Dynamic Models for Volatility and Heavy Tails

The volatility of financial returns changes over time and, for the last thirty years, Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models have provided the principal means of analyzing, modelling and monitoring such changes. Taking into account that financial returns typically exhibit heavy tails – that is, extreme values can occur from time to time – Andrew C. Harvey’s new book shows how a small but radical change in the way GARCH models are formulated leads to a resolution of many of the theoretical problems inherent in the statistical theory. The approach can also be applied to other aspects of volatility, such as those arising from data on the range of returns and the time between trades. Furthermore, the more general class of Dynamic Conditional Score models extends to robust modelling of outliers in the levels of time series and to the treatment of time-varying relationships. As such, there are applications not only to financial data but also to macroeconomic time series and to time series in other disciplines. The statistical theory draws on basic principles of maximum likelihood estimation and, by doing so, leads to an elegant and unified treatment of nonlinear time-series modelling. The practical value of the proposed models is illustrated by fitting them to real data sets.

Andrew C. Harvey is Professor of Econometrics at the University of Cambridge and a Fellow of Corpus Christi College. He is a Fellow of the Econometric Society and of the British Academy. He has published more than 100 articles in journals and edited volumes and is the author of three books, *The Econometric Analysis of Time Series, Time Series Models and Forecasting and Structural Time Series Models and the Kalman Filter* (Cambridge University Press, 1989). He is one of the developers of the STAMP computer package.
Econometric Society Monographs

Editors:
Rosa L. Matzkin, University of California, Los Angeles
George J. Mailath, University of Pennsylvania

The Econometric Society is an international society for the advancement of economic theory in relation to statistics and mathematics. The Econometric Society Monograph series is designed to promote the publication of original research contribution of high quality in mathematical economics and theoretical and applied econometrics.

Other titles in the series:
G. S. Maddala, Limited dependent and qualitative variables in econometrics, 9780521241434, 9780521338257
Gerard Debreu, Mathematical economics: Twenty papers of Gerard Debreu, 9780521237369, 9780521335614
Jean-Michel Grandmont, Money and value: A reconsideration of classical and neoclassical monetary economics, 9780521251419, 9780521313643
Franklin M. Fisher, Disequilibrium foundations of equilibrium economics, 9780521378567
Andreu Mas-Colell, The theory of general equilibrium: A differentiable approach, 9780521265140, 9780521388702
Truman F. Bewley, Editor, Advances in econometrics – Fifth World Congress (Volume I), 9780521467261
Truman F. Bewley, Editor, Advances in econometrics – Fifth World Congress (Volume II), 9780521467254
Hervé Moulin, Axioms of cooperative decision making, 9780521360555, 9780521424585
L. G. Godfrey, Misspecification tests in econometrics: The Lagrange multiplier principle and other approaches, 9780521424592
Tony Lancaster, The econometric analysis of transition data, 9780521437899
Alvin E. Roth and Marilda A. Sotomayor, Editors, Two-sided matching: A study in game-theoretic modeling and analysis, 9780521437882
Wolfgang Härdele, Applied nonparametric regression, 9780521429504
Jean-Jacques Laffont, Editor, Advances in economic theory – Sixth World Congress (Volume I), 9780521454596
Jean-Jacques Laffont, Editor, Advances in economic theory – Sixth World Congress (Volume II), 9780521484602
Halbert White, Estimation, inference and specification, 9780521252805, 9780521574464
Christopher Sims, Editor, Advances in econometrics – Sixth World Congress (Volume I), 9780521444590, 9780521566100
Christopher Sims, Editor, Advances in econometrics – Sixth World Congress (Volume II), 9780521444606, 9780521566094
Roger Guesnerie, A contribution to the pure theory of taxation, 9780521629560
David M. Kreps and Kenneth F. Wallis, Editors, Advances in economics and econometrics – Seventh World Congress (Volume I), 9780521589833
David M. Kreps and Kenneth F. Wallis, Editors, Advances in economics and econometrics – Seventh World Congress (Volume II), 9780521589826
David M. Kreps and Kenneth F. Wallis, Editors, Advances in economics and econometrics – Seventh World Congress (Volume III), 9780521580137, 9780521589819
A. Colin Cameron and Pravin K. Trivedi, Regression analysis of count data, 9780521632010, 9780521635677
Steinar Strom, Editor, Econometrics and economic theory in the 20th century: The Ragnar Frisch Centennial Symposium, 9780521633239, 9780521633659

