The Structure of Spoken Language

Using an innovative approach, this book focuses on a widely debated area of phonetics and phonology: intonation, and specifically its relation to metrics, its interface with syntax, and whether it can be attributed more to phonetics or phonology, or equally to both. Drawing on data from six Romance languages (French, Italian, Spanish, Portuguese, Catalan, and Romanian), whose rich intonation patterns have long been of interest to linguists, Philippe Martin challenges the assumptions of traditional phonological approaches, and re-evaluates the data in favor of a new usage-based model of intonation. He proposes a unified description of the sentence prosodic structure, focusing on the dynamic and cognitive aspects of both production and perception of intonation in speech, leading to a unified grammar of Romance languages sentence intonation. This book will be welcomed by researchers and advanced students in phonetics and phonology.

PHILIPPE MARTIN is a Professor in the Linguistics Department at the Université Paris Diderot.

Cambridge University Press 978-1-107-03618-5 - The Structure of Spoken Language: Intonation in Romance Philippe Martin Frontmatter More information

The Structure of Spoken Language

Intonation in Romance

Philippe Martin

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107036185

© Philippe Martin 2015

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2015

Printed in the United Kingdom by TJ International Ltd. Padstow Cornwall

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data Martin, Philippe, 1944– author.

The structure of spoken language : intonation in Romance / Philippe Martin. pages cm

ISBN 978-1-107-03618-5 (hardback)

Romance languages – Phonetics – Intonation.
Romance languages – Phonology, Historical.
Romance languages – Phonology, Historical.
Romance languages.
Intonation (Phonetics)
Biolinguistics.
Title.
PC81.5.M27 2015
440'.0415–dc23

2015012063

ISBN 978-1-107-03618-5 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

List of figures and maps		page x
List of tables		xix
Preface		xxi
Ac	Acknowledgments	
Ke	Key concepts	
1	Introduction	1
	The respiratory cycle	1
	The source-filter model of phonation	3
	Emotions	5
	Voiced and unvoiced speech sounds	7
	Laryngeal frequency	7
	Fundamental frequency and melodic curve	7
	Intensity	9
	Spectrographic analysis	9
	Syllabic duration	10
	Syntax and prosody The precedie structure: the structure of speken language	11
	Stressed sullables	13
	Intonation and syntax	13
	Brain waves and prosody	14
	A Conernican change	15
	From laboratory to spontaneous speech	16
	Reading and listening	16
	Romance languages	17
2	The role of technological advances	20
	The kymograph	20
	The spectrograph	21
	Fundamental frequency tracking	23
	First results	23
	Electroencephalography and brain waves	27
	Transcription and alignment of speech	27
3	Transcription systems	29
	Acoustic and perceived data	30

v

vi Contents

	Obtaining data: pitch curves	30
	Selecting data	32
	Historical background	32
	The AMPER project	36
	The Prosogram	36
	ToBI	38
	INTSINT and Momel	40
	Analor	41
	Transcription as theory	42
	Perception and interpretation	43
	A phonological transcription system	44
4	The Autosegmental-Metrical Prosodic Structure	46
	A brief description	46
	Properties	48
	Applying the concept	51
	Questions and remarks	54
	The prosodic structure revisited	56
5	The Incremental Prosodic Structure	59
	Melodic curves	59
	The stress group	61
	The prosodic word	62
	Syllabic chunking	63
	The time dimension	64
	Conversion of syllabic chunks	65
	The syllable in the stress group	66
	The stress group in the sentence	68
	Classes of conclusive contours	68
	Basic modalities	68
	Modality variants	69
	Alternative questions	71
	Iconicity of conclusive contours	71
	Imperative contour	73
	Implicative contour	73
	Contour of surprise	74
	Contour of doubt	75
	The Incremental Prosodic Structure	76
	Independence	79
	Prosodic events	79
	Properties	81
	Prosodic phrasing	82
	Planarity	83
	Connexity	83
	Domain	84
	Neutralization	85
	Differentiation in the time domain	85
	Differentiation of prosodic events	86
	The dynamic prosodic structure	87

	Contents	vii
	The Incremental Storage-Concatenation process	88
	Preplanning	90
	Melodic contours features	90
	One prosodic word	91
	Two prosodic words	92
	Three prosodic words ended with C0	92
	Contrast of melodic slope	94
	Three prosodic words ended with C1	94
	Prosodic structure constraints	96
	The arc accentuel in French	96
	Stress clash	97
	Minimum duration of prosodic words	98
	Maximum duration of prosodic words	99
	Eurhythmy	101
	Word alignment	104
	Syntactic clash	105
	Experimental data	106
	Brain waves and prosodic structure	107
	Theta brain waves and the perception of syllables	107
	Delta brain waves and stressed syllables	108
	Delta brain waves frequency range	110
	Prosodic structure constraints and brain waves	111
	Stress groups and orain waves	113
	Constraints revisited	115
	A simple example: telephone numbers	115
6	Lexical stress in Romance languages	120
	Stress and accent	120
	Stress in various languages	121
	Stressed syllables in Latin	122
	Stressed syllables in Romance languages (other than French)	123
	Orthographic convention and homographs	124
	Rules for word stress placement	126
	A statistical approach	127
	A phonological-phonetic approach	127
	A phonological approach	128
	A morphophonetic approach	128
	A morphological approach	128
	French	130
	Secondary accent and arc accentuel	131
	The groupe de sens	131
	Stress variations in Romance languages	132
7	The Incremental Prosodic Structure in six Romance languages	133
	EuRom4 and EuRom5	134
	The process of reading	135
	Note on figures	136
	The Incremental Storage-Concatenation process	136
	The melodic contours of Romance languages	137

