Contents

Preface page xvii
List of contributors xix
List of abbreviations xxix

Part I General concepts 1

1 Transmission lines and scattering parameters 3

Roger Pollard and Mohamed Sayed

1.1 Introduction 3

1.2 Fundamentals of transmission lines, models and equations 3

1.2.1 Introduction 3

1.2.2 Propagation and characteristic impedance 4

1.2.3 Terminations, reflection coefficient, SWR, return loss 7

1.2.4 Power transfer to load 8

1.3 Scattering parameters 8

1.4 Microwave directional coupler 11

1.4.1 General concepts 11

1.4.2 The reflectometer 12

1.5 Smith Chart 13

1.6 Conclusions 16

References 20

Appendix A Signal flow graphs 16

Appendix B Transmission lines types 18

2 Microwave interconnections, probing, and fixturing 21

Leonard Hayden

2.1 Introduction 21

2.2 Device boundaries and measurement reference planes 21

2.2.1 Devices 22

2.2.2 Transmission lines 22

2.2.3 Circuits 23
Contents

2.3 Signal-path fixture performance measures 24
 2.3.1 Delay 24
 2.3.2 Loss 24
 2.3.3 Mismatch 25
 2.3.4 Crosstalk 27
 2.3.5 Multiple-modes 28
 2.3.6 Electromagnetic discontinuity 29

2.4 Power-ground fixture performance measures 30
 2.4.1 Non-ideal power 30
 2.4.2 Non-ideal ground 32

2.5 Fixture loss performance and measurement accuracy 33

2.6 Microwave probing 34
 2.6.1 Probing system elements 35
 2.6.2 VNA calibration of a probing system 36
 2.6.3 Probing applications – in situ test 37
 2.6.4 Probing applications – transistor characterization 37

2.7 Conclusion 38

References 38

Part II Microwave instrumentation 39

3 Microwave synthesizers 41

Alexander Chenakin

3.1 Introduction 41

3.2 Synthesizer characteristics 41
 3.2.1 Frequency and timing 42
 3.2.2 Spectral purity 43
 3.2.3 Output power 47

3.3 Synthesizer architectures 47
 3.3.1 Direct analog synthesizers 47
 3.3.2 Direct digital synthesizers 50
 3.3.3 Indirect synthesizers 52
 3.3.4 Hybrid architectures 54

3.4 Signal generators 55
 3.4.1 Power calibration and control 55
 3.4.2 Frequency and power sweep 57
 3.4.3 Modulation 58

3.5 Conclusions 62

References 62
4 Real-time spectrum analysis and time-correlated measurements applied to nonlinear system characterization 64

