
Cambridge University Press
978-1-107-03660-4 — Systematic Program Design
Yanhong Annie Liu
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1

Introduction

1.1 From clarity to efficiency: systematic program design

At the center of computer science, there are two major concerns of study: what

to compute, and how to compute efficiently. Problem solving involves going from

clear specifications for “what” to efficient implementations for “how”. Unfortu-

nately, there is generally a conflict between clarity and efficiency, because clear

specifications usually correspond to straightforward implementations, not at all

efficient, whereas efficient implementations are usually sophisticated, not at all

clear. What is needed is a general and systematic method to go from clear specifi-

cations to efficient implementations.

We give example problems from various application domains and discuss the

challenges that lead to the need for a general and systematic method. The exam-

ple problems are for database queries, hardware design, image processing, string

processing, graph analysis, security policy frameworks, program analysis and ver-

ification, and mining semi-structured data. The challenges are to ensure correct-

ness and efficiency of developed programs and to reduce costs of development

and maintenance.

Example problems and application domains

Database queries. Database queries matter to our everyday life, because databases

are used in many important day-to-day applications. Consider an example where

data about professors, courses, books, and students are stored, and we want to find

all professor-course pairs where the professor uses any of his own books as the

textbook for the course and any of his own students as the teaching assistant for

the course. It is not hard to see that similar queries can be used to detect fraud

in financial databases, find matches between providers and suppliers, and identify

1

www.cambridge.org/9781107036604
www.cambridge.org


Cambridge University Press
978-1-107-03660-4 — Systematic Program Design
Yanhong Annie Liu
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2 1 Introduction

rare correlations in data in general. If you care to know, the example query can

be expressed in the dominant database query language, SQL, as follows, where *

denotes everything about the matched data:

select * from professor, course

where professor.id = course.instructor

and exists (select * from book

where book.author = professor.name and

book.name = course.textbook)

and exists (select * from student

where student.advisor = professor.name and

student.teaching = course.id)

A straightforward computation would iterate through all professors and, for each

of them, check each course for whether the professor is the course instructor;

further, for each pair of professor and course found, it would check each book

for whether the author is the professor and the book is the course textbook, and

similarly check each student. This can take time proportional to the number of

professors times the number of courses times the sum of the numbers of books

and students. An efficient computation can use sophisticated techniques and take

only time proportional to the size of the data plus the number of answers. For

example, if there are 1,000 each of professors, courses, books, and students, then a

straightforward computation can take time on the order of 1, 000×1, 000×(1, 000+

1, 000), which is 2,000,000,000, whereas an efficient computation takes time on

the order of 4,000 plus the number of answers. How to design such an efficient

computation?

Hardware design. Hardware design requires efficiently implementing complex

operations in computer hardware using operations that already have efficient sup-

port in hardware. A good example is the square-root operation. A brute-force way

to compute the square root of a given number is to iterate through a range of pos-

sible numbers and find the one whose square equals the given number, where the

square operation uses multiplication, which has standard support in hardware. An

efficient implementation will not use squares or multiplications, but rather a so-

phisticated combination of additions and shifts, that is, doublings and halvings,

because the latter have much more efficient support in hardware. How to design

such efficient implementations?

Image processing. Image processing has a central problem, which is to process

the local neighborhood of every pixel in an image. A simple example is image

blurring. It computes the average of the m-by-m neighborhood of every pixel in

an n-by-n image. A straightforward way to compute the blurred image is to iterate

over each of the n
2 pixels, sum the values of the m

2 pixels in the neighborhood of

the pixel, and divide the sum by m
2. This takes time proportional to n

2
× m

2. A

well-known efficient algorithm computes the blurred image in time proportional

to n
2, by smartly doing only four additions or subtractions in place of summing

www.cambridge.org/9781107036604
www.cambridge.org


Cambridge University Press
978-1-107-03660-4 — Systematic Program Design
Yanhong Annie Liu
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.1 From clarity to efficiency: systematic program design 3

over m2 pixels in the neighborhood of each pixel, regardless of the size m
2 of the

neighborhood. How to derive such an efficient algorithm?