viii Contents

	Inventory	138
	Processing prosodic information	141
	Prosodic structures in Romance languages	144
	Identification of prosodic contours	144
	Complex contour	146
	Experimental data	148
	Sequences of two prosodic words	150
	Sequences of three prosodic words	160
	Sequences of four prosodic words and more	185
	Coordination, enumeration, parentnesis	192
	Enumeration	192
	Parenthesis	200
	An example of AM prosodic analysis in French	200
	An example of ISC prosodic processing in French	208
	Conclusion	212
0	Manager	214
8	Macrosyntax	214
	A first approach	215
	The theory of the line on its star	217
	The theory of <i>la lingua in atto</i>	220
	Merging text and intension	221
	Dysfluencies	222
	Ponctuants	224
	The prosodic eraser	226
	Use of dysfluencies	226
	Deletions	227
	Additions	228
	Text and prosodic macrosegments	230
	Examples of macrosyntactic analysis	232
	French	233
	Italian	241
	Portuguese	245
	Conclusion	248
9	Applications	249
	Teaching French prosodic structure	249
	Silent reading	252
	Eye movement	253
	Subvocalization	253
	Delta wave synchronization	255
10	Conclusion	256
	Quotes from Frédéric Dard (San Antonio)	256
11	WinPitch	250
11		239
	Sound recording made clear	259
	Sound and video	260
	mansemption and angiment on the ny	201

Contents	ix
Data mining for large speech corpora	262
Acoustic analysis	266
Prosodic morphing	270
Automatic segmentation	270
Interface with other software	270
References	272
Analyzed corpora	285
Author index	287
Subject index	290

List of figures and maps

Figures

1.1	Respiration cycle, without phonation (top) and with	•
	phonation (bottom)	page 2
1.2	An example of an out-of-breath speaker (NS), interrupting	
	the phonation process by pauses longer than usual	3
1.3	Source-filter model of phonation	4
1.4	Interactions in the source-filter model between phonation and emotions	4
1.5	Extreme cases of the emotion-phonology relationship:	
	emotion dominates phonology (extreme stress or anger), and	
	phonology dominates emotions	6
1.6	An example of melodic curve, interrupted at segments without	
	voicing (including pauses and silence), with the fundamental	
	frequency (top), intensity (middle) and wave (bottom) curves	8
1.7	Narrowband spectrogram to visualize harmonics	
	corresponding to the fundamental frequency curve	10
1.8	Staircase duration curves showing the evolution of syllabic	
	duration	11
1.9	Bézier duration curves showing the evolution of syllabic	
	duration	12
1.10	Map: Romance dialects	18
2.1	Rousselot kymograph	21
2.2	Measure of the laryngeal period, directly (top), or indirectly	
	from the duration of a packet of ten periods	22
2.3	Spectrogram printed on thermo-sensitive paper	22
2.4	The ten basic intonation patterns for French by Delattre (1966)	24
2.5	An example of analysis with the software Waves [™] of the	
	sentence Jim builds a big daisy-chain (from ToBI, 1999)	25
2.6	An example of a fundamental frequency curve with a wide	
	band spectrogram displayed underneath (from Delais-	
	Roussarie et al., 2015)	26

٦	7
1	٦

	List of figures and maps	xi
2.7	WinPitch display	26
3.1	Pitch curve using a linear scale in Hz	31
3.2	Melody example of perceived pitch curve transcribed on a musical range for English (Jones, 1909)	33
3.3	Musical transcription used by Fónagy and Magdics (1963) for English	33
3.4	Unstressed syllables, static tones, and contours for English (Armstrong & Ward, 1931)	34
3.5	Unstressed syllables, static tones, and contours for German (von Essen, 1956)	34
3.6	Stressed and final syllables pitch transcribed as static tones in English (Pike, 1945)	34
3.7	Melody contours of groups for English oral (Palmer & Blandford, 1924)	35
3.8	Melody movements by syllable for English (Bolinger, 1961)	35
3.9	Simplified musical range has four levels for French: 1 Low, 2 Average, 3 High, 4 Acute (Léon & Martin, 1969)	35
3.10	Example of comparison of melody movements on all the syllables of statement read by two speakers of the Valley of	•
3.11	Aoste Prosogram for the automatic determination of pitch starting from the syllabic segmentation and of the glissando threshold	36
	(Mertens, 2004)	37
3.12	Variations of rising melody contours transcribed with the ToBI notation	39
3.13	In the ToBI transcription, a high tone can correspond to a rising (on the left) or a falling contour (on the right)	40
3.14	An example of an intonative period boundary detection from the four parameters (from Lacheret-Dujour & Victorri, 2002)	42
4.1	An example of metrical grid	47
4.2	Degrees of stress obtained by counting the number of stress nodes	48
4.3	The (revised) Autosegmental-Metrical Prosodic Structure	51
5.1	Micromelodic fundamental frequency dips (circled) due to the presence of a voiced stop [d] in the sequence <i>actividades</i>	
<i>с</i> 0	denunciadas por Traffic	60
5.2	and <i>c'est mon papa</i> "this is my father")	67
5.3	Variants of modality melodic contours located on the last stressed syllable (declarative case) or the last syllable, stressed	
	or not (interrogative case)	70
5.4	Voulez-vous du thé du café ou du chocolat?	71

