
PART I

Introduction

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-03607-9 - Statistical Methods for Recommender Systems
Deepak K. Agarwal and Bee-chung Chen
Excerpt
More information

http://www.cambridge.org/9781107036079
http://www.cambridge.org
http://www.cambridge.org


www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-03607-9 - Statistical Methods for Recommender Systems
Deepak K. Agarwal and Bee-chung Chen
Excerpt
More information

http://www.cambridge.org/9781107036079
http://www.cambridge.org
http://www.cambridge.org


1

Introduction

Recommender systems (or recommendation systems) are computer programs
that recommend the “best” items to users in different contexts. The notion of a
best match is typically obtained by optimizing for objectives like total clicks,
total revenue, and total sales. Such systems are ubiquitous on the web and form
an integral part of our daily lives. Examples include product recommendations
to users on an e-commerce site to maximize sales; content recommendations to
users visiting a news site to maximize total clicks; movie recommendations to
maximize user engagement and increase subscriptions; or job recommendations
on a professional network site to maximize job applications. Input to these
algorithms typically consists of information about users, items, contexts, and
feedback that is obtained when users interact with items.

Figure 1.1 shows an example of a typical web application that is powered
by a recommender system. A user uses a web browser to visit a web page.
The browser then submits an HTTP request to the web server that hosts the
page. To serve recommendations on the page (e.g., popular news stories on a
news portal page), the web server makes a call to a recommendation service
that retrieves a set of items and renders them on the web page. Such a service
typically performs a large number of different types of computations to select
the best items. These computations are often a hybrid of both offline and
real-time computations, but they must adhere to strict efficiency requirements
to ensure quick page load time (typically hundreds of milliseconds). Once the
page loads, the user may interact with items through actions like clicks, likes,
or shares. Data obtained through such interactions provide a feedback loop
to update the parameters of the underlying recommendation algorithm and to
improve the performance of the algorithm for future user visits. The frequency
of such parameter updates depends on the application. For instance, if items
are time sensitive or ephemeral, as in the case of news recommendations,
parameter updates must be done frequently (e.g., every few minutes). For

3

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-03607-9 - Statistical Methods for Recommender Systems
Deepak K. Agarwal and Bee-chung Chen
Excerpt
More information

http://www.cambridge.org/9781107036079
http://www.cambridge.org
http://www.cambridge.org


4 1 Introduction

HTTP request

User interacts
e.g., click or share

Recommender
system: thousands
of computations in

subseconds

Machine-learned models
are updatedDATA

Server

Figure 1.1. A typical recommender system.

other applications where items have a relatively longer lifetime (e.g., movie
recommendations), parameter updates can happen less frequently (e.g., daily)
without significant degradation in overall performance.

Algorithms that facilitate selection of best items are crucial to the success
of recommender systems. This book provides a comprehensive description of
statistical and machine learning methods on which we believe such algorithms
should be based. For the sake of simplicity, we loosely refer to these algorithms
as recommender systems throughout this book, but note that they only represent
one component (albeit a crucial one) of the end-to-end process required to serve
items to users in a scalable fashion.

1.1 Overview of Recommender Systems
for Web Applications

Before developing a recommender system, it is important to consider the fol-
lowing questions.

� What input signals are available? When building machine-learned models
of what items a user is likely to interact with in a given context, we can
draw on many signals, including the content and source of each item; a

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-03607-9 - Statistical Methods for Recommender Systems
Deepak K. Agarwal and Bee-chung Chen
Excerpt
More information

http://www.cambridge.org/9781107036079
http://www.cambridge.org
http://www.cambridge.org


1.1 Overview of Recommender Systems for Web Applications 5

user’s interest profile (reflecting both long-term interests based on prior
visits and short-term interests as reflected in the current session); a user’s
declared information, such as demographics; and “popularity” indicators
such as observed click-through rates or CTRs (the fraction of time in which
the item is clicked on when a link to it is presented to users) and extent
of social sharing (e.g., the number of times the item is tweeted, shared, or
liked).