String processing. String processing is needed in many applications, from text

comparison to biological sequence analysis. A well-known problem is to compute

a longest common subsequence of two strings, where a subsequence of a string is

just the given string possibly with some elements left out. A straightforward way

to compute the solution can be written as a simple recursive function, but takes

time proportional to an exponential of the lengths of the two strings in the worst

case. An efficient algorithm for this problem tabulates solutions to subproblems

appropriately and takes time proportional to the product of the lengths of the two

strings in the worst case. How to design such efficient algorithms given recursive

functions for straightforward computations?

Graph analysis. Graph analysis underlies analyses of complex interrelated ob-

jects. A ubiquitous problem is graph reachability: given a set of edges, each going

from one vertex to another, and a set of vertices as sources, compute all vertices

reachable from the sources following the edges. Straightforwardly and declara-

tively, one can state two rules: if a vertex is a source, then it is reachable; if a

vertex is reachable, and there is an edge from it to another vertex, then this other

vertex is reachable also. An efficient algorithm requires programming a strategy

for traversing the graph and a mechanism for recording the visits, so that each

edge is visited only once, even if many edges can lead to a same edge and edges

can form cycles. How to arrive at such an efficient program from the rules?

Querying complex relationships. Querying about complex relationships, for-

mulated as database queries or graph queries, is essential not only for database

and Web applications but also for security policy analysis and enforcement, pro-

gram analysis and verification, data mining of semi-structured data, and many

other applications. In security policy frameworks, complex relationships need to

be captured for access control, trust management, and information flow analysis.

In program analysis and verification, flow and dependency relations among pro-

gram segments and values, and transitions among system states, are formulated

using many kinds of trees and graphs. For mining semi-structured data, which

form trees, segments of trees need to be related along the paths connecting them.

Challenges

The challenges are that, for real-world applications, computer programs need to

run correctly and efficiently, be developed quickly, and be easy to maintain, all at

low costs. Correctness requires that the developed programs satisfy the problem

specifications. Efficiency requires guarantees on fast running times and acceptable

space usages for the developed programs. Costs of development and maintenance

need to be minimized while achieving desired correctness and efficiency.

www.cambridge.org/9781107036604
www.cambridge.org


Cambridge University Press
978-1-107-03660-4 — Systematic Program Design
Yanhong Annie Liu
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

4 1 Introduction

Unfortunately, there are trade-offs and thus conflicts among correctness, effi-

ciency, and costs of development and maintenance. The central conflict, as in-

dicated through the example problems just described, is between the clarity and

efficiency of computer programs. A straightforward specification of a computa-

tion is clear, and thus is not only easier to be sure of correctness but also easier to

develop and maintain, but it tends to be extremely inefficient to execute. In con-

trast, an efficient implementation tends to be sophisticated and not at all clear, and

thus is much more difficult to verify for correctness and to develop and maintain.

Of course, there are other challenges besides the trade-offs. In particular, clear

specifications, capturing complete requirements of the problems, must be devel-

oped, either informally or formally, and efficient implementations, with full details

needed for program execution, must be produced at the end, either programmed

manually based on informal specifications or generated automatically from for-

mal specifications. We argue here that the ideal way to address all the challenges

is through development of clear high-level specifications and automatic generation

of efficient low-level implementations from the specifications.

Developing clear specifications. Formal specifications are much harder to de-

velop than informal specifications, but are substantially easier to develop,

maintain, and verify than efficient implementations. It would be a signif-

icant gain if efficient implementations can be generated automatically by

correctness-preserving transformations from formal specifications. How to

develop precise and formal specifications? Ideally, we would like to eas-

ily and clearly capture informal specifications stated in a natural language

in some suitable formal specification language. Practically, we will allow

straightforward ways of computations to be specified easily and clearly in

high-level programming languages.

Generating efficient implementations. Efficient implementations are much

harder to develop than specifications of straightforward computations, but

efficient implementations for individual problems are drastically easier to de-

velop than general methods for systematically deriving efficient implementa-

tions from specifications. One could perceive many commonalities in solving

very different individual problems. What could be a general and systematic

method? Such a method should use correctness-preserving transformations

starting from specifications. Despite that it must be general, that is, apply to

large classes of problems, and be systematic, that is, allow automated sup-

port, it must be able to introduce low-level processing strategies and storage

mechanisms that are specialized for individual problems.

