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Introduction

This book is based on notes prepared for a graduate course “Scientific Foundations

of Engineering” in the Gordon Engineering Leadership Program at Northeastern

University. The elevator speech on why such a course is needed goes as follows:

(1) most engineering students take all of their basic science courses during freshman

year, (2) they don’t like those freshman courses very much, and (3) they forget the

material as quickly as they can and concentrate on the specifics of electrical engineering,

or mechanical engineering, or other engineering discipline where their interests and

enthusiasm lies.

This summary may be unfair to some engineering students, but most engineering

students (and their professors) at least grudgingly admit that it isn’t terribly far off. And,

in general, this approach serves the students well through their undergraduate education

process and in their industrial careers – as long as they remain specialized in their

specific engineering discipline. However, consider the case where an electrical engineer

is leading a multidisciplinary project. One day a mechanical engineer who reports to her

walks into her office and says, “Boss, this isn’t going to work – we can’t get the heat

out!” A conventionally trained electrical engineer isn’t likely to be able to frame a single

substantive question about the problem. She hasn’t studied heat transport or thermo-

dynamics since the freshman year (if at all!), and likely has forgotten anything she ever

knew about the subject. The ability to frame questions which put fundamental bound-

aries on the problem, “What is the power load? How hot will the device get? How much

blackbody emission is there at that temperature? What is the thermal conductivity of the

substrate?”, will not only enable an engineering leader to quickly frame the gravity of

the problem, but will undoubtedly earn her a reputation as someone with whom you

want to have done your homework carefully before making rash statements about

engineering limits!

Science curricula often employ a “spiral curriculum” model. In physics for example,

mechanics, thermal physics, and electromagnetics are surveyed in freshman year,

revisited in specialized courses in sophomore or junior year, and often studied again

from a quantum statistical viewpoint in a senior class. Engineering education more often

selects a “breadth” coverage of the vast range of engineering applications, rather than

the depth of understanding that the spiral curriculum seeks to impart.

Among the topics that the typical quick pass through scientific fundamentals causes

to be neglected or skipped in most engineering educations is the entire field of quantum

science. Despite the critical and growing importance of nanoscale quantum science on
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nearly every electronic device we use or carry on us, I suspect that most engineering

professors would be surprised by how few engineering students or professional

engineers can give even a rudimentary description of the source of semiconductor band

gaps, the distinction between metals and insulators and semiconductors, or how a p-n

junction or micro-mechanical device works.

This lack of depth of understanding of fundamental scientific principles and lack of

any formal instruction in the science of quantum systems is what we intended the

“Scientific Foundations of Engineering” course in the Gordon Engineering Leadership

Program to address. Our model was the confidence with which a well-trained scientist

can approach an unfamiliar problem and quickly understand the fundamental principles

and make “back-of-the-envelope” calculations about how large an effect each of these

fundamentals may play in the problem. Even a little bit of this ability to understand the

basic physical laws underlying a phenomenon, to place a problem in context, and to

estimate the size of various influences on a system can give an engineering leader an

ability to direct a project through proof-of-principle experiments and make-or-break

decision points to an operating marketable product. Our goal in the Gordon program is

to develop engineers with gravitas to whom no area of engineering is outside of the sphere

of understanding in the “here be dragons” area of the unknown, and developing know-

ledge of scientific fundamentals in the “Scientific Foundations” course is part of that goal.

In looking for a book to teach the “Scientific Foundations” course, however, the

authors found freshman survey texts that did not make use of advanced mathematics

and were intended for readers who were new to the study of science and engineering,

and highly theoretical books for professional physicists, which lacked examples

meaningful to engineers, but no book suitable for the intended audience. In this book,

we have combined a unified treatment of classical and quantum physics with a wealth of

worked examples with an engineering flavor. We typically begin each chapter with a

question about physical phenomena that engineers may know and have wondered

about. This helps put the treatment of the physics in a context of what the implications

of the theory are and why anyone would want to know about it.

In Chapters 1 and 2, we address kinematics and dynamics in the broadest framework

to understand the limits of reaching for the “d-equals-one-half-a-t-squared” solution,

and how this low-order solution can be used iteratively to find solutions even outside the

limits of constant acceleration problems. In these chapters and throughout the book we

consider examples primarily in Cartesian x–y–z space. While many real problems are

best addressed in cylindrical or spherical coordinates, the concepts are fundamentally

the same and we have opted for conceptual clarity over computational completeness

whenever possible.

