
Introduction

In the last three decades Mori’s program, the moduli theory of varieties and
complex differential geometry have identified five large and important classes
of singularities. These are the basic objects of this book.

Terminal. This is the smallest class needed for running Mori’s program
starting with smooth varieties. For surfaces, terminal equals smooth. These sin-
gularities have been fully classified in dimension 3 but they are less understood
in dimensions ≥ 4.

Canonical. These are the singularities that appear on the canonical models of
varieties of general type. The classification of canonical surface singularities by
Du Val in 1934 is the first appearance of any of these classes in the literature.
These singularities are reasonably well studied in dimension 3, less so in
dimensions ≥ 4.

For many problems a modified version of Mori’s program is more appropri-
ate. Here one starts not with a variety but with a pair (X,D) consisting of a
smooth variety and a simple normal crossing divisor on it. These lead to the
“log” versions of the above notions.

Log terminal. This is the smallest class needed for running the minimal
model program starting with a simple normal crossing pair (X,D). There
are, unfortunately, many different flavors of log terminal; the above definition
describes “divisorial log terminal” singularities. From the point of view of
complex differential geometry, log terminal is characterized by finiteness of the
volume of the smooth locusX \ SingX; that is, for any top-degree holomorphic
form ω, the integral

∫
X
ω ∧ ω̄ is finite.

Log canonical. These are the singularities that appear on the log canonical
models of pairs of log general type. Original interest in these singularities came
from the study of affine varieties since the log canonical model of a pair (X,D)
depends only on the open variety X \D. One can frequently view log canonical
singularities as a limiting case of the log terminal ones, but they are technically
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2 Introduction

much more complicated. They naturally appear in any attempt to use induction
on the dimension.

The relationship of these four classes to each other seems to undergo a
transition as we go from dimension 3 to higher dimensions. In dimension 3
we understand terminal singularities completely and each successive class is
understood less. In dimensions ≥ 4, our knowledge about the first three classes
has been about the same for a long time while very little was known about the
log canonical case until recently.

Semi-log-canonical. These are the singularities that appear on the stable
degenerations of smooth varieties of general type. The same way as stable
degenerations of smooth curves are non-normal nodal curves, stable degen-
erations of higher dimensional smooth varieties also need not be normal. In
essence “semi-log canonical” is the straightforward non-normal version of
“log canonical,” but technically they seem substantially more complicated.
The main reason is that the minimal model program fails for varieties with
normal crossing singularities, hence many of the basic techniques are not
available.

The relationship between the study of these singularities and the development
of Mori’s program was rather symbiotic. Early work on the minimal models
of 3-folds relied very heavily on a detailed study of 3-dimensional terminal
and canonical singularities. Later developments went in the reverse direction.
Several basic results, for instance adjunction theory, were first derived as con-
sequences of the (then conjectural) minimal model program. When they were
later proved independently, they provided a powerful inductive tool for the
minimal model program.

Now we have relatively short direct proofs of the finite generation of the
canonical rings, but several of the applications to singularity theory depend
on more delicate properties of minimal models in the non-general-type case.
Conversely, recent work on the abundance conjecture relies on subtle properties
of semi-log canonical singularities. In writing the book, substantial effort went
into untangling these interwoven threads.

The basic definitions and key results of the minimal model program are
recalled in Chapter 1.

Canonical, terminal, log canonical and log terminal singularities are defined
and studied in Chapter 2. As much as possible, we develop the basic theory for
arbitrary schemes, rather than just for varieties over C.

Chapter 3 contains a series of examples and classification theorems that show
how complicated the various classes of singularities can be.

The technical core of the book is Chapter 4. We develop a theory of higher-
codimension Poincaré residue maps and apply it to a uniform treatment of
log canonical centers of arbitrary codimension. Key new innovations are the
sources and springs of log canonical centers, defined in Section 4.5.
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Introduction 3

These results are applied to semi-log canonical singularities in Chapter 5.
The traditional methods deal successfully with the normalization of a semi-
log canonical singularity. Here we show how to descend information from the
normalization of the singularity to the singularity itself.

In Chapter 6 we show that semi-log canonical singularities are Du Bois; an
important property in many applications. The log canonical case was settled
earlier in Kollár and Kovács (2010). With the basic properties of semi-log
canonical singularities established, the induction actually runs better in the
general setting.

Two properties of semi-log canonical singularities that are especially useful
in moduli questions are treated in Chapter 7.