Overall, we can see that a systematic design method for transforming clear specifi-

cations into efficient implementations is central for addressing all the challenges.

Clear specifications of straightforward computations, together with correctness-

www.cambridge.org/9781107036604
www.cambridge.org


Cambridge University Press
978-1-107-03660-4 — Systematic Program Design
Yanhong Annie Liu
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.2 Iterate, incrementalize, and implement 5

preserving transformations, make correctness verification substantially easier com-

pared with ad hoc implementations written by hand. Exact understanding of the

resulting algorithms and implementations derived using a systematic method is

key to providing time and space guarantees. Clear specifications of straightfor-

ward computations, plus automatic generation of efficient implementations based

on a systematic method, minimize development and maintenance costs.

The question is, then: does such a method exist? If yes, how general and system-

atic is it? In particular, can it solve all the example problems we have discussed,

and what other problems can it solve? If it is not yet general and systematic in the

absolute sense, that is, solving all problems, how will it grow? It is not hard to

see that, for such a method to exist and to grow, to solve increasingly more prob-

lems from different application domains, it must be rooted in rigorous scientific

principles.

Exercise 1.1 (Problem description) Describe a computation problem that is

interesting to you in any way. Can you describe what it is that should be computed

without stating how to compute it? That is, describe what is given as input and

what is asked as output, including any restrictions on the input and how the output

is related to the input, but not how to go from the input to the output.

1.2 Iterate, incrementalize, and implement

This book describes a general and systematic design and optimization method for

transforming clear specifications of straightforward computations into efficient

implementations of sophisticated algorithms. The method has three steps: Iterate,

Incrementalize, and Implement, called III for short.

1. Step Iterate determines a minimum input increment operation to take repeat-

edly, iteratively, to arrive at the desired program output.

2. Step Incrementalize makes expensive computations incremental in each itera-

tion by using and maintaining appropriate values from the previous iteration.

3. Step Implement designs appropriate data structures for efficiently storing and

accessing the values maintained for incremental computation.

We describe the essence of each step separately in what follows, especially how

they matter in the wide range of different programming paradigms with different

programming abstractions. We first introduce these paradigms and abstractions.

We then show that the III method applies uniformly, regardless of the program-

ming paradigms used; this starts with Step Incrementalize, the core of the method.

We finally discuss why the three steps together form a general and systematic

method for design and optimization.

www.cambridge.org/9781107036604
www.cambridge.org


Cambridge University Press
978-1-107-03660-4 — Systematic Program Design
Yanhong Annie Liu
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

6 1 Introduction

Programming paradigms and abstractions

We consider five main paradigms of programming: imperative programming,

database programming, functional programming, logic programming, and object-

oriented programming.

1. Imperative programming describes computation as commands that update

data storage; at the core are loops and arrays—commands for linearly re-

peated operations and consecutive slots for storing data.

2. Database programming expresses computation as queries on collections of

records in a database; at the core are set expressions—expressions for query-

ing sets of data.

3. Functional programming treats computation as evaluation of mathematical

functions; at the core are recursive functions—functions defined recursively

using themselves.

4. Logic programming specifies computation as inference of new facts from

given rules and facts using deductive reasoning; at the core are logic rules—

rules for logical inference.

5. Object-oriented programming describes computation as objects interacting

with each other; at the core are objects and classes—instances and their cat-

egories for encapsulating combinations of data and operations.

Languages for logic programming, database programming, and functional pro-

gramming are sometimes called declarative languages, which are languages that

specify more declaratively what to compute, in contrast to how to compute it.

Regardless of the paradigm, programming requires specifying data and control,

that is, what computations manipulate and how computations proceed, and orga-

nizing the specifications. This is done at different abstraction levels in different

paradigms.

1. Loops and arrays explicitly specify how data is represented and how control

flows during computations; they are not high-level abstractions for data or

control.