In Chapter 3, we discuss rotational motion and use the generalization of the scalar

mass in linear motion into moment of inertia in rotational motion as a way to introduce

the concept of tensor quantities. The linear motion concepts of force, momentum, and

energy are similarly generalized into torque, angular momentum, and rotational kinetic

energy with the fundamental principles of conservation of momentum (always!) and

conservation of mechanical energy (in ideal systems that do not generate heat)

reinforced.
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Chapter 4 introduces rotation matrices to deal with cases where tensor quantities are

not aligned with the principal axes. As an example, the generalization of an isotropic

mass into an effective mass tensor for electrons in anisotropic materials is considered.

With the fundamental mechanical laws established, the role of materials is intro-

duced in the fundamental property of elasticity in Chapter 5. Shear and compressive

stress and strain are shown to be elements of the 3� 3 second-order stress and strain

tensors, making elasticity that links stress and strain a fourth-order elastic tensor

which can be reduced by symmetries to a 6� 6 symmetric tensor with 21 independ-

ent material parameters. This is further reduced in cubic materials to an elastic tensor

with three parameters: the Young’s modulus, the shear modulus, and the Poisson

ratio.

In Chapter 6, simple harmonic motion of a system with a linear restoring force and a

velocity-dependent loss mechanism is discussed with and without a harmonic driving

force. The use of Euler’s relation to describe oscillatory motion with amplitude and

phase by a complex exponential is introduced, allowing the inclusion of a small

imaginary part to model the loss mechanism. The identical form and solution of an

LCR electrical circuit with the spring–mass system is shown with complex exponentials

representing the charge and current, leading to the electrical engineering method of

complex impedance.

In Chapter 7, harmonic motion in time is extended to systems with spatial coupling,

creating the phenomenon of waves in mechanical systems: one-dimensional waves

in strings and three-dimensional sound waves in fluids. By continuing the complex

exponential notation for the wave oscillation we can model lossy media, interference in

films or from multiple sources, and diffraction phenomena with a complex exponential

wave form with a complex wave vector k.

Chapters 8, 9, 10, and 11 provide an introduction to quantum physics and chemistry.

In Chapter 8, we discuss the historical origins of quantum theory, why it was such a

radical departure from classical physics, why it became necessary to accept such a

totally different approach to understand the world, and why the “quantum picture”

continues to be anti-intuitive and difficult to accept. In Chapter 9, we examine the

postulates of quantum mechanics and how we can “shut up and calculate” everything

that is determinable for quantum systems, including tunneling, and low-dimensional

quantum systems, such as 1D and 2D quantum wells. In Chapter 10, we extend the

quantum analysis to real systems from quantum dots to the hydrogen atom and touch on

the chemistry of the “spdf” quantum states and hybridized outer orbitals. In Chapter 11,

we look at electrons in extended lattices and band states with both direct and indirect

band gaps, and how these are reflected in the electronic properties of metals, insulators,

and semiconductors and optical interactions, such as in light-emitting diodes.

In Chapter 12, we look at thermal physics from the perspective of random

equipartition of particles into energy states, extending into thermal transport, thermal

equilibrium, heat capacity, and thermodynamics. In Chapter 13, we look at thermal

effects through the mathematics of quantum statistics: Maxwell–Boltzmann statistics

for classical distinguishable particles, Fermi–Dirac statistics for quantum indistinguish-

able particles that obey the exclusion principle (“fermions”) and Bose–Einstein statistics
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for quantum particles such as photons that do not have any restrictions on the occupancy

of a single quantum state (“bosons”). The differences in the occupation of states for the

three different statistical models is demonstrated though a simple “thought experiment”

and the different statistical models are developed in the examples of blackbody radiation

(photon/boson statistics) and semiconductor occupancy and p-n junctions (electron/

fermion statistics).

In Chapters 14, 15, and 16, we look at electromagnetic theory, effects, and materials.