Chapter 8 is a survey of the many results about canonical, terminal, log
canonical and log terminal singularities that we could not treat adequately.

Chapter 9 contains results on finite equivalence relations that were needed
in previous Chapters. Some of these are technical but they should be useful in
different contexts as well.

A series of auxiliary results are collected in Chapter 10.
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Preliminaries

We usually follow the definitions and notation of Hartshorne (1977) and Kollár
and Mori (1998). Those that may be less familiar or are used inconsistently in
the literature are recalled in Section 1.1.

The rest of the chapter is more advanced. We suggest skipping it at first
reading and then returning to these topics when they are used later.

The classical theory of minimal models is summarized in Section 1.2. Min-
imal and canonical models of pairs are treated in greater detail in Section 1.3.
Our basic reference is Kollár and Mori (1998), but several of the results that
we discuss were not yet available when Kollár and Mori (1998) appeared. In
Section 1.4 we collect various theorems that can be used to improve the singu-
larities of a variety while changing the global structure only mildly. Random
facts about some singularities are collected in Section 1.5.

Assumptions Throughout this book, all schemes are assumed noetherian
and separated. Further restrictions are noted at the beginning of every
chapter.

All the concepts discussed were originally developed for projective varieties
over C. We made a serious effort to develop everything for rather general
schemes. This has been fairly successful for the basic results in Chapter 2, but
most of the later theorems are known only in characteristic 0.

1.1 Notation and conventions

Notation 1.1 The singular locus of a scheme X is denoted by SingX. It
is a closed, reduced subscheme if X is excellent. The open subscheme of
nonsingular points is usually denoted by Xns. For regular points we use Xreg.

The reduced scheme associated to X is denoted by redX.
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1.1 Notation and conventions 5

Divisors and Q-divisors

Notation 1.2 Let X be a normal scheme. A Weil divisor, or simply divisor,
on X is a finite, formal, Z-linear combination D =∑i miDi of irreducible and
reduced subschemes of codimension 1. The group of Weil divisors is denoted
by Weil(X) or by Div(X).

Given D and an irreducible divisor Di , let coeffDi
D denote the coefficient

of Di in D. That is, one can write D = (coeffDi
D) ·Di +D′ where Di is not

a summand in D′. The support of D is the subscheme ∪iDi ⊂ X where the
union is over all those Di such that coeffDi

D �= 0.
A divisor D is called reduced if coeffDi

D ∈ {0, 1} for every Di . We some-
times identify a reduced divisor with its support. If D =∑i aiDi (where the
Di are distinct, irreducible divisors) then redD :=∑i:ai �=0 Di denotes the
reduced divisor with the same support. One can usually identify redD and
SuppD.

Linear equivalence of divisors is denoted by D1 ∼ D2.
For a Weil divisor D, OX(D) is a rank 1 reflexive sheaf and D is a Cartier

divisor if and only if OX(D) is locally free. The correspondence D �→ OX(D)
is an isomorphism from the group Cl(X) of Weil divisors modulo linear equiva-
lence to the group of rank 1 reflexive sheaves. (This group does not seem to have
a standard name but it can be identified with Pic(X \ SingX).) In this group the
product of two reflexive sheaves L1, L2 is given by L1⊗̂L2 := (L1 ⊗ L2)∗∗,
the double dual or reflexive hull of the usual tensor product. For powers we use
the notation L[m] := (L⊗m)∗∗.

One can think of the Picard group Pic(X) as a subgroup of Cl(X).
A Weil divisor D is Q-Cartier if and only if mD is Cartier for some m �= 0.

Equivalently, if and only if OX(mD) = (OX(D))[m] is locally free for some
m �= 0.

A normal scheme is factorial if every Weil divisor is Cartier and Q-factorial
if every Weil divisor is Q-Cartier. See Boissière et al. (2011) for some founda-
tional results.

Note further that if L is a reflexive sheaf and D =∑ aiDi a Weil divisor
then L(D) denotes the sheaf of rational sections of L with poles of multiplicity
at most ai along Di . It is thus the double dual of L⊗ OX(D).

