Index

2D Fourier transform method, 267–74
2D governing equations, 39–41
2D potential Green’s functions, 8–9
anisotropic elastic solids, governing equations and, 33–5
anisotropic magnetoelectroelastic bimaterial spaces, 293, 312–27
with extended point forces in material 2 and, 304–6
lower half-space under general surface conditions and, 306–7
pyramidal QD in piezoelectric full space, 312–13
QD inclusion in a piezoelectric half-space, 313–24
quantum dots in anisotropic piezoelectric semiconductors, 307–12
solutions in Fourier domain for forces in material 1 and, 294–6
solutions in physical domain for forces in material 1 and, 296–9
solutions in physical domain for forces in material 1 with imperfect interface conditions and, 299–301
triangular and hexagonal dislocation loops in elastic bimaterial space, 324–6
upper half-space under general surface conditions and, 302–3
anisotropic magnetoelectroelastic full spaces, 260–1, 281–7, 290–1
adjoint of a square matrix, 291–2
Cauchy’s residue theorem, 292
couple force, 281–2
dipoles, 281–2
dislocations, numerical examples of, 287–8
equivalent body forces of dislocations, 285–7
Green’s functions and in terms of line integrals, 261–5
in terms of Radon transform, 274–5
in terms of Stroh eigenvalues, 265–7
in terms of Stroh eigenvalues and eigenvectors, 275–81
via 2D Fourier transform method, 267–74
moments, 281–2
relations among dislocation, faulting and force moments, 282–5
anisotropic piezoelectric semiconductors, quantum dots in, 307–12
anti-plane deformation, elastic isotropic full plane, 57–8
anti-plane solutions elastic isotropic bimaterial planes
of line dislocations, 67–70
line force inside or outside circular inhomogeneity, 76–80
of line forces, 65–7
screw dislocation inside or outside circular inhomogeneity, 80–3
of line forces and line dislocations, 58–60
BEM (boundary element method), xv, 109
Betti’s reciprocal theorem applications of, 41–6
extended, 41
BIE (boundary integral equation), 23–4, 109
bimaterial planes elastic isotropic, 109–10
anti-plane solutions, 65–70, 76–83
image force of line dislocation, 101–7
image work of line forces, 107–8
plane-strain solutions, 70–6, 84–101
magnetoelectroelastic, 129, 137, 138
applications in semiconductor industry, 129–135
Green’s functions of line forces and line dislocations in, 123–8
half-spaces and, 221
potential Green’s functions in, 9–10
bimaterial spaces anisotropic MEE, 293, 312–27
with extended point forces in material 2, 304–6
bimaterial spaces (cont.)
lower half-space under general surface conditions and, 306–7
quantum dots in anisotropic piezoelectric semiconductors, 307–12
solutions in Fourier domain for forces in material 1 and, 294–6
solutions in physical domain for forces in material 1 and, 296–9
solutions in physical domain for forces in material 1 with imperfect interface conditions and, 299–301
upper half-space under general surface conditions and, 302–3
elastic isotropic
derivatives of some common functions, 172–3
dislocation solution, 166
displacements and stresses in half-space induced by point force applied on surface with mixed boundary conditions, 174–5
displacements and stresses in traction-free half-space due to point force applied on surface, 173–4
Green's displacements and stresses in, 158–66
mathemathic keys, 172
Papkovich functions, 145–58
uniform loading over circular area on half-space surface, 166–71
potential Green's functions in, 11–12
transversely isotropic MEE, 220–1, 257
Green's function solutions for MEE half-space, 241–6
horizontal point force, solutions for, 225–30
indentation over MEE half-space, 246–56
negative electric charge, solutions for, 221–5
negative magnetic charge, solutions for, 221–5
for other interface conditions, 237–41
reduced, 230–7
boundary element method (BEM), xv, 109
boundary integral equation (BIE), 23–4, 109
Boussinesq, J., 165