� What objective(s) to optimize for? There are many objectives a website
could choose to optimize for, including near-term objectives, such as clicks,
revenue, or positive explicit ratings by users, and long-term metrics, such
as increased time spent on the site, higher return and user retention rates,
increase in social actions, or increase in subscriptions.

Different recommendation algorithms need to be developed based on the
answers to these questions.

1.1.1 Algorithmic Techniques

In general, a recommender system needs algorithmic techniques to address the
following four tasks:

� Content filtering and understanding. We need to have sound techniques to
filter out low-quality content from the item pool (i.e., the set of candidate
items). Recommending low-quality content hurts user experience and the
brand image of the website. The definition of low quality depends on the
application. For a news recommendation problem, salacious content could
be considered low quality by reputed publishers. An e-commerce site may
not sell items from certain sellers with a low reputation rating. Defining and
flagging low-quality content is typically a complex process that is addressed
through a combination of methods, such as editorial labeling, crowdsourcing,
and machine learning methods like classification. In addition to filtering low-
quality content, it is important to analyze and understand the content of items
that pass the quality bar. Creating item profiles (e.g., feature vectors) that
capture the content with high fidelity is an effective approach. Features can
be constructed using a variety of approaches, such as bag-of-words, phrase
extraction, entity extraction, and topic extraction.

� User profile modeling. We also need to create user profiles that reflect the
items that the users are likely to consume. These profiles could be based on
demographics, user identity information submitted at the time of registration,
social network information, or behavioral information about users.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-03607-9 - Statistical Methods for Recommender Systems
Deepak K. Agarwal and Bee-chung Chen
Excerpt
More information

http://www.cambridge.org/9781107036079
http://www.cambridge.org
http://www.cambridge.org


6 1 Introduction

What?

Item Filtering,
Understanding User Profile, User Intent

Who?
Context

INPUT SIGNALS

Interaction Data

MACHINE LEARNING SCORE Items
P(Click), P(Share)
Similarity,...

RANK Items
Sort by Score
Multiobjective
Business rule

Figure 1.2. Overview of recommender system.

� Scoring. On the basis of user and item profiles, a scoring function needs
to be designed to estimate the likely future “value" (e.g., CTRs, semantic
relevance to the user’s current goal, or expected revenue) of showing an item
to a user in a given context (e.g., the page the user is viewing, the device
being used, and the current location).

� Ranking. Finally, we need a mechanism to select a ranked list of items to
recommend so as to maximize the expected value of the chosen objective
function. In the simplest scenario, ranking may consist of sorting items
based on a single score, such as the CTR of each item. However, in practice,
ranking is more involved and is a blend of different considerations, such as
semantic relevance, scores quantifying various utility measures, or diversity
and business rules to ensure good user experience and preserve the brand
image.

Figure 1.2 illustrates how the previously described algorithmic components
are related. Input signals based on user information, item information, and
historical user-item interaction data are used by machine-learned statistical
models to produce scores that quantify users’ affinity to items. The scores
are combined by the ranking module to produce a sorted list of items based
on descending order of priority obtained by considering single or multiple
objectives.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-03607-9 - Statistical Methods for Recommender Systems
Deepak K. Agarwal and Bee-chung Chen
Excerpt
More information

http://www.cambridge.org/9781107036079
http://www.cambridge.org
http://www.cambridge.org


1.1 Overview of Recommender Systems for Web Applications 7

Content filtering and understanding techniques depend to a large extent on
the types of items to be recommended. For example, techniques for processing
text are quite different from those used to process images. We do not intend to
cover all such techniques, but we provide a brief review in Chapter 2. We also
do not intend to cover a large variety of techniques for generating user profiles.
However, we describe techniques that automatically “learn” both user and item
profiles from historical user-item interaction data and that can also incorporate
any existing profile information produced by some other existing techniques in
a seamless fashion.

