WATER IN BIOLOGICAL AND CHEMICAL PROCESSES

Building up from microscopic basics to observed complex functions, this insightful monograph explains and describes how the unique molecular properties of water give rise to its structural and dynamical behavior, which in turn translates into its role in biological and chemical processes.

The discussion of the biological functions of water details not only the stabilizing effect of water in proteins and DNA, but also the direct role that water molecules themselves play in biochemical processes, such as enzyme kinetics, protein synthesis, and drug–DNA interaction. The overview of the behavior of water in chemical systems discusses hydrophilic, hydrophobic, and amphiphilic effects, as well as the interactions of water with micelles, reverse micelles, microemulsions, and carbon nanotubes.

Supported by extensive experimental and computer simulation data, highlighting many of the recent advances in the study of water in complex systems, this is an ideal resource for anyone studying water at the molecular level.

BIMAN BAGCHI is a Professor at the Indian Institute of Science, Bangalore. He is a Fellow of the Indian National Science Academy, the Indian Academy of Sciences, The National Academy of Sciences, India, and TWAS, The Academy of Sciences for the Developing World, Italy.

Cambridge Molecular Science

As we move further into the twenty-first century, chemistry is positioning itself as the central science. Its subject matter, atoms and the bonds between them, is now central to so many of the life sciences on the one hand, as biological chemistry brings the subject to the atomic level, and to condensed matter and molecular physics on the other. Developments in quantum chemistry and in statistical mechanics have also created a fruitful overlap with mathematics and theoretical physics. Consequently, boundaries between chemistry and other traditional sciences are fading and the term *Molecular Science* now describes this vibrant area of research.

Molecular science has made giant strides in recent years. Bolstered by both instrumental and theoretical developments, it covers the temporal scale down to femtoseconds, a timescale sufficient to define atomic dynamics with precision, and the spatial scale down to a small fraction of an angstrom. This has led to a very sophisticated level of understanding of the properties of small molecule systems, but there has also been a remarkable series of developments in more complex systems. These include protein engineering, surfaces and interfaces, polymers, colloids, and biophysical chemistry. This series provides a vehicle for the publication of advanced textbooks and monographs introducing and reviewing these exciting developments.

Series editors

Professor Richard Saykally University of California, Berkeley

Professor Ahmed Zewail California Institute of Technology

> Professor David King University of Cambridge

WATER IN BIOLOGICAL AND CHEMICAL PROCESSES

From Structure and Dynamics to Function

BIMAN BAGCHI

Indian Institute of Science, Bangalore

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107037298

© Biman Bagchi 2013

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2013

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication data Bagchi, B. (Biman) Water in biological and chemical processes : from structure and dynamics to function / Biman Bagchi, Indian Institute of Science, Bangalore. pages cm. – (Cambridge molecular science) Includes bibliographical references. ISBN 978-1-107-03729-8 1. Water in the body. 2. Water chemistry. I. Title QP535.H1B34 2013 612'.01522–dc23 2013013114

ISBN 978-1-107-03729-8 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

"To my mother and my father, Abha and Binay K. Bagchi. They taught me, from an early age, to love poetry and science, opening doors to the wonders of Nature."

> "Understanding the role of water as the ubiquitous solvent for the chemical biology and throughout molecular science remains one of the most active areas of current scientific research. The puzzling issues that arise throughout this field require a unified understanding of structure, dynamics and thermodynamics. This book provides a valuable resource in relating microscopic properties to complex phenomenology, connecting diverse topics of contemporary interest."

> > David J. Wales, University of Cambridge

"This book by Biman Bagchi covers an extremely broad range of topics on water, written with an eye to relating theory and experiment and by someone who has insight into both. Its use of recent references in the field is a helpful attribute. The author emphasizes that our understanding is not a closed subject and so there will be further room for developments, debate on interpretation, and discussions. For teachers of topics in equilibrium and nonequlibrium statistical mechanics there is also, I believe, much useful material on interesting applications."

