Index

ACDM, 166, 172, 191, 201, 206, 592
δN formalism, 189–192
δN formula, 186
μ-type distortion (of CMB spectrum), 196
σ constant, 486
r-modes, 108
2dF survey, 170, 195
acceleration of the Universe, 35, 166, 659
accretion, 135, 140, 143
disk, 28, 137, 138, 140, 155
magnetized, 142
maser radiation, 137
acoustic oscillation, 203–205
damping, 204
ACT, 163, 195, 206
active galactic nuclei, 121, 134, 135, 143, 156, 157
structure resolved by microlensing, 118
adaptive mesh refinement, 368, 372
ADM angular momentum, 622
ADM energy, 418, 419, 423
ADM formulation, 18, 297–299, 364, 366, 413, 423, 433, 443, 569, 570, 593
ADM mass, 429, 467, 595, 596, 614, 621, 622, 631
ADM momentum, 423, 424, 595
ADM-York formulation, 366
AdS/CFT correspondence, 368, 389, 394, 506–510, 647–658
& black hole entropy, 650
& condensed matter, 656
& hydrodynamics, 656
& quantum black holes, 654
& quark confinement, 655
status of, 652–654
Advanced LIGO (aLIGO), 7, 250, 251, 281
Advanced Virgo, 250, 251, 281
algebraic approach to quantum field theory, 519
almost-EGS theorem, 223
apparent horizons, 352, 358, 364
area gap, 574, 581, 586, 595
area theorem, 28, 142, 614, 618
asymptotic flatness, 41, 412, 466
asymptotic quantization, 506
asymptotic safety, 504–508, 556–567
asymptotically flat initial data, 454
asymptotically flat initial data set, 418
asymptotically simple spacetimes, 422
Atacama Cosmology Telescope, see ACT
averaging problem, 223, 227
AVTD behavior, 450
B-mode polarization, 7, 170, 173, 182, 211, 215, 239, 289, 334
back reaction, 223, 228
background independence, 555–557, 595, 596
& n-point functions, 597–600
& quantum geometry, 571–574
BAO, 7–9, 170–171
Bartnik and McKinnon sequence, 377
Bartnik mass, 432
baryon acoustic oscillation, see BAO
BATSE, 148
beaming angle, 152, 153
Bel–Robinson energy functionals, 489
Bel–Robinson tensor, 461, 466
Beppo-SAX, 148, 152
Bianchi identities, 11, 16, 476, 491, 628
Bianchi models, 13, 36, 224–225, 487, 490, 585, 587, 591
orthogonal, 224
tiled, 224
biasing, 130, 171
BICEP2, 7, 169, 182, 193, 211, 218, 242, 289
big bang nucleosynthesis, 33, 35, 78, 162, 165, 224, 331
binary black hole problem, 364
binary mergers, 150
binary neutron stars, 383
binary pulsar, 4–6, 42, 80, 87, 90, 91, 289, 297
BKL conjecture, 357, 398, 450
black hole, 4, 5, 10, 28, 469
entropy, 511, 592–597, 642–647
evaporation, 596, 597, 605, 643, 646, 647, 655
fundamental plane, 143
intermediate, 141
non-uniqueness, 618
perturbation theory, 378
stellar, 29, 133, 138–140, 143
mass, 138–140
spin, 140–141, 144, 155
supermassive, 29, 133, 135–137, 143, 148, 155, 156, see also supermassive binaries, see also supermassive black hole mergers
mass, 135, 137
size, 135, 136
stellar orbits, 137
black hole scattering problem in 5d, 390
black hole–neutron star binaries, 149, 154, 155, 384
black membrane, 624
black rings, 392, 438, 620–647
black Saturn, 392, 622
black strings, 392, 616–619
blow-up phenomena, 416
Bondi mass, 429
boson stars, 365, 374
Bowen–York data, 364
branes, 167
break-down criterion, 459
bremsstrahlung, 197
Brown–York mass, 426
Brownian motion, 3
BSSN formalism, 364, 366
bubble collisions, 180–181
bubbles, 400
bullet cluster, 128
ˇCadeˇz coordinates, 363
Callan, Giddings, Harvey, Strominger (CGHS)
two-dimensional spacetimes, 399
Cauchy formulation, 366
Cauchy horizon, 472