2. Set expressions support computations over sets of records used as high-level

data abstraction. This eliminates the need to explicitly specify data represen-

tations.

3. Recursive functions allow computations to follow recursive function defi-

nitions used as high-level control abstraction. This eliminates the need to

explicitly specify control flows.

4. Logic rules let sets of records be represented as predicates, and let predicates

be defined using recursive rules; they provide high-level abstractions for both

data and control.

www.cambridge.org/9781107036604
www.cambridge.org


Cambridge University Press
978-1-107-03660-4 — Systematic Program Design
Yanhong Annie Liu
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.2 Iterate, incrementalize, and implement 7

5. Objects and classes provide high-level module abstraction, which allows mod-

ules or components that encapsulate data and control to be composed to form

larger modules.

Uses of these language features are not exclusive of each other and could in fact

be supported in a single language; in current practice, however, there is not a

well-accepted language that supports them all, but many good languages support

subsets of them.

Incrementalize

We discuss Step Incrementalize first because it is the core of the III method. Ef-

ficient computations on nontrivial input must proceed repeatedly on input incre-

ment. Step Incrementalize makes the computation on each incremented input ef-

ficient by storing and reusing values computed on the previous input. Whether

problems are specified using loops and arrays, set expressions, recursive func-

tions, logic rules, or objects and classes, it is essential to make repeated expensive

computations incremental after the values that they depend on are updated.

More precisely, expensive computations include expensive array computations,

set query evaluations, recursive function calls, and logical fact deductions. Vari-

ables whose values are defined outside a computation and used in the computation

are called parameters of the computation, and any operation that sets the value of

a parameter is called an update to the value of the parameter. The values of param-

eters of expensive computations may be updated slightly in each iteration of the

enclosing computation. The goal of incrementalization is to incrementally main-

tain the results of expensive computations as the values of their parameters are

updated in each iteration, by storing and using the results from the previous it-

eration. This often incurs the need to store and use appropriate additional values

and maintain them incrementally as well in each iteration; this reflects a trade-off

between running time and space usage.

When objects and classes are used to provide module abstraction for large appli-

cations, expensive computations and updates to parameter values may be scattered

across classes, and thus we must also incrementalize across objects and classes.

This allows incrementalization to be used for scaled-up applications.

Iterate

Step Iterate is the first step of the III method, and determines how computations

should proceed. Even though it must be decided before incrementalization, it is

actually driven by incrementalization: the goal of incrementalization is to maxi-

mize reuse, and therefore a critical decision we make is to minimize the increment

in each iteration.

When straightforward computations are specified using loops over array com-

putations or over set expressions, the ways of iterating are already specified by

www.cambridge.org/9781107036604
www.cambridge.org


Cambridge University Press
978-1-107-03660-4 — Systematic Program Design
Yanhong Annie Liu
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

8 1 Introduction

the loops, and thus Step Iterate is not necessary. The ways of iterating specified

by the given loops often lead to desired efficient computations. However, they do

not always do so, and determining appropriate ways of iterating that are different

from the specified ways can be very difficult because it requires understanding at

a higher level what the given loops compute.

When straightforward computations are specified using general recursive func-

tions or logic rules, which provide high-level control abstraction, the ways of it-

erating are not specified, and thus Step Iterate is essential. In general, there can

be many ways of iterating given a recursive specification. Even with the goal of

minimizing the increment, there can be multiple ways that are incomparable with

each other. Different ways of iterating may impact both the running time of the

resulting computation and the space needed for storing values over the iterations.

Implement

Step Implement is the last step of the III method. It designs appropriate data struc-

tures. It first analyzes all data accesses needed by incremental computations and

then designs appropriate combinations of indexed and linked structures to make

the accesses efficient.

When straightforward computations are specified to process data in arrays and

recursive data types, it is easy to map these data representations directly on the un-

derlying machine, as indexed consecutive slots and tree-shaped linked structures,

respectively, and thus Step Implement is straightforward. These data represen-

tations are sufficient for efficient computations for many applications. However,

they are not always sufficient, and determining appropriate data representations

that are different from the specified ones can be very difficult because it requires

understanding at a higher level what the data representations represent.