Rudy A. Marcus, California Institute of Technology

"Water continues to both fascinate and confound those who study its properties and its vital roles in life's structures and dynamical processes. In this unique book Biman Bagchi has brought together an extraordinary range of experimental data and the results of both theory and simulation studies at a level generally accessible to readers with a background in chemistry at the first year university level. He illuminates how the remarkable properties of water are key to a multitude of chemical and biological processes and in doing so provides both insight and the springboard for new investigations of this endlessly fascinating liquid."

Graham R. Fleming, University of California, Berkeley

Contents

	Pr Ac	reface pa knowledgements	ge xv xviii			
Par	t I	Bulk water	1			
1.	Uni	queness of water	3			
	1.1	Introduction	3			
	1.2	1.2 Molecular structure				
	1.3	1.3 Six unique features				
	1.4	Modeling of water	9			
	1.5	Conclusion	10			
2.	Anomalies of water					
	2.1	Anomalous properties	13			
		2.1.1 Density maximum	13			
		2.1.2 Isobaric specific heat $(C_{\rm P})$	15			
		2.1.3 Isothermal compressibility ($\kappa_{\rm T}$)	15			
		2.1.4 Coefficient of thermal expansion $(\alpha_{\rm P})$	16			
		2.1.5 Dynamic anomalies present at low temperature	17			
	2.2	Translational and orientational order	19			
	2.3	Temperature-density range of water anomalies	21			
	2.4	2.4 Conclusion				
	Appendix 2.A Microscopic expressions of specific heat, isothermal					
		compressibility, and coefficient of thermal expansion	23			
	App	pendix 2.B Quantification of spatial order in water	24			
3.	Dynamics of water: molecular motions and hydrogen-bond-breaking					
	kine	etics	27			
	3.1 Introduction					
	3.2 Timescales of translational and rotational motion					

vii

viii	Contents				
	3.3 Jump reorientation motion in water	30			
	3.4 Effects of temperature on water motion	33			
	3.5 Translational diffusion	35			
	3.6 Hydrogen-bond lifetime dynamics	36			
	3.7 Vibrational dynamics of the O–H bond	39			
	3.8 Dielectric relaxation	40			
	3.9 Solvation dynamics	42			
	3.10 Ionic conductivity of rigid ions in water	45			
	3.11 Electron transfer reactions in water	47			
	3.12 Motion becomes collective at low temperature	49			
	3.13 Conclusion	50			
	Appendix 3.A Rotational time correlation functions	51			
	Appendix 3.B Quantification of hydrogen-bond	- 0			
	lifetime dynamics	58			
4.	Inherent structures of liquid water	61			
	4.1 Introduction	61			
	4.2 Transition between inherent structures of water	66			
	4.3 Connected water cluster moves during transition	67			
	4.4 HB network restructuring	67			
	4.5 Coordination number fluctuation in inherent structure and				
	corresponding dynamics in parent liquid	68			
	4.6 Low-energy excitations in liquid water	69			
	4.7 Conclusion	69			
5.	The pH of water	71			
	5.1 Introduction	71			
	5.2 Temperature and pressure dependence of pH	73			
	5.3 Mechanism of autoionization	74			
	5.4 pH of blood	75			
	5.5 Food and blood pH	76			
	5.6 pH of seawater	77			
	5.7 Conclusion	77			
Part	II Water in biology	79			
6.	Biological water				
	6.1 Introduction	81			
	6.2 Relaxation measurements	83			
	6.3 Unique characteristics of biological water	83			
	6.4 Phenomenological models and simple theories	84			
	6.5 Protein–glass transition and hydration-layer dynamics	88			