Boussinesq solution, 165, 172
extended, for electric charge, 243–4
extended, for magnetic charge, 243–4
extended, for vertical point force, 243–4
extended, indentation over MEE half space, 250–1
finding induced displacements and stresses, 166–7
Cauchy's residue theorem, 292
Cerruti, V., 165
Cerruti solution, 165
Cerruti solutions, extended, 244–6
charge electric
extended Boussinesq solution for, 243–4
piezoelectric bimaterial space and, 230–2
transversely isotropic magnetoelastic full spaces, 185–7
transversely isotropic MEE bimaterial spaces and, 221–5
vertical point forces and, 193–4
magnetic
extended Boussinesq solution for, 243–4
transversely isotropic MEE bimaterial spaces and, 221–5
transversely isotropic MEE full spaces and, 183–7
circular inhomogeneity
dislocation solution, 166
edge dislocations inside, 93–101
edge dislocations outside, 84–93
geometry of with source in matrix, 79
green's function, 11–12
geometry of with source inside, 78
line forces inside, 76–80, 93–101
line forces outside, 76–80, 84–93
screw dislocation inside or outside, 80–3
common functions, derivatives of, 172–3
complex function method, 60–1
constitutive relations, fully coupled MEE materials, 30
couple force, 281–2
cubic elastic solids, 39
decoupled solutions
of horizontal point force along x-axis, 194–6, 197–8
piezoelectric Green's functions, 191–3
of vertical point force, 196
of vertical point force and negative electric charge, 193–4
derivatives of extended Green's displacements, 211–13, 277–81
due to point source in x-direction, 211–12
due to point source in y-direction, 212–13
of scaled Green's function, 213–15
due to point source in K-direction, 214
due to point source in x-direction, 214–15
due to point source in y-direction, 215
of some common functions, elastic isotropic bimaterial spaces, 172–3
Ding, Haojiang, xvii
dipoles
anisotropic MEE full space and, 281–2
in elasticity, 284
with net moment and moment-free, 282
disk-like inclusion case, 208
dislocation. See also line dislocation
anti-symmetric and symmetric distributions and, 325
dislocation solution, elastic isotropic full and bimaterial spaces, 166
dislocation source pairs in elasticity, 284
distribution of shear stresses, 325
dislocation solution, elastic isotropic full and bimaterial spaces, 166
dislocation source pairs in elasticity, 284
distribution of shear stresses, 325
dislocation, 166
dislocation source pairs in elasticity, 284
distribution of shear stresses, 325
dislocation, 166
dislocation source pairs in elasticity, 284
distribution of shear stresses, 325
edge
inside circular inhomogeneity, 93–101
outside circular inhomogeneity, 84–93
Peach-Koehler force, 102–4, 105–7
equivalence between elastic dislocation and single force couple, 287
equivalent body forces of, 285–7

Index

geometry of regular triangular dislocation, 324
hexagonal dislocation loops in elastic bimaterial space, 324–6
point, 41–5, 136
relations among faulting and force moments and, 282–5
schematics of shear fault source, 285
screw, 101–2
triangular dislocation loops in elastic bimaterial space, 324–6
uniform, 288
displacements and stresses
effective stress, 291
elastic displacement, 289
extended Green's displacements, 209–11
derivatives of, 211–13, 277–81
in half-space induced by point force applied on surface with mixed boundary conditions, 174–5
hydrostatic stress, 290
normalized horizontal displacement, 169, 170
normalized stress component, 168, 169, 171
normalized vertical displacement, 168, 170
in traction-free half-space due to point force applied on surface, 173–4
divergence theorem, 6–8
dislocation solution, 166
displacements and stresses in half-space induced by point force applied on surface with mixed boundary conditions, 174–5
displacements and stresses in traction-free half-space due to point force applied on surface, 173–4
Green's functions of point forces in, 140–3