More generally, let X be a reduced, pure dimensional scheme that satis-
fies Serre’s condition S2. Let Cl∗(X) denote the abelian group generated by
the irreducible Weil divisors not contained in SingX, modulo linear equiva-
lence. (Thus, if X is normal, then Cl∗(X) = Cl(X).) As before, D �→ OX(D)
is an isomorphism from Cl∗(X) to the group of rank 1 reflexive sheaves
that are locally free at all codimension 1 points of X. For more details,
see (5.6).
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6 Preliminaries

Aside If X is not S2, then one should work with the group of rank 1 sheaves
that are S2. Thus OX(

∑
aiDi) should denote the sheaf of rational sections

of OX with poles of multiplicity at most ai along Di . Unfortunately, this is
not consistent with the usual notation OX(D) for a Cartier divisor D since
on a non-S2 scheme a locally free sheaf is not S2, hence we will avoid
using it.

Definition 1.3 (Q-Divisors) If in the definition of a Weil divisor
∑

i miDi we
allowmi ∈ Q (resp.mi ∈ R), we get the notion of a Q-divisor (resp. R-divisor).
We mostly work with Q-divisors. For singularity theory, (2.21) reduces every
question treated in this book from R-divisors to Q-divisors.

We say that a Q-divisor D is a boundary if 0 ≤ coeffDi
D ≤ 1 for every Di

and a subboundary if coeffDi
D ≤ 1 for every Di .

A Q-divisor D is Q-Cartier if mD is a Cartier divisor for some m �= 0.
Note the difference between a Q-Cartier divisor and a Q-Cartier Q-divisor.
Since the use of Q-divisors is rather pervasive in some parts of the book,

we sometimes call a divisor a Z-divisor to emphasize that its coefficients are
integers.

Two Q-divisors D1,D2 on X are Q-linearly equivalent if mD1 and mD2 are
linearly equivalent Z-divisors for some m �= 0. This is denoted by D1 ∼Q D2.

Let f : X → Y be a morphism. Two Q-divisors D1,D2 on X are relatively
Q-linearly equivalent if there is a Q-Cartier Q-divisor B on Y such that D1 ∼Q

D2 + f ∗B. This is denoted by D1 ∼Q,f D2.
For a Q-divisor D =∑i aiDi (where the Di are distinct irreducible divisors)

its round down is �D� :=∑i�ai�Di where �a� denotes the largest integer ≤ a.
We will also use the notation D>1 =:

∑
i:ai>1 aiDi and similarly for D<0,D≤1

and so on.

Definition 1.4 Let f : X → S be a proper morphism and D a Q-Cartier Q-
divisor on X. Let C ⊂ X be a closed 1-dimensional subscheme of a closed
fiber of f . Choose m > 0 such that mD is Cartier. Then

(D · C) := 1
m

degC(OX(mD)|C)

is called the intersection number or degree of D on C.
We say that D is f -nef if (D · C) ≥ 0 for every such curve C. If S is the

spectrum of a field, we just say that D is nef.
We say that D is f -semiample if there are proper morphisms π: X → Y

and g: Y → S and a g-ample Q-divisor H on Y such that D ∼Q π∗H . Thus
f -semiample implies f -nef.

If S is a point, the difference between semiample and nef is usually minor,
but for dim S > 0 the distinction is frequently important; see Section 10.3.
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1.1 Notation and conventions 7

Pairs

Mori’s program was originally conceived to deal with smooth projective vari-
eties. Later it became clear that one needs to handle certain singular varieties,
schemes, algebraic or analytic spaces, and also add a divisor to the basic object.

Our main interest is in pairs (X,�) where

� X is either a normal variety over a field k or a normal scheme of finite type
over a regular, excellent base scheme B. (In practice, the most important
cases are when B is the spectrum of a field or a Dedekind ring.)

� � is a Q-divisor such that 0 ≤ coeffD � ≤ 1 for every prime divisor D.

However, in some applications we need to work with non-normal varieties,
with schemes that are not of finite type and with noneffective divisors �. Thus
we consider the following general setting.

Definition 1.5 (Pairs) We consider pairs (X,�) over a base scheme B satis-
fying the following conditions.

(1) B is regular, excellent and pure dimensional.
(2) X is a reduced, pure dimensional, S2, excellent scheme that has a canonical

sheaf ωX/B (1.6). (We will frequently simply write ωX instead.)
(3) The canonical sheaf ωX/B is locally free outside a codimension 2 subset.

(This is automatic if X is normal.)
(4) � =∑ aiDi is a Q-linear combination of distinct prime divisors none

of which is contained in SingX. We allow the ai to be arbitrary rational
numbers. (See (2.20) for some comments on real coefficients.)

