ad hoc P2P wireless networks
 capacity region, 124
 general MaxWeight scheduling
 algorithm, 125
 throughput optimality, 126
 joint congestion control and scheduling, 156
 MaxWeight scheduling, throughput optimality, 124
 Q-CSMA, 133
 affine function, 9
 Aloha, 162
 α-fair, 18
 back-pressure algorithm, 148
 barrier function, 21
 Bellman–Ford algorithm, 181
 properties, 182
 Bernoulli arrivals see time averages
 (BASTA), 70
 BGP, 185
 bipartite graph, 88
 Birkhoff–von Neumann theorem, 93
 BitTorrent, 208
 continuous-time Markov chain, 276
 leechers, 208
 optimistic unchoking, 209
 rarest-first policy, 209
 seeds, 208
 tit-for-tat, 209
 Chernoff bound, 50
 classless inter-domain routing (CIDR), 183
 complementary slackness, 14
 complete bipartite graph, 88
 concave function, 8
 congestion avoidance, 167
 connection-level arrivals and departures in
 the Internet, 263
 stability, 266
 constrained optimization problem, 12
 continuous-time Markov chain (CTMC)
 definition, 229
 Foster–Lyapunov theorem, 236
 generator matrix, 232
 irreducible, 232
 non-explosiveness, 230
 recurrent, 233
 time homogeneous, 229
 transition rate matrix, 232
 convex function, 8
 first-order condition I, 9
 first-order condition II, 10
 second-order condition, 10
 convex hull, 8
 convex set, 7
 coordinate convex, 143
 Cramer–Chernoff theorem, 303
 crossbar switch
 architecture, 87
 head-of-line (HOL) blocking, 89
 virtual output queue, 90
 Dijkstra’s algorithm, 176
 properties, 178
 discrete-time G/G/1 queue, 70
 discrete-time Markov chain
 definition, 55
 irreducible, 56
 periodic or aperiodic, 57
 recurrent, 59
 time homogeneous, 55
 transient, 59
 transition probability matrix, 55
 distance-vector routing, 179
 distributed admission control
 algorithm, 268
 M/M/1/Nmax/Nmax, 268
 doubly stochastic matrix, 93
 doubly substochastic matrix, 93
 dual congestion control algorithm, 27
 dual problem, 12
 effective bandwidth, 54
 Equilibrium point, dynamic systems, 19
 ergodicity, 67, 69
 Erlang distribution, 259
Erlang-B formula, 242
Erlang-C formula, 243
fading, 111
FAST-TCP, 175
Foster–Lyapunov theorem, 71, 121, 125, 155
not positive recurrent, 64
positive recurrent, 62, 64, 236
generalized processor sharing (GPS), 73
Geo/Geo/1 queue, 67
Geo/Geo/1/B queue, 69
generalized processor sharing (GPS), 73
Geo/Geo/1 queue, 67
Geo/Geo/1/B queue, 69
Geo/Geo/1/B queue, 69
geometric random graph models of wireless networks, random node placement
lower bound, 334
upper bound, 326
GI/GI/1 queue, 249
global asymptotic stability, definition, 19
global balance equation, 234, 256
global maximizer definition, 11
existence, 11
necessary and sufficient conditions, 11
uniqueness, 11
global minimizer, uniqueness, 11
gradient ascent algorithm, 22
heavy-traffic regime, 292
hidden terminal problem, 190
hierarchical routing in the Internet, 184
IEEE Standards
802.11, 188
DIFS, 189
RTS/CTS, 190
SIFS, 189
Insensitivity
M/GI/1-PS queue, 259
M/M/1-PS queue, 259
IP addressing, 183
classful IP addressing, 183
classless inter-domain routing (CIDR), 183
irreducible continuous-time Markov chain, 232
irreducible discrete-time Markov chain, 56
Jackson network, definition, 255
join the shortest queue (JSQ), 294
Karush–Kuhn–Tucker (KKT) conditions, 14
Kelly mechanism, 36
Kingman bound
continuous-time, 283
discrete-time, 71
Lagrange dual problem, 13
Lagrangian dual function
definition, 12
properties, 12
Lagrangian duality, 12
large-buffer large deviations
lower bound, 308
upper bound, 308
Lasalle’s invariance principle, 21
linear delay differential equation
necessary and sufficient condition for stability, 29
TCP-Reno, 170
link-state routing, 176
Little’s law, 64, 68, 72, 240, 273
continuous-time queues, 237
theorem, 65
load-balanced switch, 102
throughput optimality, 104
local balance equation, 235
discrete-time Markov chain, 62
local maximizer
definition, 11
necessary and sufficient conditions, 11
loss networks, 270
Lyapunov boundedness theorem, 20
Lyapunov global asymptotic stability theorem, 20
M/GI/I queue, 243
M/M/s, 242
M/M/s/s queue, definition, 238
M/M/s/s queue, 241
M/M/1 queue, 239, 253
many-sources large deviations
lower bound, 314
upper bound, 315
Markov’s inequality, 49
matching, 88
max-min fairness, 18
maximal matching, 97
maximal matching scheduling
parallel iterative matching (PIM), 101
MaxWeight scheduling
ad hoc P2P wireless networks
algorithm, 123
troughput optimality, 124
general MaxWeight scheduling for ad
hoc P2P wireless networks, 125
scheduling in cellular networks
algorithm, 119
troughput optimality, 120
switch scheduling
algorithm, 92
throughput optimality, 93
minimum potential delay fairness, 18
multi-class M/M/1 queue, 256
multi-path propagation, 110