Continued on page following the index
Dynamic Models for Volatility and Heavy Tails

With Applications to Financial and Economic Time Series

Andrew C. Harvey
University of Cambridge
Contents

Preface
page xiii

Acronyms and Abbreviations
xvii

1. **Introduction**
1.1 Unobserved Components and Filters
1.2 Independence, White Noise and Martingale Differences
1.2.1 The Law of Iterated Expectations and Optimal Predictions
1.2.2 Definitions and Properties
1.3 Volatility
1.3.1 Stochastic Volatility
1.3.2 Generalized Autoregressive Conditional Heteroscedasticity
1.3.3 Exponential GARCH
1.3.4 Variance, Scale and Outliers
1.3.5 Location/Scale Models
1.4 Dynamic Conditional Score Models
1.5 Distributions and Quantiles
1.6 Plan of Book
page 17

2. **Statistical Distributions and Asymptotic Theory**
2.1 Distributions
2.1.1 Student’s t Distribution
2.1.2 General Error Distribution
2.1.3 Beta Distribution
2.1.4 Gamma Distribution
2.2 Maximum Likelihood
2.2.1 Student’s t Distribution
2.2.2 General Error Distribution
2.2.3 Gamma Distribution
2.2.4 Consistency and Asymptotic Normality*
page 29
2.3 Maximum Likelihood Estimation of Dynamic Conditional Score Models 32
 2.3.1 An Information Matrix Lemma 32
 2.3.2 Information Matrix for the First-Order Model 34
 2.3.3 Information Matrix with the δ Parameterization* 38
 2.3.4 Asymptotic Distribution 39
 2.3.5 Consistency and Asymptotic Normality* 40
 2.3.6 Nonstationarity 45
 2.3.7 Several Parameters 46
2.4 Higher Order Models* 48
2.5 Tests 52
 2.5.1 Serial Correlation 52
 2.5.2 Goodness of Fit of Distributions 54
 2.5.3 Residuals 55
 2.5.4 Model Fit 56
2.6 Explanatory Variables 56
3 Location 59
 3.1 Dynamic Student’s t Location Model 60
 3.2 Basic Properties 61
 3.2.1 Generalization and Reduced Form 63
 3.2.2 Moments of the Observations 63
 3.2.3 Autocorrelation Function 64
 3.3 Maximum Likelihood Estimation 65
 3.3.1 Asymptotic Distribution of the Maximum Likelihood Estimator 65
 3.3.2 Monte Carlo Experiments 68
 3.3.3 Application to U.S. GDP 69
 3.4 Parameter Restrictions* 69
 3.5 Higher Order Models and the State Space Form* 70
 3.5.1 Linear Gaussian Models and the Kalman Filter 70
 3.5.2 The DCS Model 72
 3.5.3 QARMA Models 74
 3.6 Trend and Seasonality 75
 3.6.1 Local Level Model 75
 3.6.2 Application to Weekly Hours of Employees in U.S. Manufacturing 77
 3.6.3 Local Linear Trend 77
 3.6.4 Stochastic Seasonal 79
 3.6.5 Application to Rail Travel 80
 3.6.6 QARIMA and Seasonal QARIMA Models* 82
Contents

3.7 Smoothing 83
 3.7.1 Weights 84
 3.7.2 Smoothing Recursions for Linear State Space Models 86
 3.7.3 Smoothing Recursions for DCS Models 87
 3.7.4 Conditional Mode Estimation and the Score 87

3.8 Forecasting 89
 3.8.1 QARMA Models 89
 3.8.2 State Space Form* 90

3.9 Components and Long Memory 91

3.10 General Error Distribution 93

3.11 Skew Distributions 93
 3.11.1 How to Skew a Distribution 94
 3.11.2 Dynamic Skew-\(t\) Location Model 95

4 Scale 97

4.1 Beta-\(t\)-EGARCH 99

4.2 Properties of Stationary Beta-\(t\)-EGARCH Models 100
 4.2.1 Exponential GARCH 100
 4.2.2 Moments 101
 4.2.3 Autocorrelation Functions of Squares and Powers of Absolute Values 103
 4.2.4 Autocorrelations and Kurtosis 104

4.3 Leverage Effects 105

4.4 Gamma-GED-EGARCH 107

4.5 Forecasting 110
 4.5.1 Beta-\(t\)-EGARCH 111
 4.5.2 Gamma-GED-EGARCH 112
 4.5.3 Integrated Exponential Models 113
 4.5.4 Predictive Distribution 114

