
1

Untyped lambda calculus

1.1 Input–output behaviour of functions

Many functions can be described by some kind of expression, e.g. x2 + 1, that

tells us how, given an input value for x, one can calculate an output value.

In the present case this proceeds as follows: first determine the square of the

input value and consequently add 1 to this. The so-called ‘variable’ x acts as

an arbitrary (or abstract) input value. In a concrete case, for example when

using input value 3, one must replace x with 3 in the expression. Function

x2 + 1 then delivers the output value 32 + 1, which adds up to 10.

In order to emphasise the ‘abstract’ role of such a variable x in an expression

for a function, it is customary to use the special symbol λ: one adds λx in front

of the expression, followed by a dot as a separation marker. Hence, instead

of x2 + 1, one writes λx . x2 + 1, which means ‘the function mapping x to

x2 +1’. This notation expresses that x itself is not a concrete input value, but

an abstraction. As soon as a concrete input value comes in sight, e.g. 3, we

may give this as an argument to the function, thus making a start with the

calculation. Usually, one expresses this first stage by writing the input value,

embraced in a pair of parentheses, after the function: (λx . x2+1)(3). (Compare

with the case when one wishes to apply the function sin to argument π: this is

conveniently expressed as sin(π).)

In what follows, we will concentrate on the general behaviour of functions.

We will hardly ever take into account that we know how to ‘calculate’ in the

real world, for example that we can evaluate 32+1 to 10, and sin(π) to 0. Only

later will we consider well-known elementary functions such as addition or

multiplication of numbers, or call upon our knowledge about specific functions

such as square: our initial intention is to analyse functions from an abstract

point of view.

Our first attempts lead to a system called λ-calculus. This system encap-

sulates a formalisation of the basic aspects of functions, in particular their

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-03650-5 - Type Theory and Formal Proof: An Introduction
Rob Nederpelt and Herman Geuvers
Excerpt
More information

http://www.cambridge.org/9781107036505
http://www.cambridge.org
http://www.cambridge.org

2 Untyped lambda calculus

construction and their use. In the present chapter we do not yet consider

types, being an abstraction of the well-known process of ‘classifying’ entities

into greater units; for example, one may consider N as the type of all natural

numbers. So this chapter deals with the untyped λ-calculus . In all the follow-

ing chapters, however, we shall consider typed versions of λ-calculus, varying

in nature, which will end up in a system suitable for doing mathematics in a

formal manner.

1.2 The essence of functions

From the previous section we conclude that in dealing with functions there are

two construction principles and one evaluation rule.

The construction principles for functions are the following:

Abstraction: From an expression M and a variable x we can construct

a new expression: λx . M . We call this abstraction of x over M .

Application: From expressions M and N we can construct expression

M N . We call this application of M to N .

If necessary, some parentheses should be added during the construction pro-

cess.

Examples 1.2.1 − Abstraction of x over x2 + 1 gives λx . x2 + 1.

− Abstraction of y over λx . x − y gives λy . (λx . x − y), i.e. the function

mapping y to: λx . x− y (which is itself a function).

− Abstraction of y over 5 gives λy . 5, i.e. the function mapping y to 5 (other-

wise said: the ‘constant function’ with value 5).

− Application of λx . x2 + 1 to 3 gives (λx . x2 + 1)(3).

− Application of λx . x to λy . y gives (λx . x)(λy . y).

− Application of f to c gives fc. This can also be written, in a more familiar

way, as f(c), but this is not the style we use here.

Remarks 1.2.2 (1) A ‘free’ usage of these construction principles allows

expressions which do not have an obvious meaning, such as xx or y(λu . u). In

this chapter, we treat these kinds of constructs just like the others, not worrying

about their apparent lack of meaning.

(2) The function ‘square’ now looks as follows: λx . x2. The stand-alone

expression x2 is still available, but it is no longer a function, but an abstract

output value, viz. the square of (an unknown, but fixed) x. The difference is

subtle and may become clearer as follows: let’s assume that x ranges over N,

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-03650-5 - Type Theory and Formal Proof: An Introduction
Rob Nederpelt and Herman Geuvers
Excerpt
More information

http://www.cambridge.org/9781107036505
http://www.cambridge.org
http://www.cambridge.org

1.2 The essence of functions 3

the set of natural numbers. Then λx . x2 is a function, taking natural numbers

to natural numbers. But x2 is not: it represents a natural number.