mathematic keys, 172
Papkovich functions, 143–5
uniform loading over circular area on half-space surface, 166–71
elastic materials, material properties for, 40
electric charge
extended Boussinesq solution for, 243–4
piezoelectric bimaterial space and, 230–2
transversely isotropic magnetoelastostatic full spaces, 183–7
transversely isotropic MEE bimaterial spaces and, 221–5
equilibrium equations from, 50–1
energy point of view, governing equations
anisotropic MEE solids and, 30
elastic displacements and, 141
Eshelby, John D., 46, 101
Eshelby inclusion problem, 46–8, 198–201, 216–17
quantum wires and, 129–135
spheroidal inclusion, 216–17
Eshelby inhomogeneity problem, 48–9
Eshelby tensor, extended, 201–8
extended Betti's reciprocal theorem, 41
extended Boussinesq solution for electric charge, 243–4
indentation over MEE half space, 250–1
for magnetic charge, 243–4
for vertical point force, 243–4
extended Cerruti solutions, for horizontal point force, 244–6
extended Eshelby tensor, 201–8
extended Green's displacements, 209–11
derivatives of, 211–13, 277–81
extended line dislocations, 45–6
extended line forces, 45–6
extended point dislocations, 41–5
extended point forces
bimaterial space under, 294
in material 2 with anisotropic MEE bimaterial space, 304–6
relation between extended point dislocations and, 41–5
anti-plane solutions of line forces and line dislocations, 58–60
plane displacements in terms of complex functions, 60–1
plane-strain deformation, 57–8
plane-strain solutions, 62–5
full spaces, 140
dislocation solution, 166
displacements and stresses in half-space induced by point force applied on surface with mixed boundary conditions, 174–5
displacements and stresses in traction-free half-space due to point force applied on surface, 173–4
Green's functions of point forces in, 140–3
mathematic keys, 172
Papkovich functions, 143–5
uniform loading over circular area on half-space surface, 166–71
eigenstrain field concept, 48–9
eigenvalues, Stroh, 265–7, 275–81
eigenvectors, Stroh, 275–81
elastic bimaterial space, triangular and hexagonal dislocation loops in, 324–6
elastic Green's functions, 195–6
elastic isotropic bimaterial planes, 109–10
anti-plane solutions, 65–70, 76–83
image force of line dislocation, 101–7
image work of line forces, 107–8
plane-strain solutions, 70–6, 84–101
bimaterial spaces
derivatives of some common functions, 172–3
dislocation solution, 166
displacements and stresses in half-space induced by point force applied on surface with mixed boundary conditions, 174–5
displacements and stresses in traction-free half-space due to point force applied on surface, 173–4
Green's displacements and stresses in, 158–66
mathematic keys, 172
Papkovich functions, 145–58
uniform loading over circular area on half-space surface, 166–71
full planes, 57
anti-plane deformation, 57–8
faulting moments, anisotropic MEE full space and, 282–5
flat triangles
analytical integral over, 308–12
cubic and spherical inclusions, 307
geometry of, 309
force
line, 115
under general interface conditions, 126–8
in half-plane under general boundary conditions, 119–23
inside circular inhomogeneity, 76–80, 93–101
outside circular inhomogeneity, 76–80, 84–93
line force in x-, y- directions, 123–6
anti-plane solutions of, 65–7
in half-plane, 118
image work of line forces, 107–8
under perfect interface conditions, 124–6
solutions in 2D, magnetoelectroelastic planes, 113–17
line force in z-direction, 62–3, 70–6
point force, 140–3
point force, extended
bimaterial space under, 294
in material 2 with anisotropic MEE bimaterial space, 304–6
relation between extended point dislocations and, 41–5
point force in horizontal direction
decoupled solutions of, 194–6, 197–8
extended Cerruti solutions for, 244–6
Green's displacements and stresses by, 157–8
piezoelectric bimaterial space and, 232–4, 235–7