4.6 Maximum Likelihood Estimation and Inference 115
 4.6.1 Asymptotic Theory for Beta-\(t\)-EGARCH 116
 4.6.2 Monte Carlo Experiments 118
 4.6.3 Gamma-GED-EGARCH 120
 4.6.4 Leverage 121

4.7 Beta-\(t\)-GARCH 125
 4.7.1 Properties of First-Order Model 125
 4.7.2 Leverage Effects 127
 4.7.3 Link with Beta-\(t\)-EGARCH 127
 4.7.4 Estimation and Inference 128
 4.7.5 Gamma-GED-GARCH 128

4.8 Smoothing 129

4.9 Application to Hang Seng and Dow Jones 129
4.10 Two Component Models 134
4.11 Trends, Seasonals and Explanatory Variables in Volatility Equations 135
4.12 Changing Location 137
4.12.1 Explanatory Variables 137
4.12.2 Stochastic Location and Stochastic Scale 139
4.13 Testing for Changing Volatility and Leverage 141
4.13.1 Portmanteau Test for Changing Volatility 141
4.13.2 Martingale Difference Test 142
4.13.3 Leverage 143
4.13.4 Diagnostics 144
4.14 Skew Distributions 144
4.15 Time-Varying Skewness and Kurtosis* 148

5 Location/Scale Models for Non-negative Variables 149
5.1 General Properties 151
5.1.1 Heavy Tails 151
5.1.2 Moments and Autocorrelations 152
5.1.3 Forecasts 154
5.1.4 Asymptotic Distribution of Maximum Likelihood Estimators 154
5.2 Generalized Gamma Distribution 155
5.2.1 Moments 157
5.2.2 Forecasts 158
5.2.3 Maximum Likelihood Estimation 159
5.3 Generalized Beta Distribution 160
5.3.1 Log-Logistic Distribution 162
5.3.2 Moments, Autocorrelations and Forecasts 163
5.3.3 Maximum Likelihood Estimation 164
5.3.4 Burr Distribution 165
5.3.5 Generalized Pareto Distribution 166
5.3.6 F Distribution 167
5.4 Log-Normal Distribution 168
5.5 Monte Carlo Experiments 171
5.6 Leverage, Long Memory and Diurnal Variation 172
5.7 Tests and Model Selection 174
5.8 Estimating Volatility from the Range 176
5.8.1 Application to Paris CAC and Dow Jones 178
5.8.2 The Range-EGARCH Model 180
5.9 Duration 181
5.10 Realized Volatility 184
5.11 Count Data and Qualitative Observations 184
Contents

6 Dynamic Kernel Density Estimation and Time-Varying Quantiles 187
 6.1 Kernel Density Estimation for Time Series 188
 6.1.1 Filtering and Smoothing 189
 6.1.2 Estimation 191
 6.1.3 Correcting for Changing Mean and Variance 193
 6.1.4 Specification and Diagnostic Checking 193
 6.2 Time-Varying Quantiles 193
 6.2.1 Kernel-Based Estimation 194
 6.2.2 Direct Estimation of Individual Quantiles 194
 6.3 Forecasts 198
 6.4 Application to NASDAQ Returns 198
 6.4.1 Direct Modelling of Returns 199
 6.4.2 ARMA-GARCH Residuals 199
 6.4.3 Bandwidth and Tails 201

7 Multivariate Models, Correlation and Association 204
 7.1 Multivariate Distributions 205
 7.1.1 Estimation 206
 7.1.2 Regression 206
 7.1.3 Dynamic Models 207
 7.2 Multivariate Location Models 209
 7.2.1 Structural Time Series Models 209
 7.2.2 DCS Model for the Multivariate \(t \) 210
 7.2.3 Asymptotic Theory* 211
 7.2.4 Regression and Errors in Variables 212
 7.3 Dynamic Correlation 213
 7.3.1 A Bivariate Gaussian Model 214
 7.3.2 Time-Varying Parameters in Regression 218
 7.3.3 Multivariate \(t \) Distribution 220
 7.3.4 Tests of Changing Correlation 220
 7.4 Dynamic Multivariate Scale 220
 7.5 Dynamic Scale and Association 222
 7.6 Copulas 223
 7.6.1 Copulas and Quantiles 223
 7.6.2 Measures of Association 226
 7.6.3 Maximum Likelihood Estimation 228
 7.6.4 Dynamic Copulas 228
 7.6.5 Tests Against Changing Association 230

