
CHAPTER 1

Introduction

The aim of this monograph is to set out a unified and comprehensive theory for
a class of nonlinear time series models that can deal with dynamic distributions.
The emphasis is on models in which the conditional distribution of an observa-
tion may be heavy-tailed and the location and/or scale changes over time. The
defining feature of these models is that the dynamics are driven by the score
of the conditional distribution. When a suitable link function is employed for
the changing parameter, analytic expressions may be derived for unconditional
moments, autocorrelations and moments of multistep forecasts. Furthermore,
a full asymptotic distribution theory for maximum likelihood estimators can be
developed, including analytic expressions for asymptotic covariance matrices
of the estimators.

The class of what we call dynamic conditional score (DCS) models includes
standard linear time series models observed with an error that may be subject to
outliers, models which capture changing conditional variance and models for
non-negative variables. The last two of these are of considerable importance in
financial econometrics, where they are used for forecasting volatility. A guiding
principle underlying the proposed class of models is that of signal extraction.
When combined with basic ideas of maximum likelihood estimation, the signal
extraction approach leads to models which, in contrast to many in the literature,
are relatively simple and yield analytic expressions for their principal features.

For estimating location, DCS models are closely related to the unobserved
components models described in Harvey (1989). Such models can be handled
using state space methods, and they are easily accessible using the STAMP
package of Koopman et al. (2009). For estimating scale, the models are close to
stochastic volatility models, in which the variance is treated as an unobserved
component. The close ties with unobserved component and stochastic volatility
models provide insight into the structure of the DCS models, particularly with
respect to modelling trend and seasonality, and into possible restrictions on the
parameters.

The reference to location and scale rather than mean and variance is delib-
erate. Location and scale apply to all distributions, whereas mean and variance
may not always exist, a point which is particularly relevant when dealing with
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2 Introduction

heavy tails. Furthermore, although a knowledge of the mean and variance of
a Gaussian distribution tells us all there is to know, this is not the case with
many other distributions. Focussing too much attention on mean and variance
is unwise, particularly in financial econometrics. By a similar token, correlation
measures the strength of the relationship between two variables in a Gaussian
world, but the more general concept of association is of wider relevance, as
witnessed by the recent upsurge of interest in copulas.

Section 1.1 introduces a very basic, but important, unobserved compon-
ents time series model. The idea of signal extraction for Gaussian models is
explained, and the Kalman filter is written down in a form that leads to the
development of a more general filter, based on the score of a conditional dis-
tribution for each observation. Some basic definitions are noted in Section 1.2,
before moving on to a discussion of volatility models in Section 1.3. The relev-
ance of dynamic conditional score models for volatility modelling is explained
in Section 1.4, and the implications of outlying observations for conventional
and DCS filters are explored. Section 1.5 stresses the importance of modelling
the full conditional distribution of an observation, rather than just its first two
moments. The last section outlines the contents of each chapter.

1.1 UNOBSERVED COMPONENTS AND FILTERS

Autoregressive integrated moving average (ARIMA) models focus on fore-
casting future values of a series. A more general framework is given by the
signal plus noise paradigm. Signal extraction is of interest in itself, and once
the problem has been solved, the forecasting solution follows.

A simple Gaussian signal plus noise model for a sample of T observations,
yt , t = 1, .., T , is

yt = μt + εt , εt ∼ NID
(
0, σ 2

ε

)
, t = 1, . . . , T , (1.1)

μt+1 = φμt + ηt , ηt ∼ NID
(
0, σ 2

η

)
,

where φ is the autoregressive parameter, the irregular and signal disturbances,
εt and ηt respectively, are mutually and serially independent and the notation
NID

(
0, σ 2

)
denotes normally and independently distributed with mean zero

and variance σ 2. The signal-noise ratio, q = σ 2
η/σ

2
ε, plays a key role in determ-

ining how observations should be weighted for prediction and signal extraction.
The reduced form of (1.1) is an ARMA(1, 1) process,

yt = φyt−1 + ξ t − θξ t−1, