Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword, by Henk Barendregt</td>
<td>xiii</td>
</tr>
<tr>
<td>Preface</td>
<td>xv</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xxvii</td>
</tr>
<tr>
<td>Greek alphabet</td>
<td>xxviii</td>
</tr>
</tbody>
</table>

1 Untyped lambda calculus

1.1 Input–output behaviour of functions | 1
1.2 The essence of functions | 2
1.3 Lambda-terms | 4
1.4 Free and bound variables | 8
1.5 Alpha conversion | 9
1.6 Substitution | 11
1.7 Lambda-terms modulo α-equivalence | 14
1.8 Beta reduction | 16
1.9 Normal forms and confluence | 19
1.10 Fixed Point Theorem | 24
1.11 Conclusions | 26
1.12 Further reading | 27
Exercises | 29

2 Simply typed lambda calculus

2.1 Adding types | 33
2.2 Simple types | 34
2.3 Church-typing and Curry-typing | 36
2.4 Derivation rules for Church’s $\lambda\rightarrow$ | 39
2.5 Different formats for a derivation in $\lambda\rightarrow$ | 44
2.6 Kinds of problems to be solved in type theory | 46
2.7 Well-typedness in $\lambda\rightarrow$ | 47
2.8 Type Checking in $\lambda\rightarrow$ | 50
2.9 Term Finding in $\lambda\rightarrow$ | 51
2.10 General properties of $\lambda\to$ 53
2.11 Reduction and $\lambda\to$ 59
2.12 Consequences 63
2.13 Conclusions 64
2.14 Further reading 65
Exercises 66

3 Second order typed lambda calculus 69
3.1 Type-abstraction and type-application 69
3.2 Π-types 71
3.3 Second order abstraction and application rules 72
3.4 The system λ_2 73
3.5 Example of a derivation in λ_2 76
3.6 Properties of λ_2 78
3.7 Conclusions 80
3.8 Further reading 80
Exercises 82

4 Types dependent on types 85
4.1 Type constructors 85
4.2 Sort-rule and var-rule in $\lambda\omega$ 88
4.3 The weakening rule in $\lambda\omega$ 90
4.4 The formation rule in $\lambda\omega$ 93
4.5 Application and abstraction rules in $\lambda\omega$ 94
4.6 Shortened derivations 95
4.7 The conversion rule 97
4.8 Properties of $\lambda\omega$ 99
4.9 Conclusions 100
4.10 Further reading 100
Exercises 101

5 Types dependent on terms 103
5.1 The missing extension 103
5.2 Derivation rules of λP 105
5.3 An example derivation in λP 107
5.4 Minimal predicate logic in λP 109
5.5 Example of a logical derivation in λP 115
5.6 Conclusions 118
5.7 Further reading 119
Exercises 121

6 The Calculus of Constructions 123
6.1 The system λC 123
6.2 The λ-cube 125
Contents

6.3 Properties of λC 128
6.4 Conclusions 132
6.5 Further reading 133
Exercises 134

7 The encoding of logical notions in λC 137
7.1 Absurdity and negation in type theory 137
7.2 Conjunction and disjunction in type theory 139
7.3 An example of propositional logic in λC 144
7.4 Classical logic in λC 146
7.5 Predicate logic in λC 150
7.6 An example of predicate logic in λC 154
7.7 Conclusions 157
7.8 Further reading 159
Exercises 162

8 Definitions 165
8.1 The nature of definitions 165
8.2 Inductive and recursive definitions 167
8.3 The format of definitions 168
8.4 Instantiations of definitions 170
8.5 A formal format for definitions 172
8.6 Definitions depending on assumptions 174
8.7 Giving names to proofs 175
8.8 A general proof and a specialised version 178
8.9 Mathematical statements as formal definitions 180
8.10 Conclusions 182
8.11 Further reading 183
Exercises 185

9 Extension of λC with definitions 189
9.1 Extension of λC to the system λD_0 189
9.2 Judgements extended with definitions 190
9.3 The rule for adding a definition 192
9.4 The rule for instantiating a definition 193
9.5 Definition unfolding and δ-conversion 197
9.6 Examples of δ-conversion 200
9.7 The conversion rule extended with Δ 202
9.8 The derivation rules for λD_0 203
9.9 A closer look at the derivation rules of λD_0 204
9.10 Conclusions 206
9.11 Further reading 207
Exercises 208
Contents

10 **Rules and properties of \(\lambda D \)**
- 10.1 Descriptive versus primitive definitions 211
- 10.2 Axioms and axiomatic notions 212
- 10.3 Rules for primitive definitions 214
- 10.4 Properties of \(\lambda D \) 215
- 10.5 Normalisation and confluence in \(\lambda D \) 219
- 10.6 Conclusions 221
- 10.7 Further reading 221
Exercises 223

11 **Flag-style natural deduction in \(\lambda D \)**
- 11.1 Formal derivations in \(\lambda D \) 225
- 11.2 Comparing formal and flag-style \(\lambda D \) 228
- 11.3 Conventions about flag-style proofs in \(\lambda D \) 229
- 11.4 Introduction and elimination rules 232
- 11.5 Rules for constructive propositional logic 234
- 11.6 Examples of logical derivations in \(\lambda D \) 237
- 11.7 Suppressing unaltered parameter lists 239
- 11.8 Rules for classical propositional logic 240
- 11.9 Alternative natural deduction rules for \(\vee \) 243
- 11.10 Rules for constructive predicate logic 246
- 11.11 Rules for classical predicate logic 249
- 11.12 Conclusions 252
- 11.13 Further reading 253
Exercises 254