		Contents	ix
	6.6	Protein aggregation and biological water	90
	6.7	Conclusion	90
	App	endix 6.A The dynamic exchange model	91
7.	An e 7.1 7.2 7.3	essential chemical for life processes: water in biological functions Introduction Role of water in enzyme kinetics Role of water in drug. DNA intercalation	97 97 99 101
	7.3 7.4	Role of water in the biological function of \mathbf{RNA}	101
	7.7	Water-mediated molecular recognition	105
	7.6	Protein folding and protein association: role of biological water	107
	7.7	Role of water in beta-amyloid aggregation in Alzheimer disease	109
		7.7.1 Role of water in the early stages of oligomer formation	110
		7.7.2 Role of water in the late stages of fibril growth	111
	7.8	Role of water in photosynthesis	112
	7.9	Conclusion	114
8.	Hyd	ration of proteins	117
	8.1	Introduction	117
	8.2	What is the thickness of the hydration shell?	118
	8.3	How structured is the water in the hydration shell of a protein?	121
	8.4	Orientational arrangement of water molecules at the surface	123
	8.5	Dynamics of the protein hydration shell: experimental studies	124
		8.5.1 Dielectric spectrum 8.5.2 Nuclear magnetic resonance studies	124
		8.5.2 Average magnetic resonance studies	120
		8 5 4 Vibrational spectroscopy	127
		8.5.5 Solvation dynamics	129
	8.6	Conclusion	131
	App	endix 8.A Orientation of water molecules in the hydration layer	132
9.	Und	erstanding the protein hydration layer: lessons from	
	com	puter simulations	135
	9.1	Introduction	135
	9.2	Molecular motion in the hydration layer	136
	9.3	Hydrogen-bond lifetime dynamics	140
	9.4	Computer simulation of solvation dynamics	142
	9.5	Dielectric relaxation	143
	9.6	Explanation of anomalous dynamics in the hydration layer	144
	9.7	Protein–glass transition at 200 K: role of water dynamics	144

х		Contents	
	9.8	Free-energy barrier for escape of water molecules from	
		protein hydration layer	146
	9.9	Conclusion	146
10.	Wate	r in and around DNA and RNA	151
	10.1	Introduction: the unique role of water in stabilizing	
		DNA and RNA	151
	10.2	2 Hydration of different constituents	152
	10.3	Groove structure and water dynamics	153
	10.4	Translational and rotational dynamics of water molecules in the	
		grooves	153
	10.5	5 Solvation dynamics	155
	10.6	Entropy of groove water and dynamics	156
	10.7	Correlation between diffusion and entropy: Adam–Gibbs	
		relation	157
	10.8	Sequence dependence of DNA hydration: spine of hydration	
		in AT minor groove	159
	10.9	Effects of nanoconfinement and surface-specific interactions	161
	10.10) Water around RNA	161
		10.10.1 Structure of water around RNA	162
		10.10.2 Dynamics of water around RNA	162
	10.11	Conclusion	162
	Appe	ndix 10.A Hydrogen-bonding pattern around DNA	163
11.	Prote	in–DNA interaction: the role of water as a facilitator	167
	11.1	Introduction	167
	11.2	Structural analysis of protein-DNA complex: classification of	
		hydration water	168
	11.3	Dynamics of water around a protein-DNA complex	169
	11.4	Role of water in thermodynamics of protein–DNA interactions	170
	11.5	Protein diffusion along DNA	174
	11.6	Conclusion	174
12.	Wate	r surrounding lipid bilayers: its role as a lubricant	177
	12.1	Introduction	177
	12.2	Hydration of different constituents: phospholipids and buried	
		proteins	179
	12.3	Rugged energy landscape for water motion	179
	12.4	Translational and rotational dynamics of water	180
	12.5	Solvation dynamics	181
	12.6	Transport of small molecules across the bilayer	182

