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Microscopic theory of radiation 1

On October 19, 1900, Max Planck proposed an explanation of the blackbody radiation
spectrum involving a new fundamental constant of nature, h = 6.626× 10−34 J s [Planck,
1901]. Although Planck’s result precipitated the development of quantum mechanics (i.e.
the quantum mechanics of electrons), his original observation was about the quantum
nature of light, which is a topic for quantum field theory. Thus, radiation is a great moti-
vation for the development of a quantum theory of fields. This introductory topic involves
a little history, a little statistical mechanics, a little quantum mechanics, and a little quan-
tum field theory. It provides background and motivation for the systematic presentation of
quantum field theory that begins in Chapter 2.

1.1 Blackbody radiation

In 1900, no one had developed a clear explanation for the spectrum of radiation from
hot objects. A logical approach at the time was to apply the equipartition theorem, which
implies that a body in thermal equilibrium should have energy equally distributed among
all possible modes. For a hot gas, the theorem predicts the Maxwell–Boltzmann distribu-
tion of thermal velocities, which is in excellent agreement with data. When applied to the
spectrum of light from a hot object, the equipartition theorem leads to a bizarre result.

A blackbody is an object at fixed temperature whose internal structure we do not care
about. It can be treated as a hot box of light (or Jeans cube) in thermal equilibrium. Classi-
cally, a box of size L (with periodic boundary conditions for simplicity) supports standing
electromagnetic waves with angular frequencies

ωn =
2π
L
|�n|c (1.1)

for integer 3-vectors �n, with c being the speed of light. Before 1900, physicists believed
you could have as much or as little energy in each mode as you want. By the (classical)
equipartition theorem, blackbodies should emit light equally in all modes with the intensity
growing as the differential volume of phase space:

I(ω) ≡ 1
V

d

dω
E(ω) = const× c−3ω2kBT (classical). (1.2)

More simply, this classical result follows from dimensional analysis: it is the only quantity
with units of energy × time × distance−3 that can be constructed out of ω, kBT and
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4 Microscopic theory of radiation

Classical

Observed

ω

I(ω)

�Fig. 1.1 The ultraviolet catastrophe. The classical prediction for the intensity of radiation coming
from a blackbody disagrees with experimental observation at large frequencies.

c. We will set c = 1 from now on, since it can be restored by dimensional analysis (see
Appendix A).

The classical spectrum implies that the amount of radiation emitted per unit frequency
should increase with frequency, a result called the ultraviolet catastrophe. Experimen-
tally, the distribution looks more like a Maxwell–Boltzmann distribution, peaked at some
finite ω, as shown in Figure 1.1. Clearly the equipartition theorem does not work for
blackbody radiation.

The incompatibility of observations with the classical prediction led Planck to postu-
late that the energy of each electromagnetic mode in the cavity is quantized in units of
frequency:1

En = �ωn =
2π
L

�|�n| = |�pn|, (1.3)

where h is the Planck constant and � ≡ h
2π . Albert Einstein later interpreted this as imply-

ing that light is made up of particles (later called photons, by the chemist Gilbert Lewis).
Note that if the excitations are particles, then they are massless:

m2
n = E2

n − |�pn|2 = 0. (1.4)

If Planck and Einstein are right, then light is really a collection of massless photons. As
we will see, there are a number of simple and direct experimental consequences of this
hypothesis: quantizing light resolves the blackbody paradox; light having energy leads to
the photoelectric effect; and light having momentum leads to Compton scattering. Most
importantly for us, the energy hypothesis was the key insight that led to the development
of quantum field theory.

With Planck’s energy hypothesis, the thermal distribution is easy to compute. Each mode
of frequency ωn can be excited an integer number j times, giving energy jEn = j(�ωn)

1 Planck was not particularly worried about the ultraviolet catastrophe, since there was no strong argument why
the equipartition theorem should hold universally; instead, he was trying to explain the observed spectrum. He
first came up with a mathematical curve that fit data, generalizing previous work of Wilhelm Wien and Lord
Rayleigh, then wrote down a toy model that generated this curve. The interpretation of his model as referring
to photons and the proper statistical mechanics derivation of the blackbody spectrum did not come until years
later.
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1.2 Einstein coefficients 5

in that mode. The probability of finding that much energy in the mode is the same
as the probability of finding energy in anything, proportional to the Boltzmann weight
exp(−energy/kBT ). Thus, the expectation value of energy in each mode is

〈En〉 =

∑∞
j=0(jEn)e

−jEnβ∑∞
j=0 e

−jEnβ =
− d
dβ

1
1−e−�ωnβ

1
1−e−�ωnβ

=
�ωn

e�ωnβ − 1
, (1.5)

where β = 1/kBT . (This simple derivation is due to Peter Debye. The more modern
one, using ensembles and statistical mechanics, was first given by Satyendra Nath Bose in
1924.)