12 **Mathematics in \(\lambda D \): a first attempt**
- 12.1 An example to start with 257
- 12.2 Equality 259
- 12.3 The congruence property of equality 262
- 12.4 Orders 264
- 12.5 A proof about orders 266
- 12.6 Unique existence 268
- 12.7 The descriptor \(\iota \) 271
- 12.8 Conclusions 274
- 12.9 Further reading 275
Exercises 276

13 **Sets and subsets**
- 13.1 Dealing with subsets in \(\lambda D \) 279
- 13.2 Basic set-theoretic notions 282
- 13.3 Special subsets 287
- 13.4 Relations 288
<table>
<thead>
<tr>
<th>Contents</th>
<th>xi</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.5 Maps</td>
<td>291</td>
</tr>
<tr>
<td>13.6 Representation of mathematical notions</td>
<td>295</td>
</tr>
<tr>
<td>13.7 Conclusions</td>
<td>296</td>
</tr>
<tr>
<td>13.8 Further reading</td>
<td>297</td>
</tr>
<tr>
<td>Exercises</td>
<td>302</td>
</tr>
<tr>
<td>14 Numbers and arithmetic in λD</td>
<td>305</td>
</tr>
<tr>
<td>14.1 The Peano axioms for natural numbers</td>
<td>305</td>
</tr>
<tr>
<td>14.2 Introducing integers the axiomatic way</td>
<td>308</td>
</tr>
<tr>
<td>14.3 Basic properties of the ‘new’ \mathbb{N}</td>
<td>313</td>
</tr>
<tr>
<td>14.4 Integer addition</td>
<td>316</td>
</tr>
<tr>
<td>14.5 An example of a basic computation in λD</td>
<td>320</td>
</tr>
<tr>
<td>14.6 Arithmetical laws for addition</td>
<td>322</td>
</tr>
<tr>
<td>14.7 Closure under addition for natural and negative numbers</td>
<td>324</td>
</tr>
<tr>
<td>14.8 Integer subtraction</td>
<td>327</td>
</tr>
<tr>
<td>14.9 The opposite of an integer</td>
<td>330</td>
</tr>
<tr>
<td>14.10 Inequality relations on \mathbb{Z}</td>
<td>332</td>
</tr>
<tr>
<td>14.11 Multiplication of integers</td>
<td>335</td>
</tr>
<tr>
<td>14.12 Divisibility</td>
<td>338</td>
</tr>
<tr>
<td>14.13 Irrelevance of proof</td>
<td>340</td>
</tr>
<tr>
<td>14.14 Conclusions</td>
<td>341</td>
</tr>
<tr>
<td>14.15 Further reading</td>
<td>343</td>
</tr>
<tr>
<td>Exercises</td>
<td>344</td>
</tr>
<tr>
<td>15 An elaborated example</td>
<td>349</td>
</tr>
<tr>
<td>15.1 Formalising a proof of Bézout’s Lemma</td>
<td>349</td>
</tr>
<tr>
<td>15.2 Preparatory work</td>
<td>352</td>
</tr>
<tr>
<td>15.3 Part I of the proof of Bézout’s Lemma</td>
<td>354</td>
</tr>
<tr>
<td>15.4 Part II of the proof</td>
<td>357</td>
</tr>
<tr>
<td>15.5 Part III of the proof</td>
<td>360</td>
</tr>
<tr>
<td>15.6 The holes in the proof of Bézout’s Lemma</td>
<td>363</td>
</tr>
<tr>
<td>15.7 The Minimum Theorem for \mathbb{Z}</td>
<td>364</td>
</tr>
<tr>
<td>15.8 The Division Theorem</td>
<td>369</td>
</tr>
<tr>
<td>15.9 Conclusions</td>
<td>371</td>
</tr>
<tr>
<td>15.10 Further reading</td>
<td>373</td>
</tr>
<tr>
<td>Exercises</td>
<td>376</td>
</tr>
<tr>
<td>16 Further perspectives</td>
<td>379</td>
</tr>
<tr>
<td>16.1 Useful applications of λD</td>
<td>379</td>
</tr>
<tr>
<td>16.2 Proof assistants based on type theory</td>
<td>380</td>
</tr>
<tr>
<td>16.3 Future of the field</td>
<td>384</td>
</tr>
<tr>
<td>16.4 Conclusions</td>
<td>386</td>
</tr>
<tr>
<td>16.5 Further reading</td>
<td>387</td>
</tr>
</tbody>
</table>
Contents

Appendix A Logic in λD
- A.1 Constructive propositional logic 391
- A.2 Classical propositional logic 393
- A.3 Constructive predicate logic 395
- A.4 Classical predicate logic 396

Appendix B Arithmetical axioms, definitions and lemmas 397

Appendix C Two complete example proofs in λD
- C.1 Closure under addition in \mathbb{N} 403
- C.2 The Minimum Theorem 405

Appendix D Derivation rules for λD 409

References 411
Index of names 419
Index of definitions 421
Index of symbols 423
Index of subjects 425