	Contents			
	12.7	Transport of large molecules across the bilayer	184	
	12.8	Electrostatic potential across the membrane	184	
	12.9	Conclusion	185	
13.	The r	ole of water in biochemical selection and protein synthesis	187	
	13.1	Introduction	187	
	13.2	Role of water in kinetic proofreading	188	
		13.2.1 Brief analysis of the Hopefield–Ninio approach		
		to kinetic proofreading	190	
		13.2.2 Analysis of experimental results in the light of the	100	
		Hopfield–Ninio formulation	190	
		13.2.3 Aminoacylation of tRINA during protein synthesis	192	
		13.2.4 IKINA selection in noosonie	194	
	133	Water as a lubricant of life	190	
	13.5	Conclusion	190	
_	13.1		177	
Par	t III	Water in complex chemical systems	199	
14.	The h	ydrophilic effect	201	
	14.1	Introduction	201	
	14.2	Water near ions	202	
	14.3	Water near an extended hydrophilic surface	204	
	14.4	Aqueous hydrophilic binary mixtures	207	
		14.4.1 Water–urea binary mixture	208	
		14.4.2 Water–guanidinium hydrochloride	200	
	14 5	binary mixture	209	
	14.5	Aqueous salt solutions	209	
		14.5.1 Ionic conductivity	209	
	14.6	14.5.2 Viscosity	211	
	14.0		212	
15.	The h	hydrophobic effect	215	
	15.1	Introduction	215	
	15.2	Hydrophobic hydration	217	
	15.3	I emperature dependence of hydrophobicity: enthalpy	210	
	15 /	Versus entropy stabilizations	219	
	15.4	nyutopathy scale	220	
	13.3	r an nyurophobicity and potential of mean force between two	221	
	15.6	Biological applications of notential of mean force	221 222	
	13.0	15.6.1 Protein folding	223 224	
		13.0.1 Trown roung	22 T	

xii		Contents	
		15.6.2 Hydrophobic association	227
		15.6.3 Pattern formation in chiral molecules	227
	15.7	Hydrophobic collapse of polymers	227
		15.7.1 The Flory–Huggins theory	228
	15.8	Molecular-level understanding of hydrophobic interaction	230
	15.9	Hydrophobic force law	234
	15.10	Hydrophobicity at different length scales	234
	15.11	Conclusion	235
	Apper	ndix 15.A Pratt–Chandler theory	236
	15.A.	1 Cavity distribution functions	237
	15.A.2	2 Theory for A–W and A–A pair correlations	239
16.	The a	mphiphilic effect: the diverse but intimate world of aqueous	
	binary	mixtures	243
	16.1	Introduction: the role of aqueous mixtures in chemistry	
		and biology	243
	16.2	Non-ideality of amphiphilic binary mixtures	245
	16.3	Water–DMSO binary mixture	245
	16.4	Water–alcohol binary mixture	249
		16.4.1 Aqueous methanol solution	250
		16.4.2 Aqueous ethanol solution	250
		16.4.3 Water-tertiary butyl alcohol	250
	16.5	Water-acetone binary mixture	252
	16.6	Water-dioxane binary mixture	252
	16.7	Liquid–liquid structural transformation in aqueous	
	1 6 0	binary mixtures: a generic phenomenon for amphiphilic solutes	253
	16.8	Theoretical development	254
	16.9	Biological applications	256
	16.10	Conclusion	258
17.	Water	in and around micelles, reverse micelles, and microemulsions	261
	17.1	Introduction: different self-assemblies in water	261
	17.2	Structure of micelles and reverse micelles	262
		17.2.1 Micelles	262
		17.2.2 Reverse micelles	263
	17.3	Dynamics of water surrounding micelles	265
	17.4	Free-energy landscape of hydrogen-bond arrangements at the	
		surface	266
	17.5	Reverse micelles and microemulsions: dynamics of water	268
	17.6	Orientational dynamics	269
	17.7	Core-shell model	270

		Contents	xiii
	17.8	Distance-dependent relaxation near the core of the reverse	
		micelle: propagation of surface-induced frustration	273
	17.9	Ising model description of the dynamics	273
	17.10	Conclusion	274
18.	Water	in a carbon nanotube: nature abhors a vacuum	277
	18.1	Introduction	277
	18.2	Type and structures of carbon nanotubes	277
	18.3	Structure of water inside a carbon nanotube	278
	18.4	Dynamics and transport of water	279
		18.4.1 Translational motion of water inside a CNT	279
		18.4.2 Rotation of water molecules within a CNT	280
	18.5	Nanotubes as a filtration device	282
	18.6	Conclusion	283
Part	t IV A	Advanced topics on water	285
19.	The e	ntropy of water	287
	19.1	Introduction	287
	19.2	Relation between entropy and diffusion	291
		19.2.1 Diffusion–entropy scaling relation:	
		the Rosenfeld relation	291
		19.2.2 The Adam–Gibbs relation	293
	19.3	Calculation of the entropy of water	295
		19.3.1 From structure	296
		19.3.2 From dynamics	297
	19.4	Entropy from cell theory	298
	19.5	Entropy of water in confined systems (reverse micelles, carbon	•
	10.0	nanotubes, grooves of DNA)	299
	19.6		300
	Appendix 19.A Entropy for translational degree of freedom of		201
	1	an ideal gas (Sackur-Terode equation)	202
	Appel	ndix 19.B Entropy for vibrational degree of freedom	202
	Appel	Idix 19.C Entropy for rotational degree of needom	303
20.	The fi	reezing of water into ice	305
	20.1	Introduction	305
	20.2	Phase diagram of water and ice	306
	20.3	Ice formation in micro-droplets	307
	20.4	A lesson from the freezing of interacting spheres and	200
	20.5	the difference from water	308
	20.5	The freezing of water	308