(3) The λ is particularly suited for the description of ‘neat’ functions, which

can be described by a mathematical expression. It takes some effort to use the

λ-notation to describe functions with a slightly more complicated description,

such as, for example:

− the function ‘absolute value’ with definition:

x �→
{

x if x ≥ 0

−x if x < 0
,

− or the function on domain {0, 1, 2, 3} with codomain {0, 1, 2, 3} that is de-

scribed by: 0 �→ 2, 1 �→ 2, 2 �→ 1, 3 �→ 3 .

(In Exercise 1.14 we introduce an if-then-else function, which is helpful in such

cases.)

Next to the two construction principles described above, our intuitive func-

tion notion gives rise to a rule for the ‘evaluation’ of expressions. The formalisa-

tion of the function evaluation process is called ‘β-reduction’. (An explanation

for this name, and a precise definition, will be given in Section 1.8.)

This β-reduction makes use of substitution, formally expressed by means of

square brackets ‘[’ and ‘]’: the expression M [x := N] represents ‘M in which N

has been substituted for x ’. (Note, however, that substitution is more subtle

than one might expect. See Section 1.6 for a precise definition.)

β-reduction: An expression of the form (λx . M)N can be rewritten to

the expression M [x := N], i.e. the expression M in which every x has

been replaced with N . We call this process β-reduction of (λx . M)N to

M [x := N].

Examples 1.2.3 − (λx . x2+1)(3) reduces to (x2+1)[x := 3], which is 32+1.

− (λx . sin(x)− cos(x))(3 + 5) reduces to sin(3 + 5)− cos(3 + 5).

− (λy . 5)(3) reduces to 5[y := 3], which is 5.

− (λx . x)(λy . y) reduces to x[x := λy . y], which is λy . y.

Reduction is also possible on suitable parts of expressions: when an expres-

sion of the form (λx . M)N is a subexpression of a bigger one, then this subex-

pression may be rewritten to M [x := N], as described above, provided that

the rest of the expression is left unchanged. The full former expression (with

subexpression (λx . M)N) is then said to reduce to the full latter expression

(with subexpression M [x := N]).

The rules describing how reduction extends from subexpressions to bigger

ones are called the compatibility rules for reduction (see Definition 1.8.1).

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-03650-5 - Type Theory and Formal Proof: An Introduction
Rob Nederpelt and Herman Geuvers
Excerpt
More information

http://www.cambridge.org/9781107036505
http://www.cambridge.org
http://www.cambridge.org

4 Untyped lambda calculus

Example 1.2.4 By compatibility, λz . ((λx . x)(λy . y)) reduces to λz . (λy . y).

Remarks 1.2.5 We emphasise that the word ‘application’ is deceptive: ap-

plication of M to N is not the result of applying M to N , but only a first step

in this procedure: all we can say is that ‘application’ is the construction of a

new expression, MN , which, in a later stage, may perhaps lead to the actual

execution of a function. For example, the application of function λx .
√
x to 7

gives expression (λx .
√
x)(7), in which the function has not yet been executed.

It is only after the reduction of the latter term that we obtain the result of

‘application of the function to 7’, namely the ‘answer’
√
7.

The λ-notation is for functions of one variable. A function of two or more

variables does not fit in this notation. One could make the choice to extend

the notation for this purpose. For example, consider the function f of two

arguments, defined as f(x, y) = x2+y. We might express f as λ(x, y) . (x2+y),

with a pair as input. In this book, however, we will only consider functions

of one argument. From the following remark it follows that this is not a real

restriction.

Remark 1.2.6 The behaviour of a function of two (or more) arguments can

be simulated by converting it into a composite of functions of a single argument.