Chapter 14 develops Maxwell’s equations in the mathematics of vector calculus (“div,

grad, curl”), using Gauss’s and Stokes’ integral relations to move from the four

Maxwell’s equations and the electromagnetic Lorentz force equation to understand a

wide variety of electromagnetic effects: Faraday effect, electrical generation, eddy

currents, transformers, and electromagnetic motors. Starting from the four Maxwell’s

equations, Chapter 15 develops the electromagnetic wave equation and applies it to

examine wave propagation in uniform, lossy, and anisotropic materials. The electro-

magnetic boundary conditions are derived and applied to plane-wave reflection at

surfaces for both normal and non-normal incidence, and to interference effects in thin

films. In Chapter 16, electromagnetic wave propagation in materials is studied from the

viewpoint of the constitutive relations and the material-dependent tensor permittivity,

conductivity, and permeability. Physical models are used to develop examples including

the plasma edge in gases, semiconductors, and metals, Lorentzian oscillators in the

infrared properties in polar crystals, quantum absorption in transparent gases, and

ferromagnetic resonance in magnetic materials.

Chapter 17 provides an introduction to the physics of fluids, using mechanical

concepts for static fluid effects, such as buoyancy, and vector calculus from electro-

magnetics to develop the continuity equation, Euler equation, Bernoulli equation, and

Navier–Stokes equation for moving fluids. The transition from laminar to turbulent flow

with increasing Reynolds number, still one of the most important unsolved scientific

problems, is presented.

Throughout, we have emphasized the connections between concepts and phenomena

in different fields and the similarity of the mathematics used to describe them: how a

spring–mass harmonic oscillator described by a complex exponential leads to familiar

expressions in AC electrical circuits, in infrared properties in crystals with optical

phonons, and in quantum-energy-level absorption lines in gases and transparent solids.

Or how anisotropic materials effects in elasticity, electrical permittivity, or magnetic

resonance can be described by tensor properties similar to a general description of

rotational motion with a tensor moment of inertia. The ability of a scientist or engineer

to apply models and concepts from their area of specialization to new phenomena in

different limits can serve to demystify unfamiliar technologies and allow them to apply

their knowledge to novel systems.

The authors would like to express their gratitude to Professors George Adams and

John Cipolla for their assistance in Chapters 5 and 17, and to the classes of students from

the Gordon Engineering Leadership Program who, with their questions and comments,

have helped move this project from a set of cryptic notes to a text which we trust will be

comprehensible and useful to engineering and science students and professionals.
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1 Kinematics and vectors

The foundation of much of engineering concerns the location of stationary and moving

objects in three dimensions, and it is critical to have the mathematical tools to quantify

the position of those objects and predict their movement. In fact, although we are

surrounded by moving objects every day, relatively few people have a conceptual

framework and vocabulary to describe motion. In addition, simple three-dimensional

problems such as finding the volume of a parallelepiped defined by its three edges are

hard to visualize and calculate. In this chapter we will develop the mathematical

framework for motion, for describing the three-dimensional position of objects, and

for calculating their non-uniform motion.

1.1 Kinematics

Kinematics is the mathematical description of motion, of how position changes with

time. In one dimension, motion is completely described by the function f where

x ¼ f ðtÞ: (1.1)

In general, f (t) is a complicated function. Even what we might consider to be simple

motion, someone running at a more or less constant speed for example, is likely to be

quite complicated if we look in detail. And the motion of the hand of that runner, as

she moves it back in forth in stride, is likely to be extremely complex and unlikely to

be described by any closed-form mathematical expression. How can one describe

motion, especially if it is complex? One could ask, for example, if there is any

mathematical way to describe the one-dimensional motion of the graph shown in

Figure 1.1.

Commonly in science and engineering, we can only make progress if we apply

some level of approximation to the problem. Appropriately approximated, the

problem may be conceptually straightforward and mathematically tractable. One math-

ematical technique that is convenient for approximation is expansion of the function

describing the motion in a Taylor series. The Taylor series expansion of a function x(t)

around a particular time to is:

x ¼ xo þ
dx

dt

�

�

�

�

t¼to

ðt� toÞ þ
1

2!

d2x

dt2

�

�

�

�

t¼to

ðt� toÞ
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1

3!

d3x

dt3

�

�
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�

t¼to

ðt� toÞ
3 þ . . . (1.2)
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Question 1.1

What would the general expression for the nth term of the series be?