1.1.2 Metrics to Optimize

Among the considerations important to determining appropriate solutions for
web recommendation problems, the first and foremost is to ascertain the met-
ric(s) we want to optimize. In many applications, there is a single metric to
optimize, for example, maximizing the total clicks or total revenue or total
sales in a given time period. However, some applications may require simulta-
neous optimization of multiple metrics, for example, maximizing total clicks
on content links subject to constraints on downstream engagement. An example
constraint could be to ensure that the number of bounce clicks (clicks that do
not materialize into a read) is less than some threshold. We may also want to
balance other considerations, such as diversity (ensuring a user sees a range
of topics over time) and serendipity (ensuring that we do not overfit our rec-
ommendations to the user, thereby limiting the discovery of new interests) to
optimize long-term user experience.

Given the definition of metrics to optimize, the second consideration is to
define scores that serve as the input to the optimization problem. For instance,
if the goal is to maximize the total clicks, CTR is a good measure of the value
of an item to a user. In the case of multiple objectives, one may have to use
multiple scores, such as CTR and expected time spent. Statistical methods that
can estimate the scores in a reliable fashion have to be developed. This is a
nontrivial task that requires careful consideration. Once score estimates are
available, they are combined in the ranking module based on the optimization
problem under consideration.

1.1.3 The Explore-Exploit Trade-off

Reliably estimating scores is a fundamental statistical challenge in recom-
mender systems. This often involves estimating expected rates of some positive
response, such as click rate, explicit rating, share rate (probability of sharing an

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-03607-9 - Statistical Methods for Recommender Systems
Deepak K. Agarwal and Bee-chung Chen
Excerpt
More information

http://www.cambridge.org/9781107036079
http://www.cambridge.org
http://www.cambridge.org


8 1 Introduction

item), or like rate (probability of clicking the “like” button associated with an
item). The expected response rates can be weighted according to the utility (or
value) of each possible response. This provides a principled approach for rank-
ing items based on expected utility. Response rates (appropriately weighted)
are the primary scoring functions we consider in this book.

To accurately estimate response rates for each candidate item, we could
explore each item by displaying it to some number of user visits to collect
response data on all items in a timely manner. Then, we can exploit the items
with high response rate estimates to optimize our objectives. However, explo-
ration has an opportunity cost of not showing items that are empirically better
(based on the data collected so far); balancing these two aspects constitutes the
explore-exploit trade-off.

Explore-exploit is one of the main themes of this book. We provide an
introduction in Chapter 3 and discuss the technical details in Chapter 6. The
methods described in Chapters 7 and 8 are also developed to address this issue.

1.1.4 Evaluation of Recommender Systems

To understand whether a recommender system achieves its objectives, it is
important to evaluate its performance at different stages during the development
cycle. From the perspective of evaluation, we divide the development of a
recommendation algorithm into two phases:

� Predeployment phase includes steps before the algorithm is deployed online
to serve some fraction of user visits to the website. During this phase, we
use past data to evaluate the performance of the algorithm. The evaluation is
limited because it is offline; users’ responses to items recommended by the
algorithm are not available.

� Postdeployment phase starts when we deploy the algorithm online to serve
users. It consists primarily of online bucket tests (also called A/B experi-
ments) to measure appropriate metrics. Although this is far more close to
reality, there is a cost to running such tests. A typical approach is to filter
out algorithms with poor performance based on offline evaluation in the
predeployment stage.

Different evaluation methods are used to evaluate various components of a
recommender system:

� Evaluation of scoring. Scoring is usually done through statistical methods
that predict how a user would respond to an item. Prediction accuracy is often
used to measure the performance of such statistical methods. For example,

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-03607-9 - Statistical Methods for Recommender Systems
Deepak K. Agarwal and Bee-chung Chen
Excerpt
More information

http://www.cambridge.org/9781107036079
http://www.cambridge.org
http://www.cambridge.org


1.1 Overview of Recommender Systems for Web Applications 9

if a statistical method is used to predict the numeric rating that a user would
give to an item, we can use the absolute difference between the predicted
rating and the true rating, averaged across users, to measure the error of the
statistical method. The inverse of error is accuracy. Other ways of measuring
accuracy are described in Section 4.1.2.