Cauchy problem, 453
Cauchy development, 18
Cauchy surface, 18
causal dynamical triangulations, 565–567
causal sets, 506
causality violation, 17
CDT, see causal dynamical triangulations
CGRO, 148, 150, 151
Chandrasekhar mass, 387
characteristic code, 365
characteristic formulation, 366, 391
characteristic initial data set, 455
characteristic initial value problem, 454
Cherenkov Telescope Array, 157
Christoffel relations, 13
classical tests, 4
closed timelike lines, 17
CMB, 5, 162
anisotropy, 198–209
dipole, 198–199
primordial, 200–206
polarization, 209–215
correlations, 211
power spectrum, 205
spectrum, 196–198
distortions, 196–198
CMC, see constant mean curvature
COBE, 163, 176, 195, 199
cold spot, 202, 210, 211, 225
compact hyperbolic manifolds, 482
compact star, 148
compact-object binaries, 154, 155, 311–313, 317–322
compactifications, 616
Compton Gamma Ray Observatory, see CGRO
Compton scattering, 197
computer algebra, 5
concordance model, 7, 35, 165
conformal class, 484
conformal curvature, 15–16
conformal intrinsic geometry, 455
conformal Killing operator, 414
conformal method, 414
conformally flat near infinity, 419
congruences
null, 14
timelike, 14
connected sum, 481
connection dynamics, 569, 571, 572, 576, 586, 593, 603
constant mean curvature, 415
hypersurfaces, 485
constraint damping, 367
constraint equations, 18, 413, 454
continuously self-similar, 371
continuum limit, 565, 567, 581–583
core-collapse supernovae, 149, 153, 386
Cosmic Background Explorer, see COBE
cosmic censorship conjecture, 364, 371, 388, 483, see also strong cosmic censorship, weak cosmic censorship, 618
cosmic microwave background, see CMB
cosmic no-hair property of de Sitter spacetime, 533
cosmic shear, 171
intrinsic alignment of galaxies, 129
lensing of the CMB, 129
probing dark energy, 129
shear correlation functions, 128, 129
shear peaks, 129
cosmological constant, 11, 165, 166, 180, 555, 563, 577, 582, 583, 587, 600–602
cosmological principle, 480
critical phenomena, 370
Cronström condition, 492
CSS, see continuously self-similar curvature, 11
Cyg X-1, 134, 139, 237
Cygnus A, 134, 142
cylindrical gravitational wave spacetimes, 364
dark energy, 8–9, 166–167, 171
alternatives, 226
equation-of-state, 414
dark matter, 8, 10, 118, 122–125, 128, 130, 165
bullet clusters, 128
cold, 166
microlensing by compact objects (MACHOs), 125
de Sitter, 3
deflection of light, 70–72
density parameters, 165, 206
dimensional reduction, 509
DIRE, see direct integration of relaxed Einstein equation
direct integration of relaxed Einstein equation, 296, 299, 322
discretely self-similar, 371
DOC, see domain of outer communication
domain of outer communication, 441, 469
dominant energy condition, 414
double null foliation, 455
double pulsar, 4–6, 81
drag-free, 246, 249, 282
DSS, see discretely self-similar
E-mode polarization, 7, 211, 212
EAA, see effective average action
Eddington, 3
Eddington limit, 135
Eddington luminosity, 138, 156
EEP, see Einstein equivalence principle
effective average action, 556–568
effective field theory, 298, 299, 322, 504, 554, 599, 600
effective-one-body, 290, 304, 305, 308, 309, 315, 316, 322, 378
EFT, see effective field theory
Einstein equations, 11, 164, 203, 476
Einstein equivalence principle, 51, 56, 59–61, 67
Einstein flow, 480
Einstein metrics, 486
Einstein static model, 162