Now let us take the continuum limit, L → ∞. In this limit, the sums turn into integrals
and the average total energy up to frequency ω in the blackbody is

E(ω) =
∫ ω

d3�n
�ωn

e�ωnβ − 1
=
∫ 1

−1

d cos θ
∫ 2π

0

dφ

∫ ω
0

d|�n| |�n|
2�ωn

e�ωnβ − 1

= 4π�
L3

8π3

∫ ω
0

dω′ ω′3

e�ω′β − 1
. (1.6)

Thus, the intensity of light as a function of frequency is (adding a factor of 2 for the two
polarizations of light)

I(ω) =
1
V

dE(ω)
dω

=
�

π2

ω3

e�ωβ − 1
. (1.7)

It is this functional form that Planck showed in 1900 correctly matches experiment.
What does this have to do with quantum field theory? In order for this derivation, which

used equilibrium statistical mechanics, to make sense, light has to be able to equilibrate. For
example, if we heat up a box with monochromatic light, eventually all frequencies must be
excited. However, if different frequencies are different particles, equilibration must involve
one kind of particle turning into another kind of particle. So, particles must be created and
destroyed. Quantum field theory tells us how that happens.

1.2 Einstein coefficients

A straightforward way to quantify the creation of light is through the coefficient of spon-
taneous emission. This is the rate at which an excited atom emits light. Even by 1900, this
phenomenon had been observed in chemical reactions, and as a form of radioactivity, but
at that time it was only understood statistically. In 1916, Einstein came up with a simple
proof of the relation between emission and absorption based on the existence of thermal
equilibrium. In addition to being relevant to chemical phenomenology, his relation made
explicit why a first principles quantum theory of fields was needed.

Einstein’s argument is as follows. Suppose we have a cavity full of atoms with energy
levels E1 and E2. Assume there are n1 of the E1 atoms and n2 of the E2 atoms and let
�ω = E2−E1. The probability for anE2 atom to emit a photon of frequency ω and transi-
tion to state E1 is called the coefficient for spontaneous emission A. The probability for
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6 Microscopic theory of radiation

a photon of frequency ω to induce a transition from 2 to 1 is proportional to the coefficient
of stimulated emission B and to the number of photons of frequency ω in the cavity, that
is, the intensity I(ω). These contribute to a change in n2 of the form

dn2 = − [A+BI(ω)]n2. (1.8)

The probability for a photon to induce a transition from 1 to 2 is called the coefficient of
absorption B′. Absorption decreases n1 and increases n2 by B′I(ω)n1. Since the total
number of atoms is conserved in this two-state system, dn1 + dn2 = 0. Therefore,

dn2 = −dn1 = −[A+BI(ω)]n2 +B′I(ω)n1. (1.9)

Even though we computed I(ω) above for the equilibrium blackbody situation, these equa-
tions should hold for any I(ω). For example, I(ω) could be the intensity of a laser beam
we shine at some atoms in the lab.

At this point, Einstein assumes the gas is in equilibrium. In equilibrium, the number
densities are constant, dn1 = dn2 = 0, and determined by Boltzmann distributions:

n1 = Ne−βE1 , n2 = Ne−βE2 , (1.10)

where N is some normalization factor. Then[
B′e−βE1 −Be−βE2

]
I(ω) = Ae−βE2 (1.11)

and so

I(ω) =
A

B′e�βω −B . (1.12)

However, we already know that in equilibrium

I(ω) =
�

π2

ω3

e�βω − 1
(1.13)

from Eq. (1.7). Since equilibrium must be satisfied at any temperature, i.e. for any β, we
must have

B′ = B (1.14)

and
A

B
=

�

π2
ω3. (1.15)

These are simple but profound results. The first, B = B′, says that the coefficient of
absorption must be the same as the coefficient for stimulated emission. The coefficients B
and B′ can be computed in quantum mechanics (not quantum field theory!) using time-
dependent perturbation theory with an external electromagnetic field. Then Eq. (1.15)
determines A. Thus, all the Einstein coefficients A, B and B′ can be computed without
using quantum field theory.