� Evaluation of ranking. The goal of ranking is to optimize for the objectives
of a recommender system. In the postdeployment stage, we can evaluate
a recommendation algorithm by directly computing the metrics of interest
(e.g., CTR and time spent on recommended items) using data collected from
online experiments. In Section 4.2, we discuss how to set up the experiments
and analyze the results properly. However, in the predevelopment stage, we
do not have data from users served by the algorithm – estimating the perfor-
mance of the algorithm offline to mimic its online behavior is challenging.
In Sections 4.3 and 4.4, we describe a couple of approaches to addressing
this challenge.

1.1.5 Recommendation and Search: Push versus Pull

To set the scope of this book, we note that user intent is an important factor that
differentiates various web applications. If the intent of a user is explicit and
strong (e.g., query in web search), the problem of finding or “recommending”
items that match the user’s intent can be solved through a pull model – by
retrieving items that are relevant to the explicit information needs of the user.
However, in many recommendation scenarios, such explicit intent information
is not available; at best, it can be inferred to some extent. In such cases, it is
typical to follow the push model, where the system pushes information to the
user – the goal is to serve items that are likely to engage the user.

Actual recommendation problems encountered in practice fall somewhere
in the continuum of pull versus push. For instance, recommending news articles
on a web portal is predominantly through a push model because explicit user
intent is generally unavailable. Once the user starts reading an article, the system
can recommend news stories related to the topic of the article that the user is
reading, which provides some explicit intent information. Such a related news
recommender system is usually based on a mix of pull and push models; we
retrieve articles that are topically related to the article that the user is currently
reading and then rank them to maximize user engagement.

We do not focus much on applications, such as web search, that require
mostly a pull model and rely heavily on methods that estimate semantic sim-
ilarity between a query and an item. Our focus is more on applications where

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-03607-9 - Statistical Methods for Recommender Systems
Deepak K. Agarwal and Bee-chung Chen
Excerpt
More information

http://www.cambridge.org/9781107036079
http://www.cambridge.org
http://www.cambridge.org


10 1 Introduction

Figure 1.3. Today Module on the Yahoo! front page.

user intent is relatively weak and it is important to score items for each user
based on response rates estimated through previous user-item interactions.

1.2 A Simple Scoring Model: Most-Popular
Recommendation

To illustrate the basic idea of scoring, we consider the problem of recom-
mending the most popular item (i.e., the item with the highest CTR) on a
single slot of a web page to all users to maximize the total number of clicks.
Although simple, this problem of most-popular recommendation includes the
basic ingredients of item recommendation and also provides a strong baseline
for the more sophisticated techniques that we describe in later chapters. We
assume the number of items in the item pool is small relative to the num-
ber of visits and clicks. We do not make any assumption on the composition
of the item pool; new items may get introduced and old ones may disappear
over time.

Our example application is recommending new stories on the Today Module
of Yahoo! front page (Figure 1.3 shows a snapshot). This application is used
throughout the book for the purposes of illustration. The module is a panel with
several slots, where each slot displays an item (i.e., story) selected from an item
pool consisting of several items that are created through editorial oversight. For
simplicity and ease of exposition, we focus on maximizing clicks on the single
most prominent slot of the module, which gets a large fraction of the clicks.

Let pit denote the instantaneous CTR of item i at time t . If we knew pit for
each candidate item i, we could simply serve the item with the highest instanta-
neous CTR to all user visits that occur at the given time point t . In other words,
we select item i∗t = arg maxi pit for visits at time t . However, instantaneous
CTRs are not known; they have to be estimated from data. Let p̂it denote the esti-
mated CTR from data. Is it enough to serve the item with the highest estimated

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-03607-9 - Statistical Methods for Recommender Systems
Deepak K. Agarwal and Bee-chung Chen
Excerpt
More information

http://www.cambridge.org/9781107036079
http://www.cambridge.org
http://www.cambridge.org

	http://www: 
	cambridge: 
	org: 


	9781107036079: 