xiv		Contents		
	20.6	Nucleation of an embryo	309	
	20.7	The freezing of water in computer simulations	310	
	20.8	Mechanism of ice formation	311	
	20.9	Freezing inside nanotubes	314	
	20.10	Conclusion	315	
21.	Supercritical water			
	21.1	Introduction	317	
	21.2	Inhomogeneous density fluctuation in supercritical fluids	318	
	21.3	Crossing the Widom line	320	
	21.4	Spectroscopic studies of supercritical fluids	320	
	21.5	Conclusion	322	
22.	Appro	paches to understand water anomalies	323	
	22.1	Introduction	323	
	22.2	Reason for density maximum	327	
	22.3	Reason for large isobaric specific heat of water	327	
	22.4	Percolation model of water	327	
	22.5	Hydrogen-bond network rearrangement dynamics	330	
		22.5.1 Energy landscape view of hydrogen-bond		
		rearrangement dynamics	331	
		22.5.2 Depolarized Raman scattering profile	333	
	22.6	22.6 Low-temperature anomalies		
	22.7	Conclusion	341	
	Epilog			
	Index		349	

The color plates will be found between pages 78 and 79.

Preface

This book attempts to summarize the large body of experimental and simulation data gathered recently on the structural and dynamic aspects of water in complex chemical and biological systems. In the process we try to present a unified view of this emerging field. While most discussions on water focus on its role in complex systems (like the role of water as a polar solvent stabilizing the native state of a protein), I thought it would be equally, if not more, appropriate to study and if possible explain why water has so many unique properties and how it is able to play important parts in so many diverse settings. For example, water molecules themselves need to change and adjust to the surface. In enzyme catalysis, they participate actively and get consumed *as a chemical – not act just as a good solvent facilitating the catalysis –* a fact not often appreciated.

Many important aspects of water have been discovered only in the last two decades or so. For example, we came to know about the astonishingly fast rate of solvation of a polar solute by water only around the mid-nineteen nineties! The detailed role of water in chemical reactions, such as in electron transfer, has also become clearer around the same time. It is therefore not surprising that it is only now that we have turned our attention towards understanding molecular aspects of water's role in biology. The specific role of water in most of the biological processes is far from well understood even today.

Studies of unique properties of water have often followed two disjointed paths. On the one side, detailed microscopic properties of water molecules, both in the bulk and in and around biomolecules, have been studied in vitro, such as water structure and arrangement around proteins and DNA. These studies have often remained confined to their own domains of choice/focus, with hardly any attempt to connect it with other properties and functions of water. The second line of studies has focused on the utilitarian aspects of water. Here the approach is largely qualitative and focused on the role of water in various aspects of life and nature. The latter have

Cambridge University Press & Assessment 978-1-107-03729-8 — Water in Biological and Chemical Processes Biman Bagchi Frontmatter More Information

xvi

Preface

been popular since antiquity. Neither of these two approaches addresses the explicit (especially dynamic) role of water molecules in biological functions.

Water that is present in biological cells, in the grooves of DNA, on the surfaces of proteins is found to be quite different from water in the bulk, the water that we drink. The term "biological water" was coined to highlight this difference. In nature, water is also found within rocks and confined systems, such as in tree leaves. Such confined water also exhibits properties quite distinct from those in the bulk. The main modification that occurs from the bulk state of water is the partial or even full loss of the hydrogen-bond network that so uniquely defines water. In biological and many natural systems, water faces a multitude of interactions from the surface. However, water seems to retain sufficient resources of its own to adjust to new environments and continue to perform its wide-ranging roles.