You might have noticed something odd in the derivation of Eqs. (1.14) and (1.15). We,
and Einstein, needed to use an equilibrium result about the blackbody spectrum to derive
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1.3 Quantum field theory 7

the A/B relation. Does spontaneous emission from an atom have anything to do with
equilibrium of a gas? It does not seem that way, since an atom radiates at the same rate no
matter what is around it. The calculation of A/B from first principles was not performed
until 10 years after Einstein’s calculation; it had to wait until the invention of quantum field
theory.

1.3 Quantum field theory

The basic idea behind the calculation of the spontaneous emission coefficient in quan-
tum field theory is to treat photons of each energy as separate particles, and then
to study the system with multi-particle quantum mechanics. The following treatment
comes from a paper of Paul Dirac from 1927 [Dirac, 1927], which introduced the
idea of second quantization. This paper is often credited for initiating quantum field
theory.

Start by looking at just a single-frequency (energy) mode of a photon, say of energy
Δ. This mode can be excited n times. Each excitation adds energy Δ to the system. So,
the energy eigenstates have energies Δ, 2Δ, 3Δ, . . . . There is a quantum mechanical sys-
tem with this property that you may remember from your quantum mechanics course: the
simple harmonic oscillator (reviewed in Section 2.2.1 and Problem 2.7).

The easiest way to study a quantum harmonic oscillator is with creation and annihilation
operators, a† and a. These satisfy

[a, a†] = 1. (1.16)

There is also the number operator N̂ = a†a, which counts modes:

N̂ |n〉 = n|n〉. (1.17)

Then,

N̂a†|n〉 = a†aa†|n〉 = a†|n〉+ a†a†a|n〉 = (n+ 1)a†|n〉. (1.18)

Thus, a†|n〉 = C|n+1〉 for some constant C, which can be chosen real. We can determine
C from the normalization 〈n|n〉 = 1:

C2 = 〈n+ 1|C2|n+ 1〉 = 〈n|aa†|n〉 = 〈n|(a†a+ 1)|n〉 = n+ 1, (1.19)

so C =
√
n+ 1. Similarly, a|n〉 = C ′|n− 1〉 and

C ′2 = 〈n− 1|C ′2|n− 1〉 = 〈n|a†a|n〉 = n, (1.20)

so C ′ =
√
n. The result is that

a†|n〉 =
√
n+ 1|n+ 1〉, a|n〉 =

√
n|n− 1〉. (1.21)

While these normalization factors are simple to derive, they have important implications.
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8 Microscopic theory of radiation

Now, you may recall from quantum mechanics that transition rates can be computed
using Fermi’s golden rule. Fermi’s golden rule says that the transition rate between two
states is proportional to the matrix element squared:

Γ ∼ |M|2δ(Ef − Ei), (1.22)

where the δ-function serves to enforce energy conservation. (We will derive a similar for-
mula for the transition rate in quantum field theory in Chapter 5. For now, we just want to
use quantum mechanics.) The matrix element M in this formula is the projection of the
initial and final states on the interaction Hamiltonian:

M = 〈f |Hint|i〉. (1.23)

In this case, we do not need to know exactly what the interaction Hamiltonian Hint is. All
we need to know is that Hint must have some creation operator or annihilation operator to
create the photon. Hint also must be Hermitian. Thus it must look like2

Hint = H†
Ia

† +HIa, (1.24)

with HI having non-zero matrix elements between initial and final atomic states.
For the 2 → 1 transition, the initial state is an excited atom we call atom2 with nω

photons of frequency ω = Δ/�:

|i〉 = |atom2;nω〉. (1.25)

The final state is a lower energy atom we call atom1 with nω + 1 photons of energy Δ:

〈f | = 〈atom1;nω + 1|. (1.26)

So,

M2→1 = 〈atom1;nω + 1|(H†
Ia

† +HIa)|atom2;nω〉
= 〈atom1|H†

I |atom2〉〈nω + 1|a†|nω〉+ 〈atom1|HI |atom2〉〈nω + 1|a|nω〉
= M†

0〈nω + 1|nω + 1〉
√
nω + 1 + 0

= M†
0

√
nω + 1 (1.27)

whereM†
0 = 〈atom1|H†

I |atom2〉. Thus,

|M2→1|2 = |M0|2(nω + 1). (1.28)

If instead we are exciting an atom, then the initial state has an unexcited atom and nω
photons:

|i〉 = |atom1;nω〉 (1.29)