xii	List of figures and maps	
5.5	Voulez-vous du thé du café du chocolat?	71
5.6	Declarative vs. imperative conclusive melodic contours	73
5.7	Emphasis on a declarative contour gives an imperative	
	contour; emphasis on an interrogative contour gives a surprise	74
50	contour Implicative contour (avidence), a moderate rise followed by a	/4
5.8	large fall	74
5.9	Bell shaping on a declarative contour gives an evidence	, 1
	contour, and on an interrogative contour gives a doubt contour	75
5.10	Interrogative vs. surprise conclusive melodic contours	75
5.11	Implicative interrogative contour (doubt), a large rise followed	
	by a moderate fall	75
5.12	A non-planar partial structure [A [B] C], not well-formed for a	
	prosodic structure	83
5.13	A prosodic structure without connexity, well-formed for a	0.4
514	prosodic structure with non-integrated parentheses	84
5.14	A domain between two consecutive Co contours, where	
	with enough similarities	85
5.15	Three basic planar hierarchic configurations	93
5.16	Three basic prosodic hierarchical configurations	95
5.17	Prosodic word shortest duration in ms for various speech styles	
	(Martin, 2014b), political discourse, narrative, conference,	
	radio news, university lecture	99
5.18	A car license plate difficult to read	99
5.19	A telephone number difficult to read and to remember	99
5.20	Prosodic word longest duration in ms for various speech styles	1.00
5 0 1	(Martin, 2014b)	102
5.21	I wo ways to obtain eurnythmicity: balancing the number of sullables or verying the speech rate	102
5 22	Syllables of varying the speech fate	105
5.22	prosodic words	104
5.23	A phrasing non-congruent to syntax, involving a syntactic clash	106
5.24	Example of EEG spectral analysis (channel 28 or Pz) of evoked	
	potential for a stimulus of a sequence of pure tones with no	
	temporal structure	109
5.25	Example of EEG spectral analysis (channel 28 or Pz) of evoked	
	potential for a stimulus of a sequence of pure tones with a	
	temporal structure	109
5.26	EEG Theta waves synchronized by Delta pulses	111
5.27	I ne seven syllables constraint is actually a duration constraint,	114
	governed by Delta waves	114

	List of figures and maps	xiii
5.28	Delta waves synchronize the transfer of chunks of syllables from short-term memory	114
5.29	The eurhythmicity constraint is linked to the relative stability of consecutive periods of Delta waves	115
5.30	Chunks of syllables of more than four syllables must be	
	identified in long-term memory	115
5.31	A hierarchy which contradicts the graphic structure	118
5.32	A simple enumeration by juxtaposition of the three stress	
	groups	119
5.33	A structure corresponding to the usual graphic representation 522 4436	119
71	The process of reading schematized	136
7.2	Marking of stressed melodic contours and boundary tones	137
73	An example of a long enumeration made from a sequence of	107
7.5	groups of two prosodic words	140
7.4	Some examples of terminal conclusive contours in various	110
	regional realizations (Turin, Rome, Palermo, Naples, Florence)	141
7.5	An example of melodic contours sequence, showing the	
	contrast of melodic slope in French	142
7.6	<i>anticoncezio</i> na li	146
7.7	que hay una provoca ción a la discrimina ción	146
7.8	que componen Ma lá sia	147
7.9	nos estados u ni dos	147
7.10	prepozitio na la	147
7.11	An example of prosodic structure	150
7.12	L'i dé e était sim ple	151
7.13	L'i de a era sem plice	151
7.14	La i de a era sim ple	152
7.15	La i dea era <mark>sim</mark> ple	152
7.16	A i dei a era <u>sim</u> ples	153
7.17	Id <u>ee</u> a era <u>sim</u> plă	153
7.18	In pe <u>ri</u> colo <u>poi</u>	154
7.19	<u>cuan</u> do se cons <u>ta</u> te	154
7.20	apeli <u>da</u> do de <u>Ós</u> car	155
7.21	<u>Com</u> les for <u>mi</u> gues	155
7.22	La più gran de delle pi ro ghe mi <u>su</u> ra <u>cin</u> que <u>me</u> tri	156
7.23	Sigui <u>en</u> do Cn este mo <u>de</u> lo	156
7.24	Se gun do a especia <u>lis</u> ta	157
7.25	na ci <u>da</u> de de <u>York</u>	157
7.26	Nas <u>ci</u> do no Ja pão	158
7.27	les gar çons de <u>pist</u> e	158
7.28	La plus grand e des pi rogu es me sur e cinq mètr es	159