Einstein Telescope, 245, 264, 281, 289
Einstein–Maxwell theory, 453
Einstein–perfect fluid theory, 453
Einstein–scalar field theory, 453
element formation, 5
eLISA, 246, 267, 268, 271
elliptic–hyperbolic system, 489
electro-momentum tensor, 453
conservation, 11
entanglement entropy, 658
EOB, see effective-one-body
EOS, see equation of state
equation of motion, 303
equation of state, 375, 382
equivalence principle, see weak equivalence principle, strong equivalence principle, Einstein equivalence principle
ergo region, 29, 471
Euclid space mission, 129
Euler equation (relativistic), 102
event horizon, 17, 28, 133, 142, 469
exact solutions, 5, 10, 16
excision, 365, 367
existence theorems, 10, 11, 18
exoplanets, 4
extremal Kerr, 471
extreme-mass-ratio inspiral (EMRI), 300, 302, 304, 309, 313, 322
f(R) theories, 67, 167
f-modes, 386
Fermi satellite, 157
finite difference method, 368
finite volume methods, 369
firewall, 400
fitting problem, 228
flatness problem, 178–179
FLRW models, 4, 10, 18, 30–33, 163–165, 401, 480
perturbations, 34–35, 167–169, 200
curvature, 184
tensor, 169, 184, 186, 215
velocity, 226
frame-dragging, 390
frequency–mass diagram, 310
Friedmann equation, 164, 165, 176
Friedmann–Lemaître–Robertson–Walker spacetimes, see FLRW models
Fuchsian PDE analysis, 451
functional renormalization group FRG, 556–561
fuzzballs, 655
Galactic center
stellar orbits, 136
Galactic microlensing surveys, 118, 125
extrasolar planets, 126
galaxy surveys, 170–173, 195
galaxy–black hole correlation, 137
galaxy–galaxy lensing, 130
gamma-ray bursts, see GRBs
gauge dependence, 168
generalized harmonic coordinates, 367
generating techniques, 5
GEO 600, 243, 247, 248, 251, 252, 255, 262, 281
Index 669
energy conditions, 18
energy-momentum tensor, 453
equation of state, 166
entanglement entropy, 658
EOB, see effective-one-body
EOS, see equation of state
equation of motion, 303
equation of state, 375, 382
equivalence principle, see weak equivalence principle, strong equivalence principle, Einstein equivalence principle
ergo region, 29, 471
Euclid space mission, 129
Euler equation (relativistic), 102
event horizon, 17, 28, 133, 142, 469
exact solutions, 5, 10, 16
excision, 365, 367
existence theorems, 10, 11, 18
exoplanets, 4
extremal Kerr, 471
extreme-mass-ratio inspiral (EMRI), 300, 302, 304, 309, 313, 322
f(R) theories, 67, 167
f-modes, 386
Fermi satellite, 157
finite difference method, 368
finite volume methods, 369
firewall, 400
fitting problem, 228
flatness problem, 178–179
FLRW models, 4, 10, 18, 30–33, 163–165, 401, 480
perturbations, 34–35, 167–169, 200
curvature, 184
tensor, 169, 184, 186, 215
velocity, 226
frame-dragging, 390
frequency–mass diagram, 310
Friedmann equation, 164, 165, 176
Friedmann–Lemaître–Robertson–Walker spacetimes, see FLRW models
Fuchsian PDE analysis, 451
functional renormalization group FRG, 556–561
fuzzballs, 655
Galactic center
stellar orbits, 136
Galactic microlensing surveys, 118, 125
extrasolar planets, 126
galaxy surveys, 170–173, 195
galaxy–black hole correlation, 137
galaxy–galaxy lensing, 130
gamma-ray bursts, see GRBs
gauge dependence, 168
generalized harmonic coordinates, 367
generating techniques, 5
GEO 600, 243, 247, 248, 251, 252, 255, 262, 281
geodesic, 14
geodesic deviation, 14–15
geodesic equation, 200, 225
geodesic incompleteness, 19