We have placed special emphasis on properties that have been observed in biomolecules, such as proteins, DNA, and RNA, and in other complex systems such as micelles, reverse micelles, and carbon nanotubes. As observed above, we tried to see what happens to water due to the proximity to a foreign surface. Second, we attempted to provide a coherent explanation of properties observed from a modern, *molecular, often dynamic, perspective*. The latter relies heavily on recent advances in the field, often driven by computer simulations. Third, we spend considerable effort to discuss biological functions of water. By "biological function" we do not imply only the stabilizing effect of water in proteins and DNA, but the direct role that water molecules themselves play in biochemical processes, such as in enzyme kinetics and protein synthesis, that are essential for life. Thus, the third purpose of this book is to articulate such biological and chemical functions in the light of our current understanding of molecular aspects of water although, as stated above, the development in this area is largely incomplete.

Throughout the monograph, we have attempted to avoid using mathematical expressions and minute details of sophisticated theories in order to make the content accessible to a larger number of students and interested readers who are not professional researchers in the area. We believe that the properties of water are so interesting, especially given the uniqueness of the liquid, that many scientifically inclined people will find the subject fascinating. Although in some places detailed discussions have been included to give a flavor of the subject, we have attempted to keep them at a minimum. We also address, towards the end of the book, certain advanced topics of current research in water. They are not disjoint from the earlier chapters and substantiate our efforts to explain the uniqueness of water. But readers, if not interested in advanced topics, can avoid these chapters without much loss to the completeness.

Our focus on molecular explanations of the observed properties distinguishes the present monograph from the others existing in the literature. At the same time, this

Cambridge University Press & Assessment 978-1-107-03729-8 – Water in Biological and Chemical Processes **Biman Bagchi** Frontmatter More Information

Preface

approach also limits the range of topics that we could address here. But there are many excellent books/monographs on water which can supplement this lacuna.

Da Vinci called water "Natural vehicle of change". We attempt to show here that the detailed role of water in biological and chemical change can be fascinating and elusive at the same time. We hope this book (despite many lacunae) will be welcomed by students and scientists at large, especially because it documents some of the significant progress that has been made in the last few decades.

It is fitting to end the preface of this book on water with the following well-known quote of Mark Twain. "My books are like water; those of great geniuses are like wine. (Fortunately) everybody drinks water." I hope this book on water qualifies as Mark Twain's water.

xvii

Acknowledgements

Many people, particularly my students, present and past, have helped during the writing of this book. Without their support, this project would never have been complete. I am particularly thankful to Dr. Biman Jana, who started on this project with me and contributed significantly to the initial stages of development. Ms. Susmita Roy helped enormously in preparing the figures, reading the manuscript and correcting many errors, even adding paragraphs when needed. Mr. Saikat Banerjee and Dr. Mantu Santra helped in the writing of the hydrophobicity chapter. Mr. Rajib Biswas, Mr. Rakesh S. Singh, Ms. Sarmistha Sarkar, Mr. Milan Hazra, Mr. Rajesh Dutta, Ms. Rikhia Ghosh, Mr. Jonathan Furtado, Mr. Arpan Kundu, and Dr. Mantu Santra also read several of the chapters and offered corrections and modifications. Ms. Naina Vinayak helped in reproducing many figures. I am grateful to Professor Kankan Bhattacharyya for many discussions, suggestions, and encouragement. Professor Iwao Ohmine and Professor Graham Fleming have always been sources of encouragement in this long endeavor. Professor Shinji Saito has been an incredible source of information and strength – he helped with many figures that he generated from his own simulation data. Kaushik Bagchi offered valuable suggestions at critical stages and Kushal Bagchi read many pages. I am grateful to my wife, Ms. Sukla Das, for support and encouragement. I also thank my many students and collaborators who helped fashion my ideas and concepts in this rapidly developing subject.

xviii