For example, instead of the two-place function λ(x, y) . (x2 + y) one can write

λx . (λy . (x2 + y)). The latter function is called the Curried version of the

former one, after the λ-calculus pioneer H.B. Curry; the idea of ‘Currying’

already can be found in the work of M. Schönfinkel (see Schönfinkel, 1924).

There are subtle differences between the two versions when we provide them

with two input values, for example:

– give f = λ(x, y) . (x2+ y) as argument the pair (3, 5), then f(3, 5) reduces to

32 + 5;

– similarly, we can give g = λx . (λy . (x2 + y)) these two arguments, but

only successively and in the ‘correct’ order, so first 3 and then 5; the result is

(g(3))(5), which reduces again to 32 + 5 (use the reduction rule twice).

By the way: with function g we have the liberty to give only one argument and

then stop the process: g(3) has a meaning in itself, it reduces to λy . (32 + y).

This is not possible with function f , which always needs a pair of arguments.

1.3 Lambda-terms

The main concern of the discipline called lambda calculus is the behaviour of

functions in the simplest, most abstract view. This means that we can even

do without numbers, and consequently we neither consider, for the time being,

the usual simple operations connected with numbers, such as addition and

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-03650-5 - Type Theory and Formal Proof: An Introduction
Rob Nederpelt and Herman Geuvers
Excerpt
More information

http://www.cambridge.org/9781107036505
http://www.cambridge.org
http://www.cambridge.org

1.3 Lambda-terms 5

multiplication, nor more complex ones: exponentiation, the sine. Hence, many

of the examples from the previous section are no longer useable.

What remains?

− To start with: variables (x, y, . . .).

− Moreover: the two construction principles mentioned in the previous section:

abstraction and application.

− Finally: the ‘calculation rule’ called β-reduction.

In the rest of this chapter, we introduce the untyped λ-calculus as a for-

mal system, giving precise definitions, including the important operations, and

stating the main properties. We omit most of the proofs, for which we refer

to the overview text of J.R. Hindley and J.P. Seldin (Hindley & Seldin, 2008)

or the seminal work on untyped λ-calculus by H.P. Barendregt (Barendregt,

1981).

Remark 1.3.1 Lambda calculus or λ-calculus was invented by A. Church in

the 1930s (Church, 1933). (It is not completely clear why he used the Greek

letter λ – which represents the letter l – for expressing abstraction; see Cardone

& Hindley, 2009, Section 4.1, for more details.) Church’s aim was to use his

lambda calculus as a foundation for a formal theory of mathematics, in order

to establish which functions are ‘computable’ by means of an algorithm (and

which are not). See also Section 1.12.

Expressions in the lambda calculus are called λ-terms. The following in-

ductive definition establishes how the set Λ of all λ-terms is constructed. To

start with, we assume the existence of an infinite set V of so-called variables:

V = {x, y, z, . . .}.

Definition 1.3.2 (The set Λ of all λ-terms)

(1) (Variable) If u ∈ V , then u ∈ Λ.

(2) (Application) If M and N ∈ Λ, then (MN) ∈ Λ.

(3) (Abstraction) If u ∈ V and M ∈ Λ, then (λu . M) ∈ Λ.

Saying that this is an inductive definition of Λ means that (1), (2) and (3)

are the only ways to construct elements of Λ.

An alternative and shorter manner to define Λ is via abstract syntax (or a

‘grammar’):

Λ = V |(ΛΛ)|(λV . Λ)

One should read this as follows: following the symbol ‘=’ one finds three pos-

sible ways of constructing elements of Λ. These three possibilities are separated

by the vertical bar ‘|’.
For example, the second one is (ΛΛ), which means the juxtaposition of an

element of Λ and an element of Λ, enclosed in parentheses, gives again an

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-03650-5 - Type Theory and Formal Proof: An Introduction
Rob Nederpelt and Herman Geuvers
Excerpt
More information

http://www.cambridge.org/9781107036505
http://www.cambridge.org
http://www.cambridge.org

6 Untyped lambda calculus

element of Λ. (Note that the two elements taken successively from Λ may be

the same element or different elements; both possibilities are covered by the

notation ΛΛ.) What we get in this manner is clearly the same as expressed in

Definition 1.3.2 (2).