xiv	List of figures and maps	
7.29	mais les scienti fiqu es japo nais	159
7.30	La cui ne ra de Sant Pol de Mar	160
7.31	Configuration I, Cx Cx C0	161
7.32	Les ro mans ont un dé but et une fin	161
7.33	on rend cette interdic tion stricte ment ineffi cac e	162
7.34	Configuration I, Cx Cx C1	162
7.35	ain si sa nouvelle gamm e de combi <u>nés</u> présentés lun di	163
7.36	A saturation of melodic contrasts in the long syntagm	
	anniver <u>sair</u> e de la <u>mort</u> au com <u>bat</u> en dix-sept cent dix- <u>huit</u> du	
	<u>roi</u> Charles <u>Douze</u>	163
7.37	Configuration II, Configuration II Cy Cx C0	164
7.38	de se liv <u>rer</u> à des affronte <u>ments</u> en <u>règl</u> e	164
7.39	cette mala <u>die</u> est deve <u>nue</u> une patholo gie chan geant e et	
	multi <mark>form</mark> e	165
7.40	Configuration II, Cy Cx C1	165
7.41	C'est au tra <u>vers</u> de cette rela <u>tion</u> qu'il instaure <u>ra</u> à ces deux	
	per <u>sonn</u> es	166
7.42	Configuration III, Cx Cy C0	166
7.43	Cer <u>tains</u> de ces bâti <u>ments</u> préfabri <u>qués</u> se sont révé <u>lés</u>	
	dange <u>reux</u>	167
7.44	Neuf cents policiers n'ont pu, cepen <u>dant</u> , empê <u>cher</u> les	
	ba garr es recher <u>chées</u> de part et d' <u>autr</u> e	167
7.45	Configuration III, Cx Cy C1	168
7.46	A saturation of melodic contrasts in the long syntagm	
	anniver <u>sair</u> e de la <u>mort</u> au com <u>bat</u> en dix-sept cent dix- <u>huit</u> du	
	<u>roi</u> Charles <u>Douze</u>	168
7.47	Configuration I, Cx Cx C0	169
7.48	<u>B</u> , antipa <u>ra</u> siti <u>C</u> anticoncezio <u>na</u> li	169
7.49	I ro <u>man</u> zi hanno un i <u>ni</u> zio e una <u>f</u> ine	170
7.50	Los ro <u>man</u> ces tienen un i <u>ni</u> cio y un <u>fin</u>	170
7.51	Els ro <u>man</u> ços tenen un i <u>ni</u> ci i un fi <u>nal</u>	171
7.52	Os ro <u>man</u> ces têm um i <u>ní</u> cio e um <u>fim</u>	171
7.53	A <u>vião</u> de pa <u>pel</u> no Es <u>pa</u> ço	172
7.54	Configuration I, Cx Cx Cc	172
7.55	Um <u>cão</u> de <u>ra</u> ça terra <u>no</u> va	173
7.56	é permi <u>ti</u> do ma <u>tar</u> um esco <u>cês</u>	173
7.57	Os <u>ví</u> deos <u>so</u> bre Cn activi <u>da</u> des paranor <u>mais</u>	174
7.58	La recomenda <u>ción</u> plan te a a los Es ta dos	174
7.59	Miș <u>ca</u> rea separa <u>tis</u> tă <u>bas</u> că a co <u>mis</u> noi aten <u>ta</u> te	175
7.60	i des prés que el ve <u>dell</u> ata <u>qués</u> un dels <u>hom</u> es que el vo <u>li</u> a	
	lligar	175
7.61	Configuration, I Cx Cx C1	176

CAMBRIDGE

	List of figures and maps	XV
7.62	A es col ha da ca rrei ra profissio nal	176
7.63	Configuration II, Cy Cx C0	177
7.64	in co ppie nelle quali il pa dre è sieroposi ti vo	177
7.65	sarà arruo la to dai carabi nie ri e addes tra to	178
7.66	probabil men te sfu ggi to al con tro llo del pa dro ne	178
7.67	Aceasta este o dilemă insolubilă	179
7.68	Configuration II, Cy Cx Cc	179
7.69	Situația periferică a Portugaliei o menține într-o poziție	
	marginală în raport cu fluxurile din Est	180
7.70	i des prés que el ve dell ata qués un dels homes que el volia	
	lligar	180
7.71	Unele dintre a ces te clă dir i prefabri ca te s-au dove dit	
	pericu loa se	181
7.72	Configuration III, Cx Cy C0	181
7.73	Romanele Cc au un început C1 si un sfârsit	182
7.74	A lar mă la scoa la bri ta nică	182
7.75	Configuration III, Cx Cy Cc	183
7.76	che trasferirsi in USA	183
7.77	Pocs minuts després de les set de la tarda, el vedell	184
7.78	probabil men te sfu ggi to al controllo del padrone	184
7.79	Un grup de cercetători germani a rezolvat enigma	185
7.80	les méde cins de l'Acadé mie des scienc es médi cal es	186
7.81	El cata lán es la o chen ta y o cho len gua del mun do	186
7.82	L'aca dè mia de la llen gua cata la na l'Insti tut d'Es tu dis	
	Catalans IEC	187
7.83	Le pro gramm e de re cherch e a débu té en deux mille deux	187
7.84	Poche zampa te per atti ra re l'atten zio ne del pian to ne del	
	comando provinciale dei carabinieri	188
7.85	Una nuo va e diver ten te gin nas tica con la pa lla	189
7.86	es necesario alfabetizar a cuatro millones de personas	
	cada a ño	189
7.87	La resolu ción pro po ne que se pon gan en mar cha disposi ti vos	
	nacionales de autocontrol	190
7.88	Ai xí abans que a ca biel dos mil vuit	190
7.89	Com cerca de sete centímetros de comprimento	191
7.90	In Ger ma nia vio len ța ra sis tă a de pă șit li mita	191
7.91	je vous su ggèr e d'insta ller des vo let s des ri deaux et des	
	voilages	193
7.92	je vous con <u>seill</u> e d'étu dier le néerlan dais le da nois et le	
	norvé gien	193
7.93	Ja mais Barna <u>bé</u> Jean-Da <u>vid</u> ni Mamadou ne seraient prêts à	
	venir travai <mark>ller</mark> le same di	194