Although we will always work with schemes, the results of Chapters 1–2 all
apply to algebraic spaces and to complex analytic spaces satisfying the above
properties.

Comments Assumption (1) is a very mild restriction since most base schemes
can be embedded into a regular scheme. However, changing the base scheme
B changes ωX/B .

If B itself is of finite type over a field k, then we are primarily interested in
the “absolute” canonical sheaf ωX of X and not in the relative canonical sheaf
ωX/B for p: X → B. There is, however, no “absolute” canonical sheaf on a
scheme; the above “absolute” canonical sheaf on a k-variety is in fact ωX/Spec k .
If B is a smooth k-variety then

ωX/B � ωX/Spec k ⊗ p∗ω−1
B

and p∗ωB is a line bundle which is trivial along the fibers of p. In defining the
singularities of Mori’s program for k-varieties, we use various natural maps
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8 Preliminaries

between various “absolute” canonical sheaves. If we work over a smooth base
B, these maps just get tensored with the pull-back of ω−1

B ; the definitions and
theorems remain unchanged. This is the reason why one can work over a regular
base scheme in general.

It should be possible to define everything over a Gorenstein base scheme,
but we do not see any advantage to it.

Definition 1.6 (Canonical class and canonical sheaf) For most applications,
the usual definition of the canonical class and canonical sheaf given in Harts-
horne (1977) and Kollár and Mori (1998) is sufficient. More generally, if X

has a dualizing complex (Hartshorne (1966); Conrad (2000)), then its lowest
(that is, in degree − dimX/S ) cohomology sheaf is the dualizing sheaf ωX/S .
Unfortunately, the existence of a dualizing complex is a thorny problem for
general schemes. Instead of getting entangled in it, we discuss a simple special
case that is sufficient for most purposes. The uninitiated reader may also find
the discussion in Kovács (2012b, section 5) useful.

Let B be a regular base scheme and X → B be a pure dimensional scheme
of finite type over B that satisfies the following:

Condition 1.6.1 There is an open subscheme j: X0 ↪→ X and a (locally
closed) embedding ι: X0 ↪→ PN

B such that

(a) Z := X \X0 has codimension ≥ 2 in X, and
(b) ι(X0) is a local complete intersection in PN

B .

Let I denote the ideal sheaf of the closure of ι(X0). Then I/I 2 is a locally
free sheaf on ι(X0) and, as in Hartshorne (1977, II.8.20), we set

ωX0/B := ι∗(ωPN/B ⊗ det−1(I/I 2)). (1.6.2)

Finally define the canonical sheaf of X over B as

ωX/B := j∗ωX0/B. (1.6.3)

If ωX/B is locally free, it is frequently called the canonical bundle. We
frequently drop B from the notation.

If X0 is smooth over B, then one can define ωX using differentials, but in
general, differential forms give a different sheaf.

(We are mainly interested in three special cases and one extension of this
construction. First, if X is normal and quasi-projective then Z = SingX works.
Second, in dealing with stable varieties, we consider schemes X that have
ordinary nodes at some codimension 1 points. Third, we occasionally use
the dualizing sheaf for nonreduced divisors on a regular scheme. Finally, we
sometimes use that if p ∈ X is a point and X̂p the completion of X at p then
ω̂X/B is the canonical sheaf of X̂p.)
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1.1 Notation and conventions 9

If X is reduced, the corresponding linear equivalence class of Weil divisors
is denoted by KX.

Note that while Hartshorne (1977, II.8.20) is a theorem, for us (1.6.2–3) are
definitions. Therefore we need to establish that ωX/B does not depend on the
projective embedding chosen. This is easy to do by comparing two different
embeddings ι1, ι2 with the diagonal embedding

(ι1, ι2) : X0 ↪→ PN1
B ×B PN2

B ↪→ PN1N2+N1+N2
B .

We also need that ωX/B is the relative dualizing sheaf. If X itself is projective,
a proof is in Kollár and Mori (1998, section 5.5). For the general case see
Hartshorne (1966) and Conrad (2000).

Normal crossing conditions

Normal crossing means that something “looks like” the coordinate hyperplanes.
Depending on how one interprets “looking like,” one gets different notions. In
many instances, the difference between them is minor or merely a technical
annoyance. This is reflected by inconsistent usage in the literature. However, in
some applications, especially when the base field is not algebraically closed, the
differences are crucial. We have tried to adhere to the following conventions.