geodesic self-force problem, 378
geometrization, 441
geometrodynamics, 502, 568, 572, 575, 576, 585
global hyperbolicity, 18
Global Positioning System, 4, 58, 80
Gowdy spacetimes, 451, 490
GPS, see Global Positioning System, 10
graceful exit, 180
Grand Challenge, 365
graph manifold, 482
gravitational collapse, 10, 26, 369
gravitational lensing, 4, 8, 10, 37–40, 118, 199, 228
convergence and shear, 120, 121
critical curves and caustics, 121, 123, 124
critical surface mass density, 120
deflection potential, 120
Einstein radius, 122
Einstein ring, 118, 121, 122
Fermat potential, 123
magnification, 121, 123–127
mass profiles of deflectors, 119, 121, 123
mass-sheet degeneracy, 123
multiple images, 118, 121
natural telescopes, 131
of the CMB, 206, 214, 230
time delay and Hubble constant, 123
weak vs. strong lensing, 120, 127
gravitational radiation, 12, 14, 81–91
gravitational redshift, 4, 52, 56–58, 82
gravitational self-force formalism, 291, 300, 302–304, 310, 316, 322
gravitational wave detection results, 248, 318, 327–329, 332, 333
gravitational wave extraction, 367
gravitational waveform, 276, 290, 291, 296, 297, 299, 301, 304, 305, 308–310, 315–319, 321, 323, 325, 330
gravitational waves, 5, 10, 40–44, 155, 158, 476
cylindrical, 41
detection, see Chapter 5, 42
emission, see Chapter 6, 42
plane, 41
primordial, 216, 227
weak, 40
gravitomagnetism, 78
graviton mass, 70, 91
Gravity Probe B (GPB), 78
gravity–hydrodynamics duality, 397
gravity-gradient (Newtonian) noise, 245, 251, 264, 265, 268, 281
GRBs, 148, 318, 320, 324, 326–329
afterglow, 148, 151–153, 157
counterparts, 148

GeV emission, 157
long, 148, 149, 153, 154, 157, 158
other types, 155
redshifts, 157
shocks, 150
external, 151, 159
internal, 151, 159
short, 148, 149, 153–155, 157, 158, 382
spectra, 157
X-ray flashes, 152
Gregory–Laflamme instability, 394, 616
group field theory, 580, 584, 602, 606
GSF, see gravitational self-force formalism
Hadamard/Friedlander formulas, 492
Hamiltonian reduction, 484
harmonic asymptotics, 422
harmonic coordinates, 366
harmonic gauge, 457, 468
Hawking effect, 533
Hawking mass, 430
Hawking radiation, 169
hesitation dynamics, 225
hidden symmetries, 510
higher-dimensional gravity, 614–625
HNS, see hyper-massive neutron star
Hofava–Lifshitz gravity, 506
holography, 395
holonomies, 570, 572, 574
loop conjecture, 364, 389, 391
horizon problem, 176–178
horizons
 cosmological, 17
 event, see event horizons
hot spot, 210, 211, 225
Hubble constant, 5, 123, 164, 206
Huygens’ principle, 492
hyper-massive neutron star (HMS), 384
hyberbolizable, 483
hyberbolizable manifold, 487
hyperboloidal formulation, 366, 368
hypermassive neutron star, 383
hypernovae, 149
immersed MOTS, 440
impulsive gravitational waves, 475
incompressible torus, 482
inflation, 17, 33–34, 43, 169, see Section 4.2, 179, 659
alternatives, 222
chaotic, 181
in Bianchi models, 225
in inhomogeneous models, 226
new, 181
old, 179–181
slow-roll, 181–184
inflation, 8, 35, 181, 222, 226
information loss paradox, 539
inhomogeneous geometries, 167
initial data set, 412, 453
initial value problem, 18
innermost stable circular orbit, see ISCO
interacting quantum fields, 546
intergalactic medium chemical composition, 154
inverse Compton effect, 150, 158
inverse mean curvature flow, 431
irrational exuberance, 511
ISCO, 29, 381