solutions of along x-axis, 187–91
transversely isotropic MEE bimaterial spaces and, 225–30
point force in vertical direction
decoupled solutions of, 196
extended Boussinesq solutions for, 243–4
Green's displacements and stresses by, 158–60
negative electric charge and, 193–4
Papkovich functions for, 156–7
piezoelectric bimaterial space and, 230–2, 234–5
solutions of, 183–7
transversely isotropic MEE bimaterial spaces and, 221–5
point force in x-direction, 150–5, 156
point force in z-direction, 146–50, 155
force moments, anisotropic MEE full space and, 282–5
Fourier domain, anisotropic MEE bimaterial space and, 294–6
Fourier transform method (2D), 267–74
free surface, Green's function solutions for MEE half-space with, 241–2
full planes
elastic isotropic, 57
anti-plane deformation, 57–8
anti-plane solutions of line forces and line dislocations, 58–60
plane displacements in terms of complex functions, 60–1
plane-strain deformation, 57–8
plane-strain solutions, 62–5
magnetoelectroelastic, 111, 132, 138
applications in semiconductor industry, 129–135
Green's functions of line dislocations in half-plane, 118–19
Green's functions of line dislocations in half-plane under general boundary conditions, 119–23
Green's functions of line forces, 118
line force and line dislocation solutions in 2D, 113–17
plane-strain deformation, 111–13
full spaces
anisotropic MEE, 260–1, 281–8, 290–1
adjoint of a square matrix, 291–2
Cauchy's residue theorem, 292
Green's functions and, 261–81
elastic isotropic, 140
dislocation solution, 166
displacements and stresses in half-space induced by point force applied on surface with mixed boundary conditions, 174–5
displacements and stresses in traction-free half-space due to point force applied on surface, 173–4
Green's functions of point forces in, 140–3
mathematic keys, 172
Papkovich functions, 143–5
uniform loading over circular area on half-space surface, 166–71
transversely isotropic MEE, 176, 198–209
decoupled solutions, 191–6, 197–8
Eshelby inclusion problem, 216–17
extended Green's displacements, 209–13
general solutions in terms of potential functions, 176–83
infinite MEE space subjected to concentrated sources at the point, 177
negative electric charge and, 183–7
negative magnetic charge and, 183–7
scaled Green's function derivatives, 213–15
solutions of horizontal point force along x-axis, 187–91
solutions of vertical point force, 183–7
special material coupling cases, 209
unit sphere with spherical angles, 200
Gallium Arsenide (GaAs)
contours of electric potential on surface of, 315
contours of hydrostatic strain on surface of, 315
contours of vertical electric field on surface of, 316
maximum strain energy on surface of substrate GaAs for different QD shapes, 322
normalized strain energy on surface of half-space substrate of, 322
pyramidal inclusion in, 313, 314
Gauss’ theorem, 6–8
general anisotropic magnetoelastic solids, 29–32
general interface conditions, Green's functions of line dislocations and line forces under, 126–8
governing equations, 29, 50
anisotropic elastic solids, 33–5
Betti's reciprocal theorem applications of, 41–6 extended, 41
cubic elastic solids, 39
from energy point of view, 50–1
Eshelby inclusion problem, 46–8
Eshelby inhomogeneity problem, 48–9
in linearly elastic solid, 191–3
material properties for elastic materials, 40
of MEE reported in recent literature, 36
for piezoelectric materials, 32–3
for piezomagnetic materials, 33
transformation of MEE material properties from one coordinate system to the other, 51–4
transversely isotropic MEE solids, 35–6
transversely isotropic or isotropic elastic solids, 37–8
transversely isotropic piezoelectric/piezomagnetic solids, 37–8
in two-dimensional, 39–41
unit relations, 54
gradient relations, anisotropic MEE solids and, 30–2
Green, George, 6–8, 22–4
Green's displacements and stresses, 158–66.