7.94	Le mu <u>ret</u> le donj <u>on</u> et l'église sont de style ro <u>man</u>	194
7.95	Two possible hierarchical configurations [ABC] and [[A] [B]	
	[C]] for postverbal accentual units, resulting in sequences	
	similar contours rising, rising, falling	195
7.96	Different groupings coordinated units A, B, and C [ABC] and	
	[[A] [B] [C]] resulting in different sequences of melodic	
	contours, falling, falling, rising or rising, rising, and rising in	
	the preverbal case	195
7.97	le vé <u>lo</u> le ro <mark>ller</mark> ou l'avi ron com ptent parmi les activi tés	
	popu <mark>lair</mark> es sur le cam pus	196
7.98	le mu ret le don jon et l'église sont de style roman in which the	
	coordinate units are subject of the Verb Phrase sont de style	
	roman	196
7.99	A parallel realization where the first stress groups are	
	coordinated with the conjunction <i>ni</i> , associated in each case	
	with an emphatic accent	198
7.100	On peut livrer le lavabo la baignoire ou l'évier sans acompte	
	de votre part	198
7.101	Enumeration in Italian of numbers (1.46, 1.47, 1.44, 2.78,	
	2.41), sequence of Cc contours ending each prosodic group,	
	terminated by C0 conclusive on the last item (giorni)	199
7.102	[<u>B</u> C2 antiparasiti Cc] [C C2 anticoncezionali Cc] [M	
	Cc antilopi C0]] Primo Levi enumeration C2 Cc, C2 Cc	
	Cc C0	199
7.103	Uma e qui pa de cien tis tas do insti tu to de reabilita ção de	
	Chi <u>ca</u> go	199
7.104	Il fatto che , in quel m on do, gli uo mini	200
7.105	<u>che</u> trasfe rir si in <u>USA</u>	201
7.106	per <mark>mi</mark> ttan una utiliza ción más se gu ra de al go que ,	
	evidente men te	201
7.107	An <u>co</u> ra i giappo ne si, per contro hanno la più alta incidenza	
	mondiale	202
7.108	Le <u>don</u> ne giappo <u>ne</u> si, per e <u>sem</u> pio, <u>ha</u> nno un'incidenza di	
	tu mo ri alla mam <u>me</u> lla	203
7.109	Le coléreux garçon ment à sa mère (from Jun & Fougeron,	
	2002)	204
7.110	le coléreux et mauvais garçon ment à sa mère (from Jun &	
	Fougeron, 2002)	205
7.111	A counterexample le garçon coléreux ment à sa mère (from	
	Jun & Fougeron, 2002)	206
7.112	Ou le don <u>jon</u> ou le mina <u>ret</u> ou les mu <u>rail</u> les doivent <u>êtr</u> e	
	restau rés	207

	List of figures and maps	xvii
7.113	Identification of prosodic events	209
7.114	Classification of prosodic events	209
7.115	Retrieving the prosodic structure	210
8.1	Macrosyntactic analysis of text and intonation	223
8.2	Adding a corrective syntagm after the nucleus: [en Angle <u>terre</u>	
	dans le m <u>étro</u>] nucleus	229
8.3	Adding syntactic segment to the prenucleus [mes parents]	
	m'emme <u>naient</u>	229
8.4	[Je confirme que le premier ministre Elio Di Rupo m'a parlé	
	<i>de cette situation et euh de l'inquiétude des brasseurs</i>] CI	
	[belges] CI [par rapport à ce qu'était la consommation	•••
	française]	230
8.5	Melodic curve with the pitch movements on stressed syllables	
0.6	circled	234
8.6	The ISC schema of the example Les vieux graphistes ou	
	les anciens je devrais dire graphistes pas les vieux	
	quelquefois lorsqu'ils voient les mises en page de certaines	
	revues ou de certains journaux ils se mettent les mains sur	226
0.1	la tete	236
9.1	variants of conclusive contours: declarative, imperative,	250
0.2	Implicative, interrogative, surprise, doubt	250
9.2	I hree prosodic structures organizing a sequence of three	251
11 1	Stress groups	251
11.1	windows	260
11.2	Wildows	200
11.2	Example of video analysis	201
11.5	Assisted anglinent by slowing down speech playback	202
11.4	Automatic IPA transcription from orthographic text and	262
115	Fina tuning of speech cogmonts limits with the help of a	205
11.5	simultaneously displayed spectrogram	262
11.6	Automatic segmentation from spectrographic transitions	203
11.0	Retch processing of a large set of conjunctions obtained	204
11./	from a concordance analyzer with their left and right	
	contexts	265
11 0	Entering the key word " <i>narce que</i> " and selecting a	205
11.0	Transcriber file	266
11.9	Table generated automatically listing the occurrences of the	200
11.)	entered keyword	267
11 10	Automatic generation of text from alignment files and	207
11.10	selection of the entered key word	267
	Selection of the entered key word	207

xviii List of figures and maps

11.11	Command window displaying the available pitch tracking algorithms that can be used on any user selected sections of	
	the speech recording	268
11.12	Most common sources of errors for F0 tracking	269

