 1}n) denotes L2({−1, 1}n, π⊗n1/2)
L2(Gn) if G is a finite abelian group, denotes the complex inner

product space of functions Gn→ R with inner product
〈f, g〉 = Ex∼Gn[f (x)g(x)]

L2(
,π ) the inner product space of (square-integrable) functions

→ R with inner product 〈f, g〉 = Ex∼π [f (x)g(x)]

�ρ(α, β) Pr[z1 ≤ t, z2 ≤ t ′], where z1, z2 are standard Gaus-
sians with correlation E[z1 z2] = ρ, and t = �−1(α),
t ′ = �−1(β)

�ρ(α) denotes �ρ(α, α)
Lf the Laplacian operator applied to the Boolean function f ,

defined by Lf =∑n
i=1 Lif (or, the Ornstein–Uhlenbeck

operator if f is a function on Gaussian space)
Li the ith coordinate Laplacian operator: Lif = f − Eif

ln x loge x
log x log2 x

Majn the majority function on n bits
MaxInf[f ] maxi{Infi[f ]}
[n] {1, 2, 3, . . . , n}
N {0, 1, 2, 3, . . .}
N+ {1, 2, 3, . . .}
N<m {0, 1, . . . , m− 1}
Nρ(x) when x ∈ {−1, 1}n, denotes the probability distribution

generating a string ρ-correlated to x

Nρ(z) when z ∈ Rn, denotes the probability distribution of
ρz+

√
1− ρ2 g where g ∼ N(0, 1)n

NSδ[f ] the noise sensitivity of f at δ; i.e., 1
2 − 1

2 Stab1−2δ[f ]
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List of Notation xix

N(0, 1) the standard Gaussian distribution
N(0, 1)d the distribution of d independent standard Gaussians; i.e.,

N(0, Id×d )
N(μ,�) for μ ∈ Rd and � ∈ Rd×d positive semidefinite, the

d-variate Gaussian distribution with mean μ and covari-
ance matrix �

ORn the logical OR function on n bits: True unless all inputs
are False

φ the standard Gaussian pdf, φ(z) = 1√
2π
e−z

2/2

� the standard Gaussian cdf, �(t) = ∫ t

−∞ φ(z) dz
� the standard Gaussian complementary cdf, �(t) =∫∞

t
φ(z) dz

ϕA the density function for the uniform probability distribu-
tion on A; i.e., 1A/E[1A]

φα given functions φ0, . . . , φm−1 and a multi-index α,
denotes

∏n
i=1 φαi

π⊗n if π is a probability distribution on 
, denotes the asso-
ciated product probability distribution on 
n

π1/2 the uniform distribution on {−1, 1}
πp the “p-biased” distribution on bits: πp(−1) = p,

πp(1) = 1− p

Prπp [·] an abbreviation for Prx∼π⊗np
[·]

R the real numbers
R≥0 the nonnegative real numbers
RDT(f ) the zero-error randomized decision tree complexity of f
RSA(δ) the rotation sensitivity of A at δ; i.e., Pr[1A(z) �= 1A(z′)]

for a cos δ-correlated pair (z, z′)
sensf (x) the number of pivotal coordinates for f at x
sgn(t) +1 if t ≥ 0, −1 if t < 0
Sn the symmetric group on [n]
sparsity(f ) Prx[f (x) �= 0]
sparsity(f̂ ) |supp(f̂ )|
Stabρ[f ] the noise stability of f at ρ: E[f (x)f ( y)] where x, y are

a ρ-correlated pair
supp(α) if α is a multi-index, denotes {i : αi �= 0}
supp(f ) if f is a function, denotes the set of inputs where f is

nonzero
Tρ the noise operator: Tρf (x) = E y∼Nρ (x)[f ( y)]
Ti
ρ the operator defined by Ti

ρf (x) = ρf + (1− ρ)Eif

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-03832-5 - Analysis of Boolean Functions 
Ryan O’Donnell
Frontmatter
More information

http://www.cambridge.org/9781107038325
http://www.cambridge.org
http://www.cambridge.org


xx List of Notation

Tr for r ∈ Rn, denotes the operator defined by T1
r1

T2
r2
· · ·Tn

rn

U the Gaussian isoperimetric function, U = φ ◦�−1

Uρ the Gaussian noise operator: Uρf (z) = Ez′∼Nρ (z)[f (z′)]
Var[f ] the variance of f , Var[f ] = E[f 2]− E[f ]2

Vari the operator defined by Varif (x) =
Varxi

[f (x1, . . . , xi−1, xi , xi+1, . . . , xn))]
volγ (A) Prz∼N(0,1)n [z ∈ A], the Gaussian volume of A
Wk[f ] the Fourier weight of f at degree k
W>k[f ] the Fourier weight of f at degrees above k
x(i �→b) the string (x1, . . . , xi−1, b, xi+1, . . . , xn)
x⊕i (x1, . . . , xi−1,−xi, xi+1, . . . , xn)
x ∼ ϕ the random variable x is chosen from the probability dis-

tribution with density ϕ

xS
∏

i∈S xi , with the convention x∅ = 1
x ∼ A the random variable x is chosen uniformly from the set A
x ∼ {−1, 1}n the random variable x is chosen uniformly from {−1, 1}n
(y, z) if J ⊆ [n], y ∈ {−1, 1}J , z ∈ {−1, 1}J , denotes the natu-

ral composite string in {−1, 1}n
Z the additive group of integers modulo m

Ẑn
m the group indexing the Fourier characters of functions

f : Zn
m→ C
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