See also displacements and stresses by horizontal point force, 161–6 by vertical point force, 158–60
Green's functions, 25
anisotropic MEE full space and in terms of line integrals, 261–5
in terms of Radon transform, 274–5
in terms of Stroh eigenvalues, 265–7
in terms of Stroh eigenvalues and eigenvectors, 275–81
via 2D Fourier transform method, 267–74 defined, 1–6
elastic, 195–6
of line dislocations, 123–6
Green's representation, Papkovich functions and, 143–5
Green's second identity, 6–8
half-plane
Green's functions of line dislocations in, 119–23
Green's functions of line forces in, 118–19
in half-plane under general boundary conditions, 119–23
half-space, MEE
Green's function solutions for, 241–6 with free surface, 241–2 with surface electrode, 242–3 surface functions, 243–6 indentation over, 249–56 axisymmetric rigid indenter and, 250 loaded and unloaded stages for conical indenter, 247 lower, anisotropic MEE bimaterial space and, 306–7 uniform loading over circular area on half-space surface, 166–71 upper, anisotropic MEE bimaterial space and, 302–3 hat transformation, 84
image force of line dislocation, elastic isotropic bimaterial planes, 101–7
image work of line forces, 107–8 on anti-plane line force in bimaterial planes, 108 on anti-plane line force interacting with circular inhomogeneity, 108
indentation over MEE half-space, 246–56
axisymmetric rigid indenter and, 250
loaded and unloaded stages for conical
indenter, 247
infinite circular cylinder case, 208
infinite series summation, integral over image line
source and, 25–7
inhomogeneous circle in full-space, potential
Green's functions and, 13–17
inhomogeneous sphere in full space, potential
Green's functions and, 17–22
integral equations for potential problems, 22–3
integral over image line source, infinite series
summation and, 25–7
interfaces
Green's functions of line dislocations and line
forces under, 126–8
perfect
Green's functions of line dislocations and line
forces under, 124–6
with Papkovich functions, 145–55
perfect-bonded, for Papkovich functions, 156–8
perfectly conducting, transversely isotropic
MEE bimaterial spaces and, 237–8
rigidly contacting and electromagnetically
insulating interface, bimaterial Green's
functions for, 238–41
smooth, Papkovich functions and, 155–8
smoothly contacting, transversely isotropic
MEE bimaterial spaces and, 237–41
transversely isotropic MEE bimaterial spaces
and, 237–8
transversely isotropic MEE bimaterial spaces
and, 237–8
isotropic elastic solids, 37–8
isotropic piezoelectric space, reduced TI MEE
bimaterial spaces and, 230–7
Kelvin's solution, 17, 141–3
line dislocation, 115
anti-plane solutions of, 67–70
extended, 45–6
Green's functions of, 123–6
under general interface conditions, 126–8
in half-plane, 118–19
in half-plane under general boundary
conditions, 119–23
under perfect interface conditions, 124–6
inside or outside circular inhomogeneity, 80–3
plane-strain solutions of
elastic isotropic bimaterial planes, 70–6
elastic isotropic full planes, 63–5
solutions in 2D, magnetoelectroelastic planes,
113–17
line forces, 115
anti-plane solutions of, 65–7
Green's functions of, 123–6
under general interface conditions, 126–8
in half-plane, 118
in half-plane under general boundary
conditions, 119–23
under perfect interface conditions, 124–6
image work of line forces, 107–8
on anti-plane line force in bimaterial
planes, 108
on anti-plane line force interacting with
circular inhomogeneity, 108
inside circular inhomogeneity, 76–80, 93–101
outside circular inhomogeneity, 76–80, 84–93
plane-strain solutions of
elastic isotropic bimaterial planes, 70–6
elastic isotropic full planes, 62–3
solutions in 2D, magnetoelectroelastic planes,
113–17
line integrals, anisotropic MEE full space
and, 261–5
Lorentz solution, 172, 241–2
Love, A. E. H., v
magnetic charge
extended Boussinesq solution for, 243–4
negative
transversely isotropic MEE bimaterial spaces
and, 221–5
transversely isotropic MEE full spaces
and, 183–7
magnetoelectric (ME) effect, 29
magnetoelectroelastic. See MEE
(magnetoelectroelastic)
material properties
AlN, 34, 317–321
BaTiO₃, 34, 36, 132, 176
CoFe₂O₄, 36, 38, 132, 176
for elastic materials, 40
GaAs, 34
contours of electric potential on surface
of, 315
contours of hydrostatic strain on surface
of, 315
contours of vertical electric field on surface
of, 316
maximum strain energy on surface of
substrate GaAs for different QD
shapes, 322
normalized strain energy on surface of half-
space substrate of, 322
pyramidal inclusion in, 313, 314
GaN, 34
InAs, 34
InN, 34
of MEE reported in recent literature, 36
for piezoelectric materials, 34
PZT, 36, 135
SiC, 34
Terfenol-D, 38
for TI piezomagnetic materials, 38
transformation of MEE material properties from
one coordinate system to the other, 51–4
ME (magnetoelectric) effect, 29
MEE (magnetoelectroelastic).