List of tables

5.1	Variants of modality	page 69
5.2	Phonological description of modality variants using the	
	features +/- Rising, +/- Ample, and +/- Bell shaped	70
5.3	Phonological description of modality contours	91
5.4	System of contrasts Cx C0	92
5.5	System of contrasts Cx C1 C0	93
5.6	System of contrasts C1 Cx C0	94
5.7	System of contrasts Cx Cx C1	94
5.8	System of contrasts Cy Cx C1	95
5.9	System of contrasts Cx Cy C1	95
7.1	Processing the prosodic events Cn, C2, C1 and C0 in the	
	example of Figure 7.5	143
7.2	Static phonological description of romance languages	
	melodic contours	148
7.3	Configurations of three successive melodic contours	149
7.4	Percentage of realizations according to the coordination type	195
7.5	Sequence of prosodic events triggering the storage-	
	concatenation process	211
8.1	Gars and Lablita equivalence	220
8.2	Utterance segmentation into prosodic words indicating	
	the melodic contours on the last stressed syllable and the	
	type of contour in the process of storage-concatenation	236

Cambridge University Press 978-1-107-03618-5 - The Structure of Spoken Language: Intonation in Romance Philippe Martin Frontmatter More information

Preface

This book is the culmination of some forty-five years of personal research on intonation. When I first went to Canada in 1968, I had the rare and precious opportunity to be hired by Pierre Léon (1926-2013), then a young and enthusiastic phonetician, who was eager to carry out research on all possible aspects of intonation, in didactics, phonostylistics, and phonology, Being a young graduate in electronic engineering, I was given as a first task the job of developing an acoustic instrument capable of measuring in real time the fundamental frequency of speech (an acoustic measure of vocal folds vibration frequency). Being quite new to the field, I thought this assignment would be easy to complete in some two or three weeks! I realize today, after all these years, that despite the considerable progress that has been made, the question of fundamental frequency tracking has still not been completely solved. In fact, new generations of young specialists in speech signal analysis are regularly tackling the problem, only to discover that even though systems are becoming more reliable, there is always room for improvement. The grail in the field would be the availability of an algorithm which would give reliable results for all cases of speech recording conditions, or at least all cases where a human listener can perceive the melodic variations resulting from fundamental frequency change.

Nevertheless, I had no fear at that time, especially as I had received a brand new PDP 8/I for my exclusive usage (the PDP 8/I was at that time a revolutionary laboratory computer with 8 kBytes central memory and a 32 kBytes hard disk). I spent all my work and leisure time developing a hybrid analog-digital system, capable of delivering in real time a fundamental frequency curve with an extended range (70 Hz to 500 Hz). The curve was displayed on a high remanence oscilloscope screen and filmed on a large TV screen. At a time when all intonation acoustical data were obtained either with a spectrograph (limited to 2.4 second analysis and requiring 3 to 5 minutes of processing, not to mention the necessary and tedious manual setup) or with a mingograph (hooked to a not too reliable voice filter operating in a limited frequency range and requiring an expensive roll of ink or UV photographic paper to print the results), this was an important achievement which had direct consequences for my own prosodic research.

xxi

xxii Preface

Indeed, I was then able to process a very large amount of data, essentially in French, sometimes playing with the intonation of my own voice and getting the resulting melodic curves immediately, and was curious to see if some pattern would emerge from all these trials. In the late months of 1973, I finally got an idea pertaining to the frequently observed regularity of F0 patterns, an idea that I formalized with the term *contraste de pente* (contrast of melodic slope) in French, and published in the review *Linguistics* in 1975 (Martin, 1973, 1975). At the same time, I coined the terms *structure prosodique* and *hiérarchie prosodique* (prosodic hierarchy and prosodic structure) to name a hierarchical organization of minimal prosodic units or prosodic words, containing one and only one prosodic event indicating this hierarchy. Although referring to the same kind of experimental data in French, papers published at that time (e.g. Vaissière, 1975; Émerard, 1977) were phonetically rather than phonologically oriented but brought comparable data.

To my regret, my *Linguistics* paper had almost no impact on the research domain in prosody, except in France. Only five years later, however, papers using the term prosodic structure appeared, but unfortunately without ever mentioning my earlier work. Later, speech analysis computer software became popular (Signalyze, WinPitch, Praat, and so on), and phonologists (essentially based in US universities) were happy to discover a new playground. To differentiate their activity from that of the phoneticians, who were not considered seriously by linguists at the time, and to avoid being confused with them, they called it "laboratory phonology," which corresponds to what most phoneticians have actually been doing for a century or more.