isolated black holes, 324
isolated neutron stars, 328
Jang’s equation, 424, 437
jet, 142–144, 151, 152, 156, 157, 159
opening angle, 152, 153, 155
junction conditions, 16
K(π, 1) manifolds, 481
KAGRA, 251, 264, 281
Kahn–Penrose solution, 477
Kaluza–Klein bubbles, 618
Kaluza–Klein theory, 615–616
Kantowski–Sachs spacetimes, 224
Kasner spacetimes, 398, 450, 451
Kerr, 437
Kerr solution, 10, 22, 25, 470
Killing vector, 14
Kottler solution, 22, 25
Kruskal diagram, 24
L² bounded curvature conjecture, 462
lapse function, 425
Large Hadron Collider, 166, 389
laser interferometry, 243, 247, 267
last scattering surface initial data, 202
Lemaître–Tolman–Bondi (LTB) models, 223
lensing potential, 208
LHC, see Large Hadron Collider
light-bending, 3, 4
light-cone estimates, 490, 492
LIGO, 247, 249
LIGO India, 281
LIGO/VIRGO/KAGRA, 384
LISA, 246, 265, 267, 269, 271, 282
LISA Pathfinder (LFP), 246, 265, 270, 271, 282
Liu–Yau mass, 427
loop quantum gravity, 504–510
Hamiltonian theory, 567–577
loop quantum cosmology, 585–592
spin foams, 504–509, 577–584
Lorentz cone spacetimes, 486
LQC, see loop quantum gravity, loop quantum cosmology
LQG, see loop quantum gravity
luminous arcs, 118, 128, 131
abundance and arc statistics, 128
magnetic reconnection, 151
mass determination with gravitational lensing, 122
mass substructure in gravitational lenses, 123
mass-sheet degeneracy, 123
Massive Astrophysical Compact Halo Objects (MACHOs), 125, 126
massive gravity, 167
matched filtering template, 315–318, 321–323, 332, 333
maximal Cauchy development, 458
maximal data, 418
maximal slicing, 363
method of lines, 369
metric, 11, 12
metric theory of gravity, 51, 52, 56, 59–63, 65, 71, 74, 75, 87, 89
MHD simulations, 142
microlensing, 4, 118, 135
microlocal spectrum condition, 550
Minkowski space compactification, 17
MiSaTaQuWa equation, 303
Misner wormhole initial data, 362
mixmaster, 398
Mixmaster behavior, 450
modified gravity, 171, 222
MOND, 166
Morawetz vector fields, 466
Mostow rigidity theorem, 486
MOTS stability inequality, 436
MOTS stability operator, 436
MOTS: marginally outer trapped surface, 433
moving puncture method, 367
multipolar post-Minkowskian–post-Newtonian formalism (MPM), 294, 295
multiverse, 224
Myers–Perry black holes, 438, 619
N-body simulations, 171
naked singularities, 364, 371
near-CMC, 416
near-zone post-Newtonian approximation, 295
neutrinos high energy, 158
number of species, 5
neutron star viscosity, 110
neutron star equation of state (EoS), 312, 314, 320, 321, 323, 326, 329, 330
neutron stars, 100, 134, 149, 154, 382, 501
maximum mass, 102
minimum mass, 105
minimum period, 102
radius, 103, 105
redshift, 103
Newtonian approximation, 156
in cosmology, 171–172
NGC 4258, 137
No-Hair theorem, 144–145
non-Gaussianity, 171, 172, 187–189, 193
nonlinear σ models, 377
Nordtvedt effect, 75
NR, see numerical relativity
null condition, 469
null constraint equations, 455
null forms, 464
numerical relativity, 10, see Chapter 7, 288, 290, 291, 299, 304, 305, 308, 309, 315, 316, 321
numerical simulations, 29, 156
optical depth, 198, 206, 208
optical structure equations, 456, 466
orthonormal frame formalism, 491
oscillons, 374
parametrix, 457
parametrized post-Newtonian formalism, 6, 61–63, 65–67, 75, 77, 90
Penrose diagram, 17
collapsing fluid spheres, 26
Schwarzschild solution, 24
Penrose process, 142