See also transversely isotropic (TI) MEE
bimaterial spaces; transversely isotropic
(TI) MEE full spaces
anisotropic magnetoelectroelastic bimaterial spaces, 293, 312–27
with extended point forces in material 2 and, 304–6
lower half-space under general surface conditions and, 306–7
quantum dots in anisotropic piezoelectric semiconductors, 307–12
solutions in Fourier domain for forces in material 1 and, 294–6
solutions in physical domain for forces in material 1 and, 296–9
solutions in physical domain for forces in material 1 with imperfect interface conditions and, 299–301
upper half-space under general surface conditions and, 302–3
anisotropic magnetoelectroelastic full spaces, 260–1, 281–2
adjoint of square matrix, 291–2
Cauchy's residue theorem, 292
Green's functions and, 261–81
bimaterial planes, 129, 137, 138
applications in semiconductor industry, 129–135
Green's functions of line forces and line dislocations in, 123–8
half-spaces and, 221
composites, 29
general anisotropic magnetoelectroelastic solids, 29–32
material properties of, 36
physical meanings of boundary conditions, 121
full planes, 111, 132, 138
applications in semiconductor industry, 129–135
Green's functions of line dislocations in half-plane, 118–19
Green's functions of line dislocations in half-plane under general boundary conditions, 119–23
Green's functions of line forces in half-plane, 118
Green's functions of line forces in half-plane under general boundary conditions, 119–23
line force and line dislocation solutions in 2D, 113–17
plane-strain deformation, 111–13
half-spaces, 221
Green's function solutions for, 241–6
indentation over, 249–56
Mindlin, Raymond D., 165
Mindlin solution, 172, 241–2
moments
anisotropic MEE full space and, 281–2
faulting, anisotropic MEE full space and, 282–5
force, anisotropic MEE full space and, 282–5
Muskhelishvili, Nikolaos I., 57, 60
negative electric charge
piezoelectric bimaterial space and, 230–2
transversely isotropic magnetoelectroelastic full spaces, 183–7
transversely isotropic MEE bimaterial spaces and, 221–5
vertical point forces and, 193–4
negative magnetic charge
transversely isotropic magnetoelectroelastic full spaces, 183–7
transversely isotropic MEE bimaterial spaces and, 221–5
Neumann, C., 17
normalized horizontal displacement, 169, 170
normalized stress component, 168, 169, 171
normalized vertical displacement, 168, 170
orthogonal relations, anisotropic MEE full space and, 276
Papkovich functions
Green's representation and, 143–5
with perfect interface, 145–55
for perfect-bonded and smooth interfaces, 156–8
with smooth interface, 155–6
Peach-Koehler (PK) force
on edge dislocation in elastic isotropic bimaterial planes, 102–4
on edge dislocation interacting with circular inhomogeneity, 105–7
on screw dislocation in elastic isotropic bimaterial planes, 101–2
perfect interfaces
Green's functions of line dislocations and line forces under, 124–8
with Papkovich functions, 145–55
perfect-bonded interfaces, for Papkovich functions, 156–8
perfectly conducting interface, transversely isotropic MEE bimaterial spaces and, 237–8
physical domain
for forces in material 1, anisotropic MEE bimaterial space and, 296–9
for forces in material 1 with imperfect interface conditions, anisotropic MEE bimaterial space and, 299–301
piezoelectric full space, pyramidal quantum dots in, 312–13
piezoelectric Green's functions, 191–3
piezoelectric half-space, quantum dots inclusion in, 313–24
piezoelectric materials
governing equations and, 32–3
material properties for, 34