The purpose of this monograph is to present an alternative theoretical approach that attempts to describe and understand the prosodic organization of sentences. In this endeavor, I briefly present a critical exposition of the main aspects of the dominant Autosegmental-Metrical model (henceforth AM), succinctly describing existing research using this approach for Romance languages such as European French, Italian, Spanish, Catalan, European Portuguese, and Romanian (Post, 2000; D'Imperio 2002; D'Imperio et al., 2005; Michelas & D'Imperio, 2010; Sosa, 1999; Hualde, 2003; Prieto, 2014; Frota, 2009). Then I introduce an alternative model, called Incremental Storage Concatenation (henceforth ISC) derived from the Storage-Concatenation model I proposed in 2009 (Martin, 2009). In this model, I highlight some characteristics, apparently never mentioned in AM descriptions, formalized as a set of constraints limiting the number of prosodic structures that could be associated with a given text.

This leads to a concept of intonation that from the start completely dissociates sentence text from its hierarchical organization by syntax. This concept departs dramatically from earlier concepts of prosodic structure

Preface

conceived under the AM approach, where only one such structure can be associated with a given syntactic structure, even if its restructuration appears possible, in order to obtain a better eurhythmicity (Post, 1999).

The set of constraints, originally part of the Storage-Concatenation framework, i.e. planarity, the seven syllables rule, eurhythmicity, stress clash, and syntactic clash, made me look for an underlying explanation that gives a proper account for the observed constraints. A key aspect is their time dimension and especially the dynamic process performed by listeners to recover the prosodic structure intended by the speaker or the writer. Examining the consequences of the time domain aspect of the process is the key to a better understanding of the observed data, an aspect that is often neglected or totally ignored in the current literature. Indeed, the usual reasoning on a two-dimensional plane of a sheet of paper limits considerably an understanding of the mechanisms necessarily used by the listener in the perception of the prosodic structure.

Pushing this exploration further, I related this model to results obtained recently in the neurolinguistic domain, and particularly those concerning evoked potential linked to prosodic stimuli. These results lead me to propose a new and coherent model based not only on the time dynamics of the prosodic structure but also, and perhaps even more interestingly, on specific cognitive mechanisms, in particular those involving short-term memory (Gilbert, 2012). This approach suggests a convincing set of explanations pertaining not only to the set of constraints relative to the prosodic structure but also to some phonetic data, such as the duration of minimal units of prosody (defined below as prosodic words), the minimal and maximal time interval between consecutive stressed syllables, and even the speed limits of silent reading.

The second part of this book is devoted to applications of the model presented in the first part to the analysis of data in some Romance languages, starting with French, often considered as the ugly duckling among other languages of the same family as it is deprived of lexical stress. This second part itself is divided according to the type of data analyzed: read/laboratory speech and spontaneous/non-prepared speech. In this latter set of chapters, I use a modified macrosyntax approach derived from the GARS (Groupe Aixois de Recherche en Syntaxe) work (Blanche-Benveniste, 1990, 2000) for both the text and the prosodic aspects of speaker productions.

I sincerely hope that this book will help both new and experienced researchers in the field of prosody to restore sentence intonation to its deserved place in linguistic studies. I will try to show that far from being the cherry on the phonological cake for some, intonation is the essential linguistic base for both speech production and speech perception.

xxiii

Cambridge University Press 978-1-107-03618-5 - The Structure of Spoken Language: Intonation in Romance Philippe Martin Frontmatter More information

Acknowledgments

I have many people to thank, and in the first place, Pierre Léon (1926–2013) who, like Obelix, a cartoon character in the adventures of the French comic book *Astérix*, "plunged me in a barrel of prosody when I was little." From Pierre Léon I learned a lot of facts about intonation in linguistics, stylistics, phonetics, etc., and about how to survive in the academic world.

In addition, I had the privilege to meet and work with the outstanding linguist Claire Blanche-Benveniste (1935–2010). She had a tremendous influence on my research, always encouraging me to improve in our countless fruitful and pleasant discussions.

Many other people helped me in various ways. In particular, I would like to thank (in alphabetic order):

- Mathieu Avanzi (Université de Neuchatel) for his numerous useful (and exacting) comments;
- Helen Barton (Cambridge University Press) for her constant support and encouragement in this project;
- Gabriela Bilbiie (Université Paris Diderot) for her help in elaborating the Romanian corpus;
- Victor Boucher (Université de Montréal) for his original and fruitful views on speech perception and his constant support for this project;
- Georges Boulakia (Université Paris Diderot) for his constant friendship and understanding;
- Marie Claude Capt-Artaud (Université de Genève), formerly skeptical but now convinced;
- Emanuela Cresti (Università degli Studi di Firenze) for our discussions and her constant friendship;
- Jeanne-Marie Debaisieux (Université Paris 3) for the trust she placed in my research;
- Élisabeth Delais-Roussarie (Université Paris Diderot) for many interesting discussions;

Didier Demolin (Université de Grenoble) for his indefectible friendship;

José Henri Deulofeu (Université Aix-Marseille) for teaching me what macrosyntax is and staying my friend;

XXV

xxvi Acknowledgments

- Helena Dowson (Cambridge University Press) for her patience and encouragement;
- Caterina Falbo (Università degli Studi di Trieste) for her understanding and inspiration;
- Ana Maria Fernández Plana (Universitat de Barcelona) for her help in elaborating and recording the Catalan corpus;