perihelion shift, 4, 73, 74
perturbation theory, 291, 300, 305
perturbations in inflation, 184–187
perturbative quantum gravity, 502, 633–636
Petrov classification, 5, 16
photoelectric effect, 3, 6
photon counting (shot) noise, 246, 247, 250–252, 254, 256, 258, 262, 268
Planck satellite, 163, 206
plane-symmetric gravitational wave collisions, 389
Poincaré Conjecture, 481
POLARBEAR, 7, 211, 215
positive energy theorem, 418
positive mass theorem, 424, 442
post-Newtonian expansions, 378
PPN, see parametrized post-Newtonian formalism
precision cosmology, 7, 35, 164, 195–219, 228
preheating, 183
pseudo-spectral method, 368
PSR1913+16, 242
PTA, see pulsar timing array
pulsar, 4, 5
pulsar timing array, 272, 288, 289, 310, 324, 332–334
puncture initial data, 364
QCD, 554, 568, 573, 577, 581, 583, 584, 591, 595, 605
QED, 568, 573, 577, 583, 584, 591, 604, 605
QEG quantum Einstein gravity, 562–564, 584, 604
QSOs, see quasars
quadrupole formula, 289, 290, 293, 297, 364
quanta of geometry, 554, 574, 577, 604, 606
quantum black holes, 592–597, 602, 625
quantum bounce, 586, 587, 589–591, 604, 605
quantum Einstein gravity, see QEG
quantum field theory, 167
quantum field theory in curved spacetime, 169, 503, 513
quantum horizons, 592–597
quantum Riemannian geometry, 555, 570–575
quark confinement, 655
quark–gluon plasma (QGP), 395
quasars, 5, 135
quasi-local mass, 424
quasi-normal mode spectrum of Kerr, 378
quasi-normal modes, 388
R-parity, 166
r-process, 385
radiation pressure noise, 245, 250, 252–254, 263, 269
radiation reaction, 291, 297, 298, 302, 305, 307, 309, 322
radio astronomy, 5
Randall–Sundrum models, 394
Raychaudhuri equation, 454
recoil velocity, 379, 380
redshift effect, 470
reduced Hamiltonian, 485
Regge calculus, 506, 566, 574, 578, 580–583, 600, 602
rehricing, 169, 183
reionization, 206
Reissner–Nordström solution, 22, 25
relativistic aberration, 199
relativistic heavy ion collisions, 389, 391, 397, 656
relativistic stars, 100
reconnection, 206
Ricci identities, 11
Ricci scalar, 11
Ricci tensor, 11, 15
Riemann moduli space, 484
Riemannian Penrose Inequality, 431
Rossby waves, 108
Sachs–Wolfe effect, 201, 202, 211
integrated, 171, 201, 204
<table>
<thead>
<tr>
<th>Index</th>
<th>673</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sagittarius A, 135, see also Galactic Center, 145</td>
<td></td>
</tr>
<tr>
<td>scalar field, 34, 167, 169, 180</td>
<td></td>
</tr>
<tr>
<td>scalar–tensor theories, 61, 64, 65, 89</td>
<td></td>
</tr>
<tr>
<td>scaling laws, 371</td>
<td></td>
</tr>
<tr>
<td>Schwarzschild, 3</td>
<td></td>
</tr>
<tr>
<td>Schwarzschild solution, 10, 20–22, 25, 469</td>
<td></td>
</tr>
<tr>
<td>maximal extension, 22–25</td>
<td></td>
</tr>
<tr>
<td>Schwarzschild–Tangherlini black hole, 393, 614</td>
<td></td>
</tr>
<tr>
<td>SDSS, 170, 195</td>
<td></td>
</tr>
<tr>
<td>Seifert fibered space, 482</td>
<td></td>
</tr>
<tr>
<td>seismic noise, 245, 250, 259</td>
<td></td>
</tr>
<tr>
<td>self-similar space times, 227, 486</td>
<td></td>
</tr>
<tr>
<td>SEP, see strong equivalence principle</td>
<td></td>
</tr>
<tr>
<td>SGO-mid, 265–267, 271</td>
<td></td>
</tr>
<tr>
<td>shift vector, 425</td>
<td></td>
</tr>
<tr>
<td>short-pulse method, 474</td>
<td></td>
</tr>
<tr>
<td>simplicial decomposition, 566, 571, 574, 575, 606</td>
<td></td>
</tr>
<tr>
<td>singularity</td>