8 Conclusions and Further Directions 231

A Derivation of Formulae in the Information Matrix 233
 A.1 Unconditional Mean Parameterization 233
Contents

A.2 Parameterization with \(\delta \) 235
A.3 Leverage 238

B Autocorrelation Functions 239
B.1 Beta-\(t \)-EGARCH 239
B.2 Gamma-GED-EGARCH 240
B.3 Beta-\(t \)-GARCH 241

C GED Information Matrix 242

D The Order of GARCH Models 243

E Computer Programs 245

Bibliography 247

Author Index 255

Subject Index 258
Preface

This book sets out a class of nonlinear time series models designed to extract a dynamic signal from noisy observations. The signal may be the level of a series or it may be a measure of scale. Changing scale is of considerable importance in financial time series where volatility clustering is an established stylized fact. Generalized autoregressive conditional heteroscedasticity (GARCH) models are widely used to extract the current variance of a series. However, using variance (or rather, standard deviation) as a measure of scale may not be appropriate for non-Gaussian (conditional) distributions. This is of some importance, because another established feature of financial returns is that they are characterized by heavy tails.

The dynamic equations in GARCH models are filters. Just as the filters for linear Gaussian location models are linear combinations of past observations, so GARCH filters, because of their Gaussian origins, are usually linear combinations of past squared observations. The models described here replace the observations or their squares by the score of the conditional distribution. Furthermore, when modelling scale, an exponential link function is employed, as in exponential GARCH (EGARCH), thereby ensuring that the filtered scale remains positive. The unifying feature of the models in the proposed class is that the asymptotic distribution of the maximum likelihood estimators is established by a single theorem that delivers an explicit analytic expression for the asymptotic covariance matrix of the estimators. Furthermore, the conditions under which the asymptotics go through are relatively straightforward to verify. There is no such general theory for GARCH models: analytic expressions for the asymptotic covariance matrix of the maximum likelihood estimators cannot be found even in the most basic cases, and for some models, most notably EGARCH, there is no asymptotic theory except for very special cases that are never used in practice.

Other properties of the proposed models may be found. These include analytic expressions for moments, autocorrelation functions and multistep forecasts. The properties, particularly for the volatility models, which employ an exponential link function, are more general than is usually the case. For example, expressions for unconditional moments, autocorrelations and the...
conditional moments of multistep predictive distributions can be obtained for absolute values of the observations raised to any power.

The generality of the approach is further illustrated by consideration of dynamic models for non-negative variables. Such models have been used for modelling duration, range and realized volatility in finance. Again, the use of an exponential link function combined with a dynamic equation driven by the conditional score gives a range of analytic results similar to those obtained with the new class of EGARCH models.

Estimating a dynamic level embedded in noise is explicitly an exercise in signal extraction. A general treatment of Gaussian models is based on the state space form and the Kalman filter. When the noise comes from a heavy-tailed distribution, such as Student’s t, the filter proposed here can be regarded as an approximation to a filter for the signal plus noise model that can only be obtained by computer simulation techniques, as in Durbin and Koopman (2012). However, its properties are obtained by treating it as a model in its own right. Such a model is said to be observation-driven, as opposed to the unobserved components model, which is parameter-driven. Turning to scale, GARCH models are not usually seen as vehicles for signal extraction, but this is precisely what they are. That this is the case becomes clearer if they are viewed as observation-driven approximations to parameter-driven stochastic volatility models. Indeed, this was part of the original motivation for the formulation of EGARCH models. The development of the class of observation-driven models in this book acknowledges the link with parameter-driven models, and in doing so, it takes a step towards a unified theory of nonlinear time series models.

The book assumes that the reader is familiar with the basic ideas and technicalities of time series. The mathematics is not too demanding given a good understanding of statistical concepts such as conditional distributions and maximum likelihood estimation. Hence it should be accessible to graduate students in the more technical areas of economics and finance, as well as to statisticians. Sections marked with an asterisk (*) are more technical and/or tangential to the main argument and can be skipped without loss of continuity.