2 Dirac derivedHI from the canonical introduction of the vector potential into the Hamiltonian:H = 1
2m

�p2 →
1

2m
(�p + e �A)2. This leads to Hint ∼ e

m
�A · �p representing the photon interacting with the atom’s electric

dipole moment. In our coarse approximation, the photon field �A is represented by a and so HI must be
related to the momentum operator �p. Fortunately, all that is needed to derive the Einstein relations is that HI

is something with non-zero matrix elements between different atomic states; thus, we can be vague about its
precise definition. For more details consult [Dirac, 1927] or [Dirac, 1930, Sections 61–64].
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1.3 Quantum field theory 9

and the final state has an excited atom and nω − 1 photons:

〈f | = 〈atom2;nω − 1|. (1.30)

This leads to

M1→2 = 〈atom2;nω − 1|H†
Ia

† +HIa|atom1;nω〉
= 〈atom2|HI |atom1〉〈nω − 1|a|nω〉
= M0

√
nω (1.31)

and therefore,

dn2 = −dn1 = −|M2→1|2n2 + |M1→2|2n1 = −|M0|2(nω + 1)n2 + |M0|2(nω)n1.

(1.32)
This is pretty close to Einstein’s equation, Eq. (1.9):

dn2 = −dn1 = −[A+BI(ω)]n2 +B′I(ω)n1. (1.33)

To get them to match exactly, we just need to relate the number of photon modes of fre-
quency ω to the intensity I(ω). Since the energies are quantized by Δ = �ω = � 2π

L |�n|, the
total energy is

E(ω) =
∫ ω

d3�n(�ω)nω = (4π)�L3

∫ ω
0

dω

(2π)3
ω3nω. (1.34)

We should multiply this by 2 for the two polarizations of light. (Dirac actually missed this
factor in his 1927 paper, since polarization was not understood at the time.) Including the
factor of 2, the intensity is

I(ω) =
1
L3

dE

dω
=

�ω3

π2
nω. (1.35)

This equation is a standard statistical mechanical relation, independent of what nω actually
is; its derivation required no mention of temperature or of equilibrium, just a phase space
integral.

So now we have

dn2 = −dn1 = −|M0|2
[
1 +

π2

�ω3
I(ω)
]
n2 + |M0|2

[
π2

�ω3
I(ω)
]
n1 (1.36)

and can read off Einstein’s relations,

B′ = B,
A

B
=

�

π2
ω3, (1.37)

without ever having to assume thermal equilibrium. This beautiful derivation was one of
the first ever results in quantum field theory.
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2 Lorentz invariance and second
quantization

In the previous chapter, we saw that by treating each mode of electromagnetic radiation in a
cavity as a simple harmonic oscillator, we can derive Einstein’s relation between the coeffi-
cients of induced and spontaneous emission without resorting to statistical mechanics. This
was our first calculation in quantum electrodynamics (QED). It is not a coincidence that
the harmonic oscillator played an important role. After all, electromagnetic waves oscil-
late harmonically. In this chapter we will review special relativity and the simple harmonic
oscillator and show how they are connected. This leads naturally to the notion of second
quantization, which is a poorly chosen phrase used to describe the canonical quantization
of relativistic fields.

It is worth mentioning at this point that there are two ways commonly used to quan-
tize a field theory, both of which are covered in depth in this book. The first is canonical
quantization. This is historically how quantum field theory was understood, and closely
follows what you learned in quantum mechanics. The second way is called the Feynman
path integral. Path integrals are more concise, more general, and certainly more formal,
but when using path integrals it is sometimes hard to understand physically what you are
calculating. It really is necessary to understand both ways. Some calculations, such as the
LSZ formula which relates scattering amplitudes to correlation function (see Chapter 6),
require the canonical approach, while other calculations, such as non-perturbative quan-
tum chromodynamics (see Chapter 25), require path integrals. There are other ways to
perform quantum field theory calculations, for example using old-fashioned perturbation
theory (Chapter 4), or using Schwinger proper time (Chapter 33). Learning all of these
approaches will give you a comprehensive picture of how and why quantum field theory
works. We start with canonical quantization, as it provides the gentlest introduction to
quantum field theory.

From now on we will set � = c = 1. This gives all quantities dimensions of mass to
some power (see Appendix A).

2.1 Lorentz invariance

Quantum field theory is the result of combining quantum mechanics with special relativity.
Special relativity is relevant when velocities are a reasonable fraction of the speed of light,
v ∼ 1. In this limit, a new symmetry emerges: Lorentz invariance. A system is Lorentz
invariant if it is symmetric under the Lorentz group, which is the generalization of the
rotation group to include both rotations and boosts.

10
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