<td></td>
</tr>
<tr>
<td>cosmological, 225, 226, 398</td>
<td></td>
</tr>
<tr>
<td>singularity resolution in LQG, 585–588</td>
<td></td>
</tr>
<tr>
<td>singularity theorems, 10, 11, 15, 18–19, 433, 450</td>
<td></td>
</tr>
<tr>
<td>Sloan Digital Sky Survey, see SDSS</td>
<td></td>
</tr>
<tr>
<td>slow-roll parameter, 182 solutions, 390</td>
<td></td>
</tr>
<tr>
<td>South Pole Telescope, see SPT</td>
<td></td>
</tr>
<tr>
<td>space-time harmonic gauge, 489</td>
<td></td>
</tr>
<tr>
<td>spacetime invariants, 5</td>
<td></td>
</tr>
<tr>
<td>spatial gauge, 485</td>
<td></td>
</tr>
<tr>
<td>spatial harmonic gauge, 489</td>
<td></td>
</tr>
<tr>
<td>spectral tilt, 169, 206</td>
<td></td>
</tr>
<tr>
<td>spherical space forms, 481</td>
<td></td>
</tr>
<tr>
<td>spikes, 398, 451</td>
<td></td>
</tr>
<tr>
<td>spin network, 593</td>
<td></td>
</tr>
<tr>
<td>spin–orbit precession, 385</td>
<td></td>
</tr>
<tr>
<td>SPT, 163, 195, 206, 211, 215</td>
<td></td>
</tr>
<tr>
<td>Sputnik, 5</td>
<td></td>
</tr>
<tr>
<td>Square Kilometer Array, 130</td>
<td></td>
</tr>
<tr>
<td>squeezed vacuum, 252, 262, 263</td>
<td></td>
</tr>
<tr>
<td>stability, 106</td>
<td></td>
</tr>
<tr>
<td>f-modes, 107</td>
<td></td>
</tr>
<tr>
<td>CFS instability, 107</td>
<td></td>
</tr>
<tr>
<td>thermodynamic, 114</td>
<td></td>
</tr>
<tr>
<td>turning-point instability, 113</td>
<td></td>
</tr>
<tr>
<td>stability of Minkowski space-time, 466</td>
<td></td>
</tr>
<tr>
<td>star formation, 153, 154</td>
<td></td>
</tr>
<tr>
<td>stellar-mass binaries, 288, 312</td>
<td></td>
</tr>
<tr>
<td>stochastic background, 288, 331–334</td>
<td></td>
</tr>
<tr>
<td>Stokes parameters, 211</td>
<td></td>
</tr>
<tr>
<td>string theory</td>
<td></td>
</tr>
<tr>
<td>non-perturbative aspects, 641–647</td>
<td></td>
</tr>
<tr>
<td>perturbative aspects, 636–641</td>
<td></td>
</tr>
<tr>
<td>strong cosmic censorship, 450, 451, 462, 472</td>
<td></td>
</tr>
<tr>
<td>strong equivalence principle, 64, 67, 74, 76, 77, 84, 87</td>
<td></td>
</tr>
<tr>
<td>structure formation, 30</td>
<td></td>
</tr>
<tr>
<td>supergravity, 502–510, 627–636</td>
<td></td>
</tr>
<tr>
<td>supermassive black hole binaries, 244, 288, 311, 313, 320, 324, 333</td>
<td></td>
</tr>
<tr>
<td>supermassive black hole mergers, 380</td>
<td></td>
</tr>
<tr>
<td>supernovae, 153, 154, 166, 288, 312, 319, 324, 325, 327–330</td>
<td></td>
</tr>
<tr>
<td>superradiance, 471</td>
<td></td>
</tr>
<tr>
<td>supersymmetry, 165, 167, 502–508, 625–627</td>
<td></td>
</tr>
<tr>
<td>extended supersymmetry, 626</td>
<td></td>
</tr>
<tr>
<td>local supersymmetry, 627</td>
<td></td>
</tr>
<tr>
<td>surface Hamiltonian, 425</td>
<td></td>
</tr>
<tr>
<td>Swift, 149, 153, 155, 156, 158</td>
<td></td>
</tr>
<tr>
<td>Swiss cheese models, 228–230</td>
<td></td>
</tr>
<tr>
<td>symmetry groups, 5, 14</td>
<td></td>
</tr>
<tr>
<td>synchrotron emission, 150</td>
<td></td>
</tr>
<tr>
<td>Szekeres solution, 477</td>
<td></td>
</tr>
<tr>
<td>TAMA, 247–249</td>
<td></td>
</tr>
<tr>
<td>Teichmüller space, 484</td>
<td></td>
</tr>
<tr>
<td>tensor calculus, 11</td>
<td></td>
</tr>
<tr>
<td>tensor spectral index, 187</td>
<td></td>
</tr>
<tr>
<td>tensor–vector–scalar theories (TeVeS), 69, 166</td>
<td></td>
</tr>
<tr>
<td>tetrads, 12, 13</td>
<td></td>
</tr>
<tr>
<td>null, 13</td>
<td></td>
</tr>
<tr>