piezomagnetic materials, governing equations and, 33
PK (Peach-Koehler) force
on edge dislocation in elastic isotropic
bimaterial planes, 102–4
on edge dislocation interacting with circular
inhomogeneity, 105–7
on screw dislocation in elastic isotropic
bimaterial planes, 101–2
plane displacements in terms of complex
functions, 60–1
plane-strain deformation
elastic isotropic full plane, 57–8
full planes, magnetoelectroelastic, 111–13
plane-strain solutions
elastic isotropic bimaterial planes, 84
of line dislocations, 70–6
of line forces, 70–6
line forces or edge dislocations inside circular
inhomogeneity, 93–101
line forces or edge dislocations outside
circular inhomogeneity, 84–93
elastic isotropic full planes
of line dislocations, 63–5
of line forces, 62–3
point dislocation, 43, 136
extended, 41–5
point forces
extended
bimaterial space under, 294
in material 2 with anisotropic MEE
bimaterial space, 304–6
relation between extended point dislocations
and, 41–5
Green's functions of, 140–3
horizontal
decoupled solutions of, 194–6, 197–8
extended Cerruti solutions for, 244–6
Green's displacements and stresses by, 161–6
Papkovich functions for, 157–8
piezoelectric bimaterial space and,
232–4, 235–7
solutions of along x-axis, 187–91
transversely isotropic MEE bimaterial spaces
and, 225–30
normal to interface, 146–50, 155
parallel to interface, 150–5, 156
vertical
decoupled solutions of, 196
extended Boussinesq solutions for, 243–4
Green's displacements and stresses by, 158–60
negative electric charge and, 193–4
Papkovich functions for, 156–7
piezoelectric bimaterial space and,
230–2, 234–5
solutions of, 183–7
transversely isotropic MEE bimaterial spaces
and, 221–5
point-source solutions, anisotropic MEE full space
and, 281–7
couple force, 281–2
dipoles, 281–2
equivalent body forces of dislocations, 285–7
moments, 281–2
relations among dislocation, faulting and force
moments, 282–5
Poisson's integral formula
in 2D and 3D domains, 2–6
potential Green's functions in anisotropic plane
or space, 15–16
potential Green's functions in bimaterial
planes, 10
potential Green's functions, 8–22
in anisotropic planes or spaces, 12–13
in bimaterial planes, 9–10
in bimaterial spaces, 11–12
general solutions in terms of, 176–83
inhomogeneous circle in full-plane, 13–17
inhomogeneous sphere in full space, 17–22
3D, 8–9
2D, 8–9
pyramidal quantum dots
under extended uniform eigenstrain fields, 313
in piezoelectric full space, 312–13
quantum dots (QD)
in anisotropic piezoelectric semiconductors,
307–12
analytical integral over flat triangle, 308–12
contour of electric potential on the surface of
AIN, 321
contours of electric potential on surface of
AIN, 319
contours of horizontal electric field on surface
of AIN, 318
contours of hydrostatic strain and electric
potential on surface of AIN, 317
green surface for, 321
inclusion, in piezoelectric half-space, 313–24
pyramid, geometry of, 323
pyramidal
under extended uniform eigenstrain
fields, 313
in piezoelectric full space, 312–13
schematic of hexagonal truncated-pyramidal
AIN QD, 319
schematic of pair of hexagonal truncated-pyramidal
AIN QD, 320
vertical profile of hexagonal truncated-pyramidal
AIN QD, 320
quantum wires (QWRs), 129–131
in MEE half-plane, 132–3
in piezoelectric bimaterial plane, 135
in piezoelectric full plane, 131–2
square, 132
T-shaped, 133, 134
Radon transform, anisotropic MEE full space
and, 274–5
reduced TI MEE bimaterial spaces, 230–7
isotropic piezoelectric space, 230–7
scaled Green's function derivatives, 213–15
screw dislocation, 101–2.