A Taylor series allows us to predict the position at time ∆t later if we know the initial

position and all orders of rates of change of the function at the initial position.

Mathematically this series is expected to converge because of the 1/n! prefactor – the

factorial function n! exceeds even the exponential function en for large n. Practically,

given an appropriate time scale where the motion is reasonably smooth, the higher-order

derivatives tend to be progressively smaller, and we can approximate the motion with a

few terms. Letting to ⇾ 0, which is equivalent to starting our clock at t = to or setting

t = ∆t = (t � to), we find an series expansion for x(t) as below, where we have indicated

the usual names given to the time derivatives of distance: velocity = v = dx/dt,

acceleration = a = dv/dt = d
2
x/dt2, and jerk = da/dt = d

3
x/dt3.

x ¼ xo þ
dx

dt

�

�

�

�
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t þ
1
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dt2

�

�

�

�

t¼to

t2 þ
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dt3

�

�

�

�
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t3 þ
1
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d4x

dt4

�

�

�

�

t¼to

t4 þ . . .

" " "
v

ðvelocityÞ
a

ðaccelerationÞ

da=dt

ðjerkÞ

(1.3)

Note that there is no reason to truncate this series at any term except the expectation that

the higher-order derivatives will be negligible compared to 1/n! since higher-order

derivatives correspond to rapidly changing forces. Nevertheless, freshman physics

books are so filled with examples of constant acceleration that it is not surprising that

engineers often assume that distance is always found from

x ¼ xo þ vot þ
1

2
at2: (1.4)

In fact, for constant acceleration, when a = constant and we have

0 ¼
da

dt
¼

d2x

dt2
¼

d3x

dt3
¼

d4x

dt4
ð. . . and all higher ordersÞ,

t

x

Figure 1.1 Position vs. time for complex one-dimensional motion.

6 Kinematics and vectors

www.cambridge.org/9781107035850
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-03585-0 — Scientific Foundations of Engineering
Stephen McKnight , Christos Zahopoulos
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

we can recover our familiar freshman physics equations by integration:

a ¼
dv

dt
¼

d2x

dt2
¼ constant )

(1) v ¼
Ð

adt ¼ at þ vo

Constant of integration = initial velocity

(2) x ¼
Ð

vdt ¼
Ð

ðat þ voÞdt ¼
1

2
a t2 þ vo t þ xo (1.5)

(3) Eliminating t by algebra from ð1Þ and ð2Þ t ¼
v� vo

a

� �

gives v2 ¼ v 2
o þ 2aðx� xoÞ

or v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v 2
o þ 2aðx� xoÞ

p

:

In the more difficult (and more common) case where the acceleration is not

constant, but depends on t or v or x, the equations for constant acceleration are not

accurate. In this case, we can solve the problem numerically by taking steps in time or

distance that are small enough that the acceleration can be considered as constant within

the time interval ∆t considered. (For ∆t small, Δt � Δt2 � Δt3 and terms beyond

constant acceleration are negligible.) The new position, velocity, and acceleration are

calculated at the end of the small interval ∆t, and then the next ∆t interval is solved with

these new initial values.

Such an iterative solution for a problem with non-constant acceleration can be

diagramed as in Figure 1.2.

Question 1.2

Consider the case of a car slowing down and coming to a stop at a traffic light. Can this be represented

with a constant acceleration? Why or why not?

t

xo

vo

ao

 ao
 

2

t’=t+Δt

x’=xo+voΔt+  Δt
2

v’=vo+aoΔt

a’=a(x’,t’,v’)

Δt

t t’,ao a’,vo v’,xo x’

Figure 1.2 Block diagram of iterative solution for non-constant acceleration.
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Iterative solutions are the basis of numerical differential equations solvers such as the

second-and-third-order and third-and-fourth-order Runge–Kutta methods that are the

basis of the MATLAB differential equation solvers ode23 and ode45.

Example 1.1 If the effects of air resistance are ignored, a falling object near the Earth’s

surface experiences a constant acceleration due to the force of gravity g = 9.8 m/s2

downward (toward the center of the Earth). This is a good approximation at low

velocities for dense heavy objects – a bowling ball, for example – but is completely

inadequate to describe a falling piece of paper. The effect of air resistance is to create a

non-uniform acceleration that decreases as the square of the velocity

a ¼ �9:8� γjvjv

where the constant γ depends on the mass and shape of the object and the air density.