<td>orthonormal, 13</td>
<td></td>
</tr>
<tr>
<td>thermal noise, 245, 247, 250, 252, 253, 262–264, 281</td>
<td></td>
</tr>
<tr>
<td>thermal states, 526</td>
<td></td>
</tr>
<tr>
<td>Thurston conjecture, 483</td>
<td></td>
</tr>
<tr>
<td>tidal capture, 156</td>
<td></td>
</tr>
<tr>
<td>of stars, 155</td>
<td></td>
</tr>
<tr>
<td>tidal radius, 156, 384</td>
<td></td>
</tr>
<tr>
<td>tight-coupling approximation, 203</td>
<td></td>
</tr>
<tr>
<td>time delay of light, 72, 73, 82, 85</td>
<td></td>
</tr>
<tr>
<td>time of arrival (TOA), 273, 277</td>
<td></td>
</tr>
<tr>
<td>time ordered products, 544</td>
<td></td>
</tr>
<tr>
<td>time-delay interferometry, 268</td>
<td></td>
</tr>
<tr>
<td>time-symmetric initial data, 419</td>
<td></td>
</tr>
<tr>
<td>topological censorship, 440, 442</td>
<td></td>
</tr>
<tr>
<td>topological defects, 163</td>
<td></td>
</tr>
<tr>
<td>topology, 17</td>
<td></td>
</tr>
<tr>
<td>transverse-traceless tensor, 485</td>
<td></td>
</tr>
<tr>
<td>trapped surface, 389, 434, 473, 474</td>
<td></td>
</tr>
<tr>
<td>trapping effect, 471</td>
<td></td>
</tr>
<tr>
<td>trumpet slice, 367</td>
<td></td>
</tr>
<tr>
<td>turning-point instability, 113</td>
<td></td>
</tr>
<tr>
<td>twistor methods, 506</td>
<td></td>
</tr>
<tr>
<td>Type I critical solutions, 370</td>
<td></td>
</tr>
<tr>
<td>Type II critical solutions, 370</td>
<td></td>
</tr>
<tr>
<td>$U(1)$-symmetric vacuum metrics, 451, 489</td>
<td></td>
</tr>
<tr>
<td>uniqueness theorems, 10, 11, 18</td>
<td></td>
</tr>
<tr>
<td>universal profile of dark matter halos, 128</td>
<td></td>
</tr>
<tr>
<td>universality, 370</td>
<td></td>
</tr>
<tr>
<td>Universality of Free Fall (UFF), 51</td>
<td></td>
</tr>
<tr>
<td>Unruh effect, 528</td>
<td></td>
</tr>
<tr>
<td>UV and IR fixed points, 561–567, 601, 603</td>
<td></td>
</tr>
<tr>
<td>vacuum energy, 166</td>
<td></td>
</tr>
<tr>
<td>variation of G, 77</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Vassiliev higher spin theories, 506</td>
<td>Weyl tensor, 15</td>
</tr>
<tr>
<td>vector–tensor theories, 68</td>
<td>Wick rotation, 566, 570</td>
</tr>
<tr>
<td>Virgo, 247, 249</td>
<td>Wilson loops, 652</td>
</tr>
<tr>
<td>Virgo cluster</td>
<td>WMAP, 163, 199, 206, 585, 588, 589</td>
</tr>
<tr>
<td>infall, 199</td>
<td>X-ray binary, 138</td>
</tr>
<tr>
<td>vorticity, 224</td>
<td>X-ray sources, 134</td>
</tr>
<tr>
<td>Wang–Yau quasi-local energy, 428, 429</td>
<td>persistent, 138</td>
</tr>
<tr>
<td>wave equation, 476</td>
<td>transient, 138</td>
</tr>
<tr>
<td>wave front set of distribution, 547</td>
<td>y-type distortion (of CMB spectrum), 196</td>
</tr>
<tr>
<td>wave map, 377, 490</td>
<td>Yamabe invariant, 486</td>
</tr>
<tr>
<td>wave-zone multipolar post-Minkowskian approximation, 294</td>
<td>Yamabe types: negative, zero, positive, 483</td>
</tr>
<tr>
<td>weak cosmic censorship, 462, 472</td>
<td>Yamabe’s theorem, 484</td>
</tr>
<tr>
<td>weak equivalence principle, 51–53, 61, 76</td>
<td>Yang–Mills equations, 461, 463, 490, 492, 494</td>
</tr>
<tr>
<td>weak gravitational lensing, 118, 126, 127, 171</td>
<td>York formalism, 364</td>
</tr>
<tr>
<td>bullet clusters, 128</td>
<td>zoom-whirl orbital dynamics, 382</td>
</tr>
<tr>
<td>well-posedness, 457</td>
<td></td>
</tr>
<tr>
<td>WEP, see weak equivalence principle</td>
<td></td>
</tr>
</tbody>
</table>