The idea of using the score to drive the dynamics in non-Gaussian models is not new, but up to now has had no firm theoretical foundation. The research for this book began in 2008 with a working paper I wrote with a student, Tirthankar Chakravarty, on EGARCH models. At the same time, Siem-Jan Koopman and his co-workers were independently developing a range of score-driven models. They also produced a working paper in 2008. Because Siem-Jan and I have co-authored many papers on unobserved component models, it is perhaps not too surprising that we hit on the same idea, albeit by different routes. One of the difficulties we faced was that the models lacked a convincing asymptotic

1 Rather than the term dynamic conditional score (DCS) models, which I use here, Creal, Koopman and Lucas (2011) prefer the name generalized autoregressive score (GAS). However, despite the attraction of the acronym, the term ‘autoregressive’ seems to me to convey a more limited dynamic structure than is actually the case.
theory for maximum likelihood estimation. Fortunately, a six-month visit to Carlos III University in Madrid in 2010 provided me with the inspiration to develop the necessary theory. I’m grateful to the Bank of Santander for its support under the Carlos III program for Chairs of Excellence. Further work was done when I was a visiting Fernand Braudel Fellow at the European University Institute in Florence towards the end of 2011. It was there, in the garden of the Villa San Paolo, that Anders Rahbek gave me a memorable tutorial on the finer points of advanced asymptotic theory for time series. I’m grateful to Anders and to all the other colleagues who have provided comments and support during the work on the project. These include Philipp Andres, Tirthankar Chakravarty, Frank Diebold, Rob Engle, Gloria Gonzalez-Rivera, Peter Hansen, Stan Hurn, Ryoko Ito, Siem-Jan Koopman, Alessandra Luati, Mark Salmon, Steve Satchell, Richard Smith, Genaro Sucarrat, Abderrahim Taamouti, Stephen Thielemann and Paolo Zaffaroni. Universities at which the ideas were presented include Oxford, Warwick, Queensland, Monash, Hanover, EUI, Carlos III, Alicante, New York, Columbia and Pennsylvania. Special thanks go to Esther Ruiz at Carlos III and Mardi Dungey at the University of Tasmania, where I spent three weeks in December 2010. Finally I’d like to thank Rosa Matzkin and two anonymous readers for their helpful and constructive comments, and Peihang Lu for editorial assistance.
Acronyms and Abbreviations

ACD autoregressive conditional duration
ACF autocorrelation function
AIC Akaike information criterion
APARCH asymmetric power ARCH
ARCH autoregressive conditional heteroscedasticity
ARIMA autoregressive integrated moving average
BIC Bayesian information criterion
CAViaR conditional autoregressive value at risk by regression quantiles
CDF cumulative distribution function
CPI consumer price index
CV coefficient of variation
DCC dynamic conditional correlation
DCS dynamic conditional score
EGARCH exponential GARCH
ES expected shortfall
EWMA exponentially weighted moving average
GARCH generalised autoregressive conditional heteroscedasticity
GED general error distribution
GG generalised gamma
IF innovations form
IGARCH integrated GARCH
IID independent and identically distributed
IRW integrated random walk
KF Kalman filter
LIE law of iterated expectations
LM Lagrange multiplier
LR likelihood ratio
MA moving average
MCMC Markov chain Monte Carlo
MD martingale difference
MEM multiplicative error models
MGF moment generating function
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ML</td>
<td>maximum likelihood</td>
</tr>
<tr>
<td>MMSE</td>
<td>minimum mean square error (estimate)</td>
</tr>
<tr>
<td>MSE</td>
<td>mean square error</td>
</tr>
<tr>
<td>NID</td>
<td>normally and independently distributed</td>
</tr>
<tr>
<td>PDF</td>
<td>probability distribution function</td>
</tr>
<tr>
<td>PIT</td>
<td>probability-integral transform</td>
</tr>
<tr>
<td>QARMA</td>
<td>quasi-ARMA</td>
</tr>
<tr>
<td>QML</td>
<td>quasi-maximum likelihood</td>
</tr>
<tr>
<td>QQ</td>
<td>quantile-quantile</td>
</tr>
<tr>
<td>RMSE</td>
<td>root mean square error</td>
</tr>
<tr>
<td>SD</td>
<td>standard deviation</td>
</tr>
<tr>
<td>SE</td>
<td>standard error</td>
</tr>
<tr>
<td>SRE</td>
<td>stochastic recurrence equation</td>
</tr>
<tr>
<td>SSF</td>
<td>state space form</td>
</tr>
<tr>
<td>STM</td>
<td>structural time series model</td>
</tr>
<tr>
<td>SV</td>
<td>stochastic volatility</td>
</tr>
<tr>
<td>UC</td>
<td>unobserved components</td>
</tr>
<tr>
<td>VaR</td>
<td>value at risk</td>
</tr>
<tr>
<td>WN</td>
<td>white noise</td>
</tr>
</tbody>
</table>