Marcus Da Silva

4.1 Introduction 64

4.1.1 Types of spectrum analyzers 65

4.2 Spectrum analysis in real-time 68

4.2.1 Real-time criteria 69

4.2.2 Theoretical background 69

4.3 Spectrum analysis using discrete Fourier transforms 70

4.3.1 The Fourier transform for discrete-time signals 70

4.3.2 Regularly spaced sequential DFTs 71

4.4 Windowing and resolution bandwidth (RBW) 72

4.4.1 Windowing considerations 74

4.4.2 Resolution bandwidth (RBW) 75

4.5 Real-time specifications 76

4.5.1 Real-time criteria 76

4.5.2 Minimum event duration for 100% probability of intercept at the specified accuracy 76

4.5.3 Comparison with swept analyzers 78

4.5.4 Processing all information within a signal with no loss of information 80

4.5.5 Windowing and overlap 81

4.5.6 Sequential DFTs as a parallel bank of filters 83

4.5.7 Relating frame rate, frame overlap, and RBW 85

4.5.8 Criteria for processing all signals in the input waveform with no loss of information 85

4.6 Applications of real-time spectrum analysis 85

4.6.1 Displaying real-time spectrum analysis data 85

4.6.2 Digital persistence displays 86

4.6.3 The DPX spectrum display engine 86

4.7 Triggering in the frequency domain 88

4.7.1 Digital triggering 88

4.7.2 Triggering in systems with digital acquisition 89

4.7.3 RTSA trigger sources 90

4.7.4 Frequency mask trigger (FMT) 90

4.7.5 Frequency mask trigger time resolution and time alignment 91

4.7.6 Other real-time triggers 92

4.8 Application examples: using real-time technologies to solve nonlinear challenges 92

4.8.1 Discovering transient signals 92

4.8.2 Adjacent channel power (ACP) violation caused by power supply fluctuations 93

4.8.3 Software errors affecting RF performance 93
4.8.4 Memory effects in digitally pre-distorted (DPD) amplifiers 95

4.9 Conclusions 96

End Notes 96

References 97

5 Vector network analyzers 98

Mohamed Sayed and Jon Martens

5.1 Introduction 98

5.2 History of vector network analyzers 98

5.2.1 Pre-HP-8510 VNA – 1950–1984 98

5.2.2 HP-8510 VNA System – 1984–2001 99

5.2.3 Evolution of VNA to the Present – 2001–2012 101

5.3 Authors’ remarks and comments 101

5.4 RF and microwave VNA technology 101

5.4.1 Sources 103

5.4.2 Switches 107

5.4.3 Directional devices 109

5.4.4 Down-converters (RF portion of the receivers) 113

5.4.5 IF sections 117

5.4.6 System performance considerations 119

5.5 Measurement types in the VNA 121

5.5.1 Gain, attenuation, and distortion 121

5.5.2 Phase and group delay 121

5.5.3 Noise figure measurements 121

5.5.4 Pulsed RF measurements 121

5.5.5 Nonlinear measurements of active and passive devices 122

5.5.6 Multi-port and differential measurements 122

5.5.7 Load-pull and harmonic load-pull 122

5.5.8 Antenna measurements 122

5.5.9 Materials measurements 122

5.6 Device types for VNA measurements 123

5.6.1 Passive devices such as cables, connectors, adaptors, attenuators, and filters 123

5.6.2 Low power active devices such as low noise amplifiers, linear amplifiers, and buffer amplifiers 123

5.6.3 High power active devices such as base station amplifiers and narrow-band amplifiers 123

5.6.4 Frequency translation devices such as mixers, multipliers, up/down-converters and dividers 123

5.6.5 On-wafer measurements of the above devices 124

5.7 Improving VNA measurement range 125

5.7.1 Using a switch matrix box 125

5.7.2 Using multiple sources 125
5.7.3 Using reversing couplers 126
5.7.4 Using an external amplifier/attenuator 126
5.7.5 All-in-one VNA box 126
5.8 Practical tips for using VNAs 127
5.8.1 User training 127
5.8.2 Connector care 127
5.8.3 Temperature environment and stability 128
5.8.4 Measurement locations: production, development or research 128
5.9 Calibration and calibration kits 128
5.10 Conclusions 128
References 129

6 Microwave power measurements 130
Ronald Ginley
6.1 Introduction 130
6.1.1 Why power and not voltage and current? 131
6.2 Power basics, definitions, and terminology 131
6.2.1 Basic definitions 132
6.2.2 Different types of power measurements 132
6.3 Power detectors and instrumentation 136
6.3.1 Bolometric detectors 137
6.3.2 Thermoelectric detectors 138
6.3.3 Diode detectors 139
6.3.4 Power meters 142
6.3.5 Power measurements and frequency ranges 142
6.3.6 Power levels and detectors 143
6.4 Primary power standards 143
6.4.1 The microcalorimeter 145
6.4.2 The dry load calorimeter 146
6.4.3 Voltage and impedance technique 147
6.5 Basic power measurement techniques 148
6.5.1 Mismatch factor 149
6.5.2 Measuring power through an adapter 150
6.5.3 Power meter reference 151
6.6 Uncertainty considerations 151
6.6.1 Power meter uncertainty – uncertainty in P_{sub} 152
6.6.2 η_{Det} uncertainty 152
6.6.3 Mismatch uncertainty 152
6.6.4 Adapter uncertainty 153
6.6.5 Device repeatability 153
6.7 Examples 154
6.8 Conclusions 157
References 157
7 Modular systems for RF and microwave measurements

Jin Bains

7.1 Introduction

- 7.1.1 Virtual instrumentation
- 7.1.2 Instrumentation standards for modular instruments
- 7.1.3 PXI architecture
- 7.1.4 The role of graphical system design software
- 7.1.5 Architecture of RF modular instruments

7.2 Understanding software-designed systems

- 7.2.1 Measurement speed

7.3 Multi-channel measurement systems

- 7.3.1 Phase coherence and synchronization
- 7.3.2 MIMO
- 7.3.3 Direction finding
- 7.3.4 Phase array

7.4 Highly customized measurement systems

- 7.4.1 IQ data conditioning (flatness calibration)
- 7.4.2 Streaming
- 7.4.3 Integrating FPGA technology

7.5 Evolution of graphical system design

7.6 Summary

References

Part III Linear measurements

8 Two-port network analyzer calibration

Andrea Ferrero

8.1 Introduction

- 8.2 Error model
- 8.3 One-port calibration
- 8.4 Two-port VNA error model
- 8.5 Calibration procedures
- 8.6 Recent developments
- 8.7 Conclusion

References
9 Multiport and differential S-parameter measurements 219
Valeria Teppati and Andrea Ferrero