Jacqueline French (Cambridge University Press) for her tireless efforts to improve the text;

- Aline Germain (Middlebury College) for her trust in my theories;
- Annie Gilbert (Université de Montréal) for her illuminating view on syllables;
- Rémi Godement (Université Paris Diderot) for his trust in being one of my doctoral students;
- Sarah Green (Cambridge University Press) for her constant help with this project;
- Jane Leung (University of Toronto) for her patience and impatience (at times), and her moral support;
- Mirian Matta-Machado (Universidade Federal Fluminense) for her constant friendship and support;
- Massimo Moneglia (Università degli Studi di Firenze) for his friendship and exceptional cuisine;
- Patricia Perez (Université Paris Diderot) for her friendly participation in corpora building;
- Michaela Pirvulescu (University of Toronto) for her help in elaborating the Romanian corpus;
- Guan Qianwen (Université Paris Diderot) for interesting discussions about Mandarin prosody;
- Tommaso Raso for his constant support and friendship;
- Mario Rossi (Université de Provence) for his trust in my software realizations;
- Alexandre Sévigny (University McMaster) for his support in difficult days, and brilliant suggestions in incremental syntax;

And finally, I would like to thank all my present and past students (master's and doctoral), who, by their presence and active participation during my lectures, encouraged me to write this book, and, of course, all the friends and colleagues I may have inadvertently forgotten.

Every effort has been made to secure necessary permissions to reproduce copyright material in this work, though in some cases it has proved impossible to trace copyright holders. If any omissions are brought to our notice, we will be happy to include appropriate acknowledgments in any subsequent edition. Key concepts

To help the reader to quickly evaluate the distance from known (and dominant?) concepts in the field of intonation studies, the following list contains the essential nonstandard theoretical points developed in this book.

- 1. This book is about the structure of spoken language.
- 2. Spoken language is made of time sequences of syllables organized into stress groups (basic units of speech are syllables, not phonemes).
- 3. Stress groups are not necessarily aligned with words or syntactic groups; however, they are aligned on complete words (i.e. their beginnings and ends are aligned on beginnings and ends of lexical units words).
- 4. Stress groups are also called rhythmic groups, accent groups, prosodic words, and Accent Phrases in the literature.
- 5. Prosodic words are segments of prosody associated with and aligned on stress groups.
- 6. Prosodic words are organized hierarchically by a prosodic structure.
- 7. Specific prosodic markers indicate prosodic structures; they allow the listener to reconstitute dynamically the speaker intended prosodic structure in an incremental time fashion.
- 8. Prosodic markers are instantiated by prosodic events located on stressed groups' stressed and final vowels.
- 9. Prosodic events are instantiated by prosodic contours, described primarily in acoustic terms of duration, melodic contour, and intensity.
- 10. (Silent) reading and speaking are described as an Incremental Storage-Concatenation (ISC) process.
- 11. Recovering the prosodic structure in (silent) reading mode is a specific process distinct from listening to speech.
- 12. Generation of spontaneous speech involves chunks of prosody hosting syntactic constructions, which in turn host morphological units.
- 13. There is therefore a precedence of prosody over syntax, and of syntax over morphology.
- 14. It follows that the same prosodic structure can host various syntactic and morphological constructions, i.e. different texts.
- 15. Conversely, more than one prosodic structure can be associated with a given text (for example when reading).

xxvii

xxviii Key concepts

- 16. Prosodic boundaries (between an AP, ip, or IP) do not correspond necessarily to syntactic or macrosyntactic boundaries. Likewise, (macro)syntactic boundaries do not necessarily correspond to prosodic boundaries.
- 17. Stress shift in stress clash conditions entails a reallocation of stress groups organized hierarchically in the prosodic structure;
- 18. Generation of a prosodic structure when reading involves the precedence of syntax (analyzed by the reader from the written text).
- 19. Prosodic structures are not necessarily congruent with the sentence syntactic structure. They do not result from restructuration of the prosodic structure either. Actually they do not coexist with syntax; they precede syntax.
- 20. Prosodic markers are subject to neutralization of some of their acoustic features when partially or totally redundant in a given prosodic structure configuration.
- 21. Prosodic markers must be acoustically similar in their respective domain.
- 22. Acoustic features describing prosodic events ensure a necessary and sufficient differentiation between prosodic markers (melodic contours) in the prosodic structure.
- 23. Prosodic structures are constrained by a set of rules: planarity / seven syllables / stress clash / syntactic clash / eurhythmy (the latter for read speech).
- 24. Neurocognitive properties and processes may explain these constraints.
- 25. Prosodic structure and prosodic markers properties are extended to macrosyntax.
- 26. Broad and narrow focus are subcases of macrosyntax configurations (Prenucleus, Nucleus, Postnucleus).
- 27. There is a macrosyntax analysis of sentence intonation (no Prefix, only prosodic Nucleus, prosodic Parenthesis, and prosodic postfix).

In order to be compatible with the many other studies on intonation that are probably familiar to most readers, I use the terms R (prosodic structure root), IP (intonation phrase), ip (intermediate intonation phrase), and AP (Accent Phrase) throughout this book whenever possible, despite potential general conceptual differences.