

Food System Sustainability

Insights from duALIne

As Western-style food systems extend further around the world, food sustainability is becoming an increasingly important issue. Such systems are not sustainable in terms of their consumption of resources, their impact on ecosystems or their effect on health and social equality.

From 2009 to 2011, the duALIne project, led by INRA and CIRAD, assembled a team of experts to investigate food systems downstream of the farm, from the farm gate to consumption. Representing a diverse range of backgrounds, spanning academia and the public and private sectors, the project aimed to review the international literature and to take account of the experts' own expertise to identify major gaps in our knowledge. This book brings together its key conclusions and insights, presents state-of-the-art research in food sustainability and identifies priority areas for further study. It will provide a valuable resource for researchers, decision-makers and stakeholders in the food industry.

CATHERINE ESNOUF is the Deputy Scientific Director for Food at INRA. She is the Head of a national research network that promotes research partnerships and industrial innovation on the sensory and nutritional quality of food.

MARIE RUSSEL is Research Engineer and a Scientific Project Manager at INRA. She uses interdisciplinary approaches involving food sciences and the humanities to investigate food patterns and preservation issues.

NICOLAS BRICAS is a Researcher at CIRAD who specialises in food security policies and projects. His main areas of research include the effects of urbanisation on food habits in Africa and Asia and the role of small-scale food processing in food security and poverty alleviation.

Food System Sustainability

Insights from duALIne

Edited by

CATHERINE ESNOUF
INRA, France
MARIE RUSSEL
INRA, France
NICOLAS BRICAS
CIRAD, France

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107036468

© Cambridge University Press 2013

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2013

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging in Publication data

Food system sustainability: insights from duALIne / edited by Catherine Esnouf, INRA, France, Marie Russel, INRA, France, Nicolas Bricas, CIRAD, France.

pages cm

ISBN 978-1-107-03646-8

1. Food industry and trade. 2. Sustainable development. I. Esnouf, Catherine, 1956– editor of compilation. II. Russel, Marie, editor of compilation. III. Bricas, N. (Nicolas), editor of compilation.

HD9000.5.F5995 2013

338.1 9-dc23

2012037614

ISBN 978-1-107-03646-8 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	rore	wora	1X
	Ackr	owledgements	xi
	Int	oduction	1
	Food	l in the context of sustainable development	1
	The	objective of duALIne (sustainability of food systems	
	face	d with new challenges)	2
	Scor	e of the project	2
	Orga	unisation of this book	3
1	Cor	itext: new challenges for food systems	5
	1.1	Demographics and uncertainties	5
	1.2	The challenge of global food security	7
	1.3	Climate change	12
	1.4	Impacts of food systems on the environment	14
	1.5	Limited resources: the energy challenge	17
	1.6	Nutritional trends (accelerated in emerging countries)	19
	1.7	The health challenge	20
	1.8	Increased circulation of goods and people	23
	1.9	Sustainability of the industrial economic model: the	
		vulnerability of low stock level systems	23
	1.10	A social challenge: the increasing concerns of food consumers	24
	1.11	Summary	25
2	Cor	sumption and consumers	27
	2.1	Characteristics of long-term dietary trends	27
	2.2	Convergence of food models	31
	2.3	Bio-physiological bases for the convergence of food models	36
	2.4	Impact of agricultural policies	43

vi Contents

	2.5	Changing trends and heterogeneity in consumption:			
		opportunities to control future changes?	44		
	2.6	Heterogeneity in consumption and nutritional inequalities	46		
	2.7	Questions for research	48		
3	Caı	bon footprint and nutritional quality of diets			
	in l	France	51		
	3.1	Introduction	51		
	3.2	Quantification of the carbon footprint of diets	53		
	3.3	The choices: carbon footprint and nutritional quality of food	60		
	3.4	Limitations of the study and outlook	64		
	3.5	Conclusion	66		
4	Foo	od systems	69		
	4.1	Introduction	69		
	4.2	Interconnections between food systems and energy and			
		chemical systems	72		
	4.3	The diversity of food systems: evolution and challenges for			
		sustainability	82		
	4.4	Questions for research	98		
5	Ind	ustrial organisation and sustainability	101		
	5.1	Some important features of changes in the industrial			
		food system	102		
	5.2	Consequences of the progress towards sustainability	104		
	5.3	Questions for research	108		
6	Urt	panisation and the sustainability of food systems	115		
	6.1	Sustainably feeding large cities: a major challenge	115		
	6.2	Urbanisation, food and sustainability: what are the challenges?	117		
	6.3	Questions for research	128		
7	Losses and wastage				
	7.1	Introduction	136		
	7.2	What is loss, and what is wastage?	138		
	7.3	Origins and location of losses and wastage in food systems	139		
	7.4	Poor quantification of losses and wastage, North and South	140		
	7.5	Lessons from the past, courses of action and strategic			
		orientations	146		
	7.6	Experimentation in Southern countries: models for the North?	153		
	7.7	Questions for research	154		
	7.8	Conclusions	157		