The air resistance component of the acceleration in the second term is the product of

number of air molecules that the object collides with in a given time interval (propor-

tional to the velocity) multiplied by the retarding force due to a collision with an air

molecule which also increases with the velocity as we will see in Chapter 2, giving the

velocity-squared dependence. The minus sign in the equation indicates that the gravita-

tional acceleration is downward, and the absolute value of the velocity multiplied by the

velocity guarantees that the air friction opposes the motion: the acceleration is more

negative when the velocity is up (positive) and less negative when the velocity is down

(negative). The MATLAB solution for an object with γ ¼ 0.05 projected directly

upward with an initial velocity of 30 m/s from t = 0 to t = 4 s is shown in the figure

below (solid line) compared to the no-friction result from Eq. (1.4) (dashed):

>> type air_friction.m

function [ Ydot ] = air_friction(t, Y )

%AIR_FRICTION Function to find acceleration and velocity

with air friction

% Input vector Y= [y, v_y]; output vector Ydot= dY/dt= [v_y, a_y }

v_y=Y(2);

a_y=-9.8-0.05*abs(v_y)*v_y;

Ydot=[v_y, a_y ]';

end

>> [t,y]=ode23(@air_friction, [0,4], [0,30]);

>> plot(t, y(:,1))

>> hold on

>> tnf=[0:.01:4];

>> ynf=30*tnf - 0.5*9.8*tnf.^2;

>> plot(tnf, ynf, '--')

>> ylabel('Height (m)'); xlabel('Time (s)')
Continued
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Example 1.1 (cont.)
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1.2 Vectors

A vector is an ordered group of n numbers that follow particular rules under the

operations of addition, subtraction, and multiplication. The individual components of

the vector are added or subtracted independently and not mixed when the vectors are

added or subtracted, and multiplication by a scalar number multiplies each component

equally. A vector equation represents n independent scalar equations.

The mathematical properties of vectors make them appropriate to describe dis-

placements in two- (n = 2) or three- (n = 3) dimensional space, if the components of

the vector represent distances in orthogonal directions. Addition of two vectors

represents the effect of two successive displacements of an object, and subtraction

of two vectors represents the change in position of an object. It is often useful to

define a unit vector in the direction of a given vector V
!
. A vector of length 1 in the

direction of V
!

is given by V̂ ¼ V
!

=
jV
!
j
, where jV

!
j indicates the magnitude (length) of

the vector. By simple geometry we find the length of a vector V
!
¼ ½x, y, z� is given

by jV
!
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

.

Question 1.3

Why does the V̂ vector have length=1? What is the unit vector in the direction [2, 1]?}

91.2 Vectors
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The rules for vector addition, subtraction, and multiplication by a scalar number are

summarized in Figure 1.3 for vectors r
!
1 ¼ x1 x̂ þ y1 ŷ and r

!
2 ¼ x2 x̂ þ y2 ŷ indicating

positions in two dimensions.

1.3 Vector kinematics

Since position in two or three dimensions can be represented by vectors, motion

which is the displacement of position in a time interval ∆t can also be represented by

vectors:

r1

r1r1

2r1
2r1= +

r1=x1x+ y1ŷ
^

x1

y1

x

y

y^

x^

unit vectors:
 • length=1
 • direction along prinicipal axis 

(i) Vector addition

(ii) Vector subtraction

(iii) Multiplication of vector by scalar number

x

y

r1

r1

r2

r2=[x1+x2,y1+y2]r3=

r1=[x1,y1]

r2=[x2,y2]

+
r 1

r 2
+

x

x

y

y

r
1

r
2

r1 r2=[x1–x2,y1–y2]r3= –

=2[x1,y1]

=[2x1,2y1]

r1
r2

}

r1 r2–

Figure 1.3 Expression of a vector in terms of unit vectors and rules for vector addition, subtraction,

and multiplication by a scalar, illustrated for two dimensions. (Generalization to three dimensions

is straightforward: r
!
3 ¼ r

!
1 þ r

!
2 ¼ ½x1 þ x2, y1 þ y2, z1 þ z2�, etc: )
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