When straightforward computations are specified using set expressions or logic

rules, which use sets and relations as high-level data abstractions, it is essential

to determine how sets and relations can be stored in the underlying hardware ma-

chines for efficient access. In general, this can be a sophisticated combination of

indexed and linked structures. There are also trade-offs between the times needed

for different accesses.

A general and systematic method

The III method is general and systematic for at least three reasons: (1) it is based

on languages, (2) it applies to a wide range of programming paradigms, and (3) it

is the discrete counterpart of differentiation and integration in calculus for contin-

uous domains.

The method is based on languages, meaning that the method consists of anal-

ysis and transformations for problems that are specified using the constructs of

www.cambridge.org/9781107036604
www.cambridge.org


Cambridge University Press
978-1-107-03660-4 — Systematic Program Design
Yanhong Annie Liu
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.2 Iterate, incrementalize, and implement 9

languages. This allows the method to apply to large classes of problems spec-

ified using the languages, not just some individual problems. It also allows the

method to be systematic by formulating the analysis and transformation proce-

dure precisely and completely. We will see that the III method can solve all the

example problems discussed earlier and many more that can be specified using

the languages we discuss. The higher-level the abstractions used in specifying the

problems are, the better the method works. For example, for problems specified

using rules in Datalog, the method can generate optimal implementations with

time and space guarantees.

The method applies to the wide range of programming paradigms discussed ear-

lier in this section, as summarized in Figure 1.1. The boxes indicate programming

paradigms by their essential language features in boldface; the steps in boldface

below the line indicate the essential steps for each paradigm. Arrows indicate es-

sential abstractions added to go from one box to another; they do not exclude,

for example, loops with sets in the “sets” box and recursion with arrays in the

“recursion” box. The gist of this diagram is the following:

• The core step, Step Incrementalize, is essential for all programming paradigms.

• Step Iterate is essential when high-level control abstraction is used.

• Step Implement is essential when high-level data abstraction is used.

• Doing Step Incrementalize across modules is essential when high-level mod-

ule abstraction is used.

We will see that the driving principles underlying the III method are captured

in step-by-step analysis and transformations for problems specified in all of the

paradigms. Indeed, the method can be fully automated given simple heuristics for

using algebraic laws to help determine minimum increments and reason about

equalities involving primitive operations; the method can also be used semiauto-

matically or manually.

The method is the discrete counterpart of differential and integral calculus for

design and optimization in continuous domains for engineering system design,

rooted rigorously in mathematics and used critically for sciences like physics. In

particular, incrementalization corresponds to differentiation of functions, iteration

corresponds to integration, and iterative incremental maintenance corresponds to

integration by differentiation. Minimizing iteration increments and maintaining

auxiliary values for incrementalization yields the kind of continuity that is needed

for differentiation in calculus. The extra concept of implementation is needed be-

cause we have to map the resulting computations in the discrete domains onto

computer hardware. Indeed, Step Iterate and Step Incrementalize are essentially

algorithm design, whereas Step Implement is essentially data structure design.

Overall, the III method unifies many ad hoc optimizations used in the imple-

mentations of languages and supports systematic design of algorithms and data

www.cambridge.org/9781107036604
www.cambridge.org


Cambridge University Press
978-1-107-03660-4 — Systematic Program Design
Yanhong Annie Liu
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

10 1 Introduction

loops and arrays

(no high-level abstraction)

Iterate

Incrementalize

Implement

sets

(high-level data abstraction)

Iterate

Incrementalize

Implement

data

abstraction

recursion

(high-level control abstraction)

Iterate

Incrementalize

Implement

control

abstraction

rules

(high-level data and

control abstraction)

Iterate

Incrementalize

Implement

control

abstraction

data

abstraction

objects and classes

(high-level module abstraction)

Iterate

Incrementalize

Implement

across modules

module

abstraction

module

abstraction

module

abstraction
module

abstraction

Figure 1.1 III method for different language abstractions.

www.cambridge.org/9781107036604
www.cambridge.org