		Contents	vii
8	International trade, price volatility and standards		
Ü	for sustainability	158	
	8.1 Adjusting to the volatility of global prices	159	
	8.2 Management of food price volatility: policies and food		
	sustainability	164	
	8.3 Use of trade policies to cope with price volatility	166	
	8.4 Non-tariff barriers, standards for sustainability	170	
	8.5 Questions for research	172	
	8.6 Conclusion	175	
9	Elements for a foresight debate on food sustainabili	ty 176	
	9.1 Food systems evolving under the effects of various factors	177	
	9.2 Questions of sustainability according to food-eater categorie	es 184	
	9.3 Questions for research	194	
	9.4 Conclusion	197	
10	A critical panorama of methods used to assess food		
	sustainability		
	10.1 Introduction	198	
	10.2 Complexity of the 'food style' component within	130	
	an assessment framework	200	
	10.3 Defining the challenges of sustainability before choosing	200	
	the methods	200	
	10.4 Environmental, social, economic and nutritional methods		
	and indicators	207	
	10.5 Questions for research	222	
	10.6 Conclusion	225	
	Conclusion	233	
	Knowledge acquired and questions for research	233	
	A new look at the controversies	239	
	Which conceptual framework for research methods?	240	
	Viewpoints to be explored, gaps to be filled	242	
	What are the future prospects?	244	
	References	247	
	List of abbreviations	286	
	Organisations/affiliations of experts	286	
	Acronyms	287	
	Units	289	
	List of duALIne experts	290	
	Index	295	

Foreword

How will it be possible to feed the world in the demographic context of the twenty-first century?

The diversity of food systems throughout the world is a key element if we are to achieve this.

Little studied in terms of their sustainability, food systems have thus far been considered in terms of the challenges facing agriculture. 'Food sustainability' is unquestionably a major issue for the years to come. From the farm gate to the consumer's plate, these systems now need to be analysed in terms of their contribution towards the pillars of sustainability. However, it is clear that any debate today on this issue cannot be based on consolidated knowledge; research therefore has a major role to play in facing this challenge.

Foresight workshops were initiated in related fields in 2009 and 2010: one on the adaptation of agriculture to climate change (ADAGE) and the other on plant species and sustainable production systems for chemistry and energy (VegA).

Regarding food issues in the longer term, INRA and CIRAD jointly performed a foresight study on the possible futures of farming and food systems worldwide in 2050: the Agrimonde platform thus laid the foundations for agricultural research within a framework of sustainability. In the same vein, our two organisations decided to mobilise private sector and academic experts working in this area to study the trends affecting global food systems in terms of their effects on the environment, health, social equality and the economy.

Launched in November 2009 and completed in June 2011, this project, called duALIne, involved some 125 experts contributing to 10 working groups. Interworkshop seminars, two general assemblies and a public symposium to debate the preliminary findings marked different stages in the gradual integration of

x Foreword

the results. Work in progress was regularly reviewed by a Steering Committee composed of representatives of the different stakeholders (agricultural organisations, industry, the retail industry, environmental protection associations, consumer associations, national and international government representatives and qualified personalities).

We would like here to extend our sincere thanks to all the experts involved and to all members of the Steering Committee, for their participation, their contributions and their advice, all of which enabled us to complete this exercise. Its findings will be used to guide research by our organisations, and we hope that this project will also enable a broader mobilisation of the national and international community to ensure greater food sustainability for future generations.

Marion Guillou President of INRA Former President of Agreenium Gérard Matheron

President of CIRAD

Acknowledgements

The editors of *Food System Sustainability* thank the members of the Monitoring Committee for their involvement and guidance.

They also thank the librarians for their active support, and the authors, contributors and all the experts for their involvement during the 18 months of the duALIne project.