Nash equilibrium, 37
network utility maximization (NUM), 15
in wireless networks
algorithm, 149
theorem, 151
NUM-based proportional fair scheduler, 189

open shortest path first (OSPF), 185

penalty function, 21
periodic or aperiodic discrete-time Markov
chain, 57
permutation matrix, 93
Poisson arrivals see time averages
(PASTA), 242
M/GI/1 queue, 247
Poisson process, 238
definitions, 238
Pollaczek–Khinchine formula (P-K formula), 246

Positive recurrent state, 59, 233
price function, 22
packet dropping, 25
packet marking, 25
price of anarchy (POA), 35
price takers, 30
primal congestion control algorithm, 22
stability, 24
primal problem, 12
processor sharing (PS), 73
proportional fair scheduler in cellular
downlink, 187
proportionally fair allocation, 17
Q-CSMA
algorithm, 133

decision schedule, 130
queue overflow probability, 54
Rate function, 306
convex, 306
Recurent continuous-time Markov chain, 233
recurrent discrete-time Markov chain, 59
reduced-load approximation, 271
reversibility, 253
Burke’s theorem, 254
Jackson network, 256
M/M/1 queue, 253
necessary and sufficient condition, 253
tandem M/M/1 queue, 254

routing
Bellman–Ford algorithm, 181
BGP, 185
Dijkstra’s algorithm, 176
OSPF, 185
RIP, 185
routing information protocol (RIP), 185

schedule
ad hoc wireless networks, 122
switch scheduling, 88
scheduling, 124
in cellular networks, capacity region
definition, 117
proof, 118
in cellular networks, MaxWeight
scheduling, 119
signal attenuation, 110
signal-to-interference and noise ratio
(SINR), 112
signal-to-noise ratio (SNR), 111
Slater’s condition, 13
slow-start phase, 167
strict separation theorem, 10
strong duality
definition, 13
Slater’s condition, 13
structured P2P streaming, 210
switch scheduling
capacity region, 91
proof, 91
definition of “supportable”, 90
load-balanced switch, 104
maximal matching scheduling, 97
MaxWeight scheduling, 92
pick-and-compare scheduling, 102
Index

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>tandem M/M/1 queue</td>
<td>254</td>
</tr>
<tr>
<td>TCP-Reno</td>
<td></td>
</tr>
<tr>
<td>additive increase–multiplicative decrease (AIMD)</td>
<td>168</td>
</tr>
<tr>
<td>algorithm</td>
<td>167</td>
</tr>
<tr>
<td>primal algorithm</td>
<td>170</td>
</tr>
<tr>
<td>TCP-Vegas</td>
<td></td>
</tr>
<tr>
<td>algorithm</td>
<td>172</td>
</tr>
<tr>
<td>dual congestion control algorithm</td>
<td>175</td>
</tr>
<tr>
<td>equilibrium</td>
<td>173</td>
</tr>
<tr>
<td>weighted proportionally fair</td>
<td>173</td>
</tr>
<tr>
<td>transient discrete-time Markov chain</td>
<td>59</td>
</tr>
<tr>
<td>unconstrained optimization problem</td>
<td>11</td>
</tr>
<tr>
<td>union bound</td>
<td>53</td>
</tr>
<tr>
<td>unstructured P2P streaming</td>
<td>215</td>
</tr>
<tr>
<td>Vickrey–Clarke–Groves (VCG) mechanism</td>
<td>32</td>
</tr>
<tr>
<td>weighted fair queueing (WFQ)</td>
<td>72</td>
</tr>
<tr>
<td>algorithm</td>
<td>74</td>
</tr>
<tr>
<td>finish tag</td>
<td>74</td>
</tr>
<tr>
<td>properties</td>
<td>76</td>
</tr>
<tr>
<td>Weighted proportionally fair allocation</td>
<td>17</td>
</tr>
<tr>
<td>worst case fair WFQ (WFWFQ)</td>
<td>78</td>
</tr>
</tbody>
</table>