Index

semiconductor industry, 129–135
singular function, 1. See also Green's functions
smooth interfaces
Papkovich functions and, 155–8
smoothly contacting interface, transversely isotropic MEE bimaterial spaces and, 237–8
special material coupling cases, 209
spherical case, 208
spheroidal inclusion, Eshelby inclusion problem, 216–17
Stokes' theorem, 7–8
stresses. See displacements and stresses
Stroh formalism, anisotropic MEE full space and, 265–275
surface electrode, Green's function solutions for MEE half-space with, 242–3
surface functions, Green's function solutions for MEE half-space and, 243–6
3D potential Green's functions, 8–9
TI (transversely isotropic) magnetostrictive materials, 37, 38
TI (transversely isotropic) solids, 35–6, 37–8
TI MEE bimaterial spaces. See transversely isotropic MEE bimaterial spaces
TI MEE full spaces. See transversely isotropic MEE full spaces
Timoshenko, Stephen P., 1
transversely isotropic (TI) MEE bimaterial spaces, 220, 257
Green's function solutions for MEE half-space, 241–6
with free surface, 241–2
with surface electrode, 242–3
surface functions, 243–6
horizontal point force, solutions for, 225–30
indentation over, 246–56
negative electric charge, solutions for, 221–5
negative magnetic charge, solutions for, 221–5
for other interface conditions, 237–41
problem description, 220–1
reduced, 230–7
isotropic piezoelectric space, 230–7
vertical point force, solutions for, 221–5
transversely isotropic (TI) MEE full spaces, 176, 198–209
decoupled solutions of horizontal point force along x-axis, 194–6, 197–8
piezoelectric Green's functions, 191–3
of vertical point force, 196
of vertical point force and negative electric charge, 193–4
Eshelby inclusion problem, 198–201, 216–17
spheroidal inclusion, 216–17
extended Eshelby tensor, 201–8
extended Green's displacements, 209–13
general solutions in terms of potential functions, 176–83
infinite MEE space subjected to concentrated sources at the point, 177
negative electric charge, 183–7
negative magnetic charge, 183–7
scaled Green's function derivatives, 213–15
solutions of horizontal point force along x-axis, 187–91
solutions of vertical point force, 183–7
special material coupling cases, 209
unit sphere with the spherical angles, 200
transversely isotropic (TI) piezomagnetic (magnetostrictive) materials, 37
transversely isotropic (TI) solids, 35–6, 37–8
triangles, flat
analytical integral over, 308–12
cubic and spherical inclusions, 307
geometery of, 309
triangular dislocation loops, in elastic bimaterial space, 324–6
2D Fourier transform method, 267–74
2D potential Green's functions, 8–9
two-dimensional governing equations, 39–41
two-point function, 2. See also Green's functions
unified-form Green's functions, 197–8
uniform loading over circular area on half-space surface, 166–71
unit relations, governing equations and, 54
unit sphere with spherical angles, 200
vertical point forces
decoupled solutions of, 196
extended Boussinesq solution for, 243–4
Green's displacements and stresses by, 158–60
negative electric charge and, 193–4
piezoelectric bimaterial space and, 230–2, 234–5
solutions of, 183–7
transversely isotropic MEE bimaterial spaces and, 221–5