Examples 1.3.3 Examples of λ-terms are:

− (with Variable as construction principle): x, y, z,

− (with Application as final construction step): (xx), (y x), (x(x z)),

− (with Abstraction as final step): (λx . (x z)), (λy . (λz . x)), (λx . (λx . (xx))),

− (and again, with Application as final step): ((λx . (x z)) y), (y (λx . (x z))),

((λx . x)(λx . x)).

Notation 1.3.4 (The representation of λ-terms; syntactical identity; ≡)
(1) We use the letters x, y, z and variants with subscripts and primes to denote

variables in V .

(2) To denote elements of Λ, we use L,M,N, P,Q,R and variants thereof.

(3) Syntactical identity of two λ-terms will be denoted with the symbol ≡.

So (x z) ≡ (x z), but (x z) �≡ (x y). Note that ‘M ≡ N ’ expresses that the

actual λ-terms represented by M and N are identical.

With the following recursive definition we determine what the subterms of a

given λ-term are; these form a multiset , since identical terms may occur more

than once (see examples later).

Definition 1.3.5 (Multiset of subterms; Sub)

(1) (Basis) Sub(x) = {x}, for each x ∈ V .

(2) (Application) Sub((MN)) = Sub(M) ∪ Sub(N) ∪ {(MN)}.
(3) (Abstraction) Sub((λx . M)) = Sub(M) ∪ {(λx . M)}.

We call L a subterm of M if L ∈ Sub(M).

From the above definition, the properties below follow.

Lemma 1.3.6 (1) (Reflexivity) For all λ-terms M , we have M ∈ Sub(M).

(2) (Transitivity) If L ∈ Sub(M) and M ∈ Sub(N), then L ∈ Sub(N).

Note that a certain λ-term can ‘occur’ several times as a subterm in a given

term. For example, with (xx) we have that x ∈ Sub((xx)) for two reasons:

the ‘first’ x in (xx) is a subterm and also the ‘second’ x is a subterm. In such

cases, one speaks about different occurrences of the subterm.

Examples 1.3.7 − The only subterm of y is y itself.

− The subterms of (x z) are (x z), x and z.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-03650-5 - Type Theory and Formal Proof: An Introduction
Rob Nederpelt and Herman Geuvers
Excerpt
More information

http://www.cambridge.org/9781107036505
http://www.cambridge.org
http://www.cambridge.org

1.3 Lambda-terms 7

− Similarly, the λ-term (λx . (xx)) has four subterms: (1) (λx . (xx)) itself;

(2) (xx); (3) the left x in (xx); and (4) the right x in (xx). Note that the

first occurrence of x in (λx . (xx)), the one immediately following the λ,

does not count as a subterm.

− Sub((λx . (xx))(λx . (xx))) consists of ((λx . (xx))(λx . (xx))), (λx . (xx))

(twice), (xx) (twice) and x (four times).

It is easy to find the subterms of a λ-term when this λ-term is given in tree

representation. We do not describe specifically how such a tree representation

can be constructed; an example should be enough. See Figure 1.1. The letter ‘a’

in this figure stands for ‘application’.

�

�

�

�
�

�
y

x z

x

a

a

λ�
�

�
��

�

�
�

Figure 1.1 The tree of (y (λx . (x z)))

A variable in a term M that immediately follows a λ symbol is drawn inside

the corresponding node in the tree. The subterms of a λ-term M correspond

to the subtrees in the tree representation of M . (We assume that the reader

is familiar with the notion ‘subtree’.) Check this in Figure 1.1. Note that the

labels of the leaves in such a tree are always variables. And the other way

round: a subterm consisting of a single variable corresponds to a labelled leaf.

(Remember that a variable placed ‘inside’ a node is not a subterm; cf. Exam-

ples 1.3.7.)

There is also a notion of proper subterm, which excludes the Reflexivity in

Lemma 1.3.6:

Definition 1.3.8 (Proper subterm)

L is a proper subterm of M if L is a subterm of M , but L �≡M .

Example 1.3.9 The proper subterms of (y(λx . (x z))) are: y, (λx . (x z)),

(x z), x and z.