Definition 1.7 (Simple normal crossing for pairs) Let X be a scheme. Let
p ∈ X be a regular (not necessarily closed) point with ideal sheaf mp and
residue field k(p). Then x1, . . . , xn ∈ mp are called local coordinates if their
residue classes x̄1, . . . , x̄n form a k(p)-basis of mp/m

2
p.

Let D =∑ aiDi be a Weil divisor on X. We say that (X,D) has simple
normal crossing or snc at a (not necessarily closed) point p ∈ X if X is regular
at p and there is an open neighborhood p ∈ Xp ⊂ X with local coordinates
x1, . . . , xn ∈ mp such that Xp ∩ SuppD ⊂ (x1 · · · xn = 0). Alternatively, if for
each Di there is a c(i) such that Di = (xc(i) = 0) near p. We say that (X,D) is
simple normal crossing or snc if it is snc at every point. It is important to note
that being simple normal crossing is local in the Zariski topology, but not in
the étale topology.

This concept is frequently called strict normal crossing or, if X is defined
over an algebraically closed field, global normal crossing.

A stratum of an snc pair (X,
∑

i∈I aiDi) is any irreducible component
of an intersection ∩i∈JDi for some J ⊂ I . Sometimes X itself is allowed
as a stratum corresponding to J = ∅. All the strata of an snc pair are
regular.

We say that (X,D) has normal crossing or nc at a point p ∈ X if there is an
étale neighborhood π: (p′ ∈ X′) → (p ∈ X) such that (X′, π−1D) is snc at p′.
Equivalently, if (X̂K,D|X̂K

) is snc at p where X̂K denotes the completion at p
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10 Preliminaries

and K is a separable closure of k(p). We say that (X,D) is normal crossing
or nc if it is nc at every point. Being normal crossing is local in the étale
topology.

If (X,D) is defined over a perfect field, this concept is also called log
smooth.

Examples Let p ∈ D be a nc point of multiplicity 2. If the characteristic
is different from 2, then, in suitable local coordinates, D can be given by an
equation x2

1 − ux2
2 = 0 where u ∈ Op,X is a unit. D is snc at p if and only if u

is a square in Op,X.
Thus (y2 − (1 + x)x2) ⊂ A2 is nc but it is not snc at the origin. Similarly,

(x2 + y2 = 0) ⊂ A2 is nc but it is snc only if
√−1 is in the base field k.

Given (X,D), the largest open set U ⊂ X such that (U,D|U ) is snc is called
the snc locus of (X,D). It is denoted by snc(X,D). Its complement is called
the non-snc locus of (X,D) and denoted by non-snc(X,D).

We also use the analogously defined nc locus, denoted by nc(X,D), or its
complement non-nc(X,D).

Finally, p ∈ D is called a double, triple, etc. snc (or nc) point if D has
multiplicity 2, 3, etc. at p. The double-snc locus (resp. the double-nc locus) of
(X,D) is the largest open set U ⊂ X such that (U,D|U ) is snc (resp. nc) and
each point of D has multiplicity ≤ 2.

Definition 1.8 (Simple normal crossing schemes) Let Y be a scheme. We
say that Y has simple normal crossing or snc at a point p ∈ Y if there is an
open neighborhood p ∈ Yp ⊂ Y and a closed embedding Yp ↪→ Xp of Yp into
a regular scheme Xp such that (Xp, Yp) has simple normal crossing (1.7). We
say that Y is snc or has simple normal crossings if it is snc at every point. As
before, being simple normal crossing is local in the Zariski topology, but not
in the étale topology.

Let X be an snc scheme with irreducible components X = ∪i∈IXi . A stra-
tum of X is any irreducible component of an intersection ∩i∈JXi for some
J ⊂ I .

We say that Y has normal crossing or nc at a point p ∈ Y if there is an
étale neighborhood π: (p′ ∈ Y ′

p) → (p ∈ Y ) and a closed embedding Y ′
p ↪→

X′
p such that (X′

p, Y
′
p) has simple normal crossing (1.7). Equivalently, if ŶK is

snc at p where ŶK denotes the completion at p and K is a separable closure of
k(p). We say that Y is normal crossing or nc if it is nc at every point. Being
normal crossing is local in the étale topology.

Note that, étale locally, snc schemes and nc schemes look the same. An nc
scheme is snc if and only if its irreducible components are regular.

If X is defined over a perfect field, this concept is also called log smooth.
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