9.1 Introduction 219
9.2 Multiport S-parameters measurement methods 220
 9.2.1 Calibration of a complete reflectometer multiport VNA 221
 9.2.2 Calibration of a partial reflectometer multiport VNA 225
 9.2.3 Multiport measurement example 229
9.3 Mixed-mode S-parameter measurements 230
 9.3.1 Mixed-mode multiport measurement example 235

References 237

10 Noise figure characterization 240
Nerea Otegi, Juan-Mari Collantes, and Mohamed Sayed

10.1 Introduction 240
10.2 Noise figure fundamentals 241
 10.2.1 Basic definitions and concepts 241
 10.2.2 Two noise figure characterization concepts:
 Y-factor and cold-source 246
10.3 Y-factor technique 247
10.4 Cold-source technique 249
10.5 Common sources of error 251
 10.5.1 Mismatch 252
 10.5.2 Temperature effects 258
 10.5.3 Measurement setup 260
10.6 Noise figure characterization of mixers 265
 10.6.1 Noise figure definitions for frequency translating devices 266
 10.6.2 Obtaining the SSB noise figure from Y-factor and cold-source 270
10.7 Conclusion 274

References 275

11 TDR-based S-parameters 279
Peter J. Pupalaikis and Kavyesh Doshi

11.1 Introduction 279
11.2 TDR pulser/sampler architecture 279
11.3 TDR timebase architecture 282
11.4 TDR methods for determining wave direction 286
11.5 Basic method for TDR-based S-parameter measurement 290
11.6 Summary of key distinctions between TDR and VNA 293
11.7 Dynamic range calculations 294
11.8 Dynamic range implications 298
11.9 Systematic errors and uncertainty due to measurement noise
 in a network analyzer 300
 11.9.1 Error propagation for a one-port DUT 300

References 302
<table>
<thead>
<tr>
<th>13.5</th>
<th>Measuring the DUT single-frequency characteristics</th>
<th>359</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.5.1</td>
<td>Real-time vs. non-real-time load-pull measurements</td>
<td>360</td>
</tr>
<tr>
<td>13.5.2</td>
<td>Calibration of real-time systems</td>
<td>361</td>
</tr>
<tr>
<td>13.5.3</td>
<td>Mixed-mode, harmonic load-pull systems</td>
<td>365</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13.6</th>
<th>Measuring the DUT time domain waveforms</th>
<th>368</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.6.1</td>
<td>Load-pull waveform techniques in the time domain</td>
<td>368</td>
</tr>
<tr>
<td>13.6.2</td>
<td>Load-pull waveform techniques in the frequency domain</td>
<td>370</td>
</tr>
<tr>
<td>13.6.3</td>
<td>Other calibration approaches</td>
<td>373</td>
</tr>
<tr>
<td>13.6.4</td>
<td>Measurement examples</td>
<td>374</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13.7</th>
<th>Real-time source-pull techniques</th>
<th>375</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.8</td>
<td>Conclusions</td>
<td>378</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>379</td>
</tr>
</tbody>
</table>

14	Broadband large-signal measurements for linearity optimization	384
	Marco Spirito and Mauro Marchetti	
14.1	Introduction	384
14.2	Electrical delay in load-pull systems	385
14.3	Broadband load-pull architectures	386
14.3.1	Detection scheme	386
14.3.2	RF front-end	388
14.3.3	System calibration	392
14.4	Broadband loads	392
14.4.1	Closed-loop active loads	392
14.4.2	Mixed-signal active loads	395
14.5	System operating frequency and bandwidth	400
14.6	Injection power and load amplifier linearity	400
14.7	Baseband impedance control	403
14.8	Broadband large-signal measurement examples	405
14.8.1	IMD asymmetries measurements	405
14.8.2	Phase delay cancellation	407
14.8.3	High power measurements with modulated signals	408
	References	411

15	Pulse and RF measurement	414
	Anthony Parker	
15.1	Introduction	414
15.2	Dynamic characteristics	414
15.3	Large-signal isodynamic measurements	417
15.3.1	Measurement outside safe-operating areas	418
15.3.2	Pulsed-RF characteristics	418
15.4	Dynamic processes	418
15.4.1	Temperature and self-heating	419
15.4.2	Charge trapping	420
Contents

15.4.3 Impact ionization 422

15.5 Transient measurements 423
 15.5.1 Measurement of gate lag 423
 15.5.2 Time evolution characteristics 426

15.6 Pulsed measurement equipment 427
 15.6.1 System architecture 427
 15.6.2 Timing 430

15.7 Broadband RF linearity measurements 431
 15.7.1 Weakly nonlinear intermodulation 432
 15.7.2 Intermodulation from self-heating 433
 15.7.3 Measuring heating response 435
 15.7.4 Measuring charge trapping response 436
 15.7.5 Measurement of impact ionization 437

15.8 Further investigation 438

References 439

Index 442