Expressions constructed with Definition 1.3.2 have a lot of parentheses,

which hampers readability. In order to be able to save on parentheses, the

following conventions are followed:

Notation 1.3.10 − Parentheses in an outermost position may be omitted,

so MN stands for λ-term (MN) and λx . M for (λx . M).

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-03650-5 - Type Theory and Formal Proof: An Introduction
Rob Nederpelt and Herman Geuvers
Excerpt
More information

http://www.cambridge.org/9781107036505
http://www.cambridge.org
http://www.cambridge.org

8 Untyped lambda calculus

− Application is left-associative, so MNL is an abbreviation for ((MN)L).

− Application takes precedence over abstraction, so we can write λx . MN in-

stead of λx . (MN).

− Successive abstractions may be combined in a right-associative way under

one λ, so we write λxy . M instead of λx . (λy . M).

These conventions are very useful, but also treacherous. As an example,

note that λy . y (x y) should not be read as (λy . y)(x y), but as λy . (y(x y)).

Especially when substitution is involved (see Section 1.6), one must be careful.

1.4 Free and bound variables

Variable occurrences in a λ-term can be divided into three categories: free

occurrences, bound occurrences and binding occurrences.

The last-mentioned category is the easiest to describe: these are the occur-

rences immediately after a λ. Other occurrences of variables in a λ-term are

free or bound, which can be decided as follows.

In the construction of a λ-term from its parts (see Definition 1.3.2) we always

start (see step (1)) with single variables. These are then free. In building more

complicated terms via steps (2) and (3), it is only in the latter case that free-

ness may change: an occurrence of x which is free in M becomes bound in

λx . M . Otherwise said: abstraction of x over M binds all free occurrences of x

in M ; that is why the first x in λx . M is called a binding variable occurrence.

This discussion leads to the following recursive definition, in which FV (L)

denotes the set of free variables in λ-term L.

Definition 1.4.1 (FV, the set of free variables of a λ-term)

(1) (Variable) FV (x) = {x},
(2) (Application) FV (MN) = FV (M) ∪ FV (N),

(3) (Abstraction) FV (λx . M) = FV (M) \ {x}.

Examples 1.4.2

−FV (λx . x y) = FV (x y)\{x}
= (FV (x) ∪ FV (y))\{x}
= ({x} ∪ {y})\{x}
= {x, y}\{x}
= {y}.

−FV (x(λx . xy)) = {x, y}.

The last example demonstrates that Definition 1.4.1 collects the variables

which are free somewhere in a λ-term. However, other occurrences of that

variable in the same term may be bound. In the example term x(λx . x y), both

x and y occur free, but only the first occurrence of x is free, the occurrence of x

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-03650-5 - Type Theory and Formal Proof: An Introduction
Rob Nederpelt and Herman Geuvers
Excerpt
More information

http://www.cambridge.org/9781107036505
http://www.cambridge.org
http://www.cambridge.org

1.5 Alpha conversion 9

just before y is bound. (The occurrence of x after the λ is a binding occurrence,

being neither free nor bound.)

When inspecting the tree representation of a λ-term, it is easy to see whether

a certain occurrence of a variable is free or bound: start with a variable oc-

currence, say x, at a leaf of the tree. Now follow the ‘root path’ upwards, that

is: follow the branch from that leaf to the root (the uppermost node). If we

pass an ‘abstraction node’ with the same x inside, then the original x is bound;

otherwise it is free. Check these things for yourself with the tree representation

of the term x(λx . x y).

Ending this section, we define an important subset of the set of all λ-terms

by giving a name to terms without free variables:

Definition 1.4.3 (Closed λ-term; combinator; Λ0)

The λ-term M is closed if FV (M) = ∅. A closed λ-term is also called a

combinator . The set of all closed λ-terms is denoted by Λ0.

Example: λxyz . xxy and λxy . xxy are closed λ-terms; λx . xxy is not.

1.5 Alpha conversion

Functions in the λ-notation (see Section 1.2) have the property that the name

of the binding variable is not essential. The ‘square function’, for example,

can be expressed by λx . x2 as well as by λu . u2. In both cases the expression

means ‘the function which calculates the square of an input value and gives

the obtained number as its output value’. So the variable x (or u) serves as a

temporary name for the input value, only meant to make it possible to speak

about that value: the input called x gives output x2, which describes the same

procedure as ‘input u gives output u2’.

This is the reason why in the λ-calculus one is used to identify λ-terms which

only differ in the names of the binding variables (together with the variables

bound to them).

In order to describe this process formally, we define a relation called α-

conversion or α-equivalence. It is based on the possibility of renaming binding

(and bound) variables (cf. Hindley & Seldin, 2008, p. 278).

Definition 1.5.1 (Renaming; Mx→y; =α)

Let Mx→y denote the result of replacing every free occurrence of x in M by y.

The relation ‘renaming’, expressed with symbol =α, is defined as follows:

λx . M =α λy . Mx→y, provided that y �∈ FV (M) and y is not a binding

variable in M .

One says in this case: ‘λx . M has been renamed as λy . Mx→y’.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-03650-5 - Type Theory and Formal Proof: An Introduction
Rob Nederpelt and Herman Geuvers
Excerpt
More information

http://www.cambridge.org/9781107036505
http://www.cambridge.org
http://www.cambridge.org

10 Untyped lambda calculus

The intended effect is that the binding variable x in λx . M , plus all the

corresponding bound x’s occurring in M , are renamed as y. Note that the

mentioned bound x’s are precisely the free x’s in M .

Now, what about the two conditions in this definition?

(1) First condition: y �∈ FV (M). If there were a free y in M , then this y

becomes bound to the binding variable y in λy . Mx→y, which is not what we

want: renaming should not influence the free/bound status of variables.

Example: Take λx . M ≡ λx . y, so y ∈ FV (M). Then λy . Mx→y ≡ λy . y.

Now the same variable occurrence y is first free, and then bound, which con-

flicts with our intentions regarding ‘renaming’. Note that λx . y is essentially

different from λy . y: in the first expression, every input delivers the fixed out-

put y, while in the second case each input returns itself as output.

(2) Second condition: y is not a binding variable in M . If this were permitted,

then this binding y could unintentionally bind a ‘new’ y replacing an x.

Example: Take λx . M ≡ λx . λy . x; then λy . Mx→y ≡ λy . λy . y. In the

first expression, the final x is bound by the first λx; in the second expression,

the final y, replacing the x, is bound by the second λy. So again, renaming

would essentially change the situation. In terms of ‘behaviour’: originally, a first

input followed by a second input returns the first input; but after illegitimate

renaming, a first input followed by a second input returns the second input.

In short: in the renaming of λx . M to λy . Mx→y, it is prevented that the

‘new’ binding variable y binds ‘old’ free y’s; and that any ‘old’ binding y binds

a ‘new’ y.

Renaming in Definition 1.5.1 applies to the full λ-term only. In order to allow

it more generally, we extend this definition to the following one:

Definition 1.5.2 (α-conversion or α-equivalence, =α)

(1) (Renaming) λx . M =α λy . Mx→y as in Definition 1.5.1, under the same

conditions,

(2) (Compatibility) If M =α N , then ML =α NL, LM =α LN and, for

arbitrary z, λz . M =α λz . N ,

(3a) (Reflexivity) M =α M ,

(3b) (Symmetry) If M =α N then N =α M ,

(3c) (Transitivity) If both L =α M and M =α N , then L =α N .

So renaming, expressed in (1), is the basis of α-equivalence.

The compatibility rules (2) have the effect that one may also rename binding

and corresponding bound variables in an arbitrary subterm of a given λ-term.

Reflexivity (3a), symmetry (3b) and transitivity (3c) make α-conversion into

an equivalence relation.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-03650-5 - Type Theory and Formal Proof: An Introduction
Rob Nederpelt and Herman Geuvers
Excerpt
More information

http://www.cambridge.org/9781107036505
http://www.cambridge.org
http://www.cambridge.org

	http://www:
	cambridge:
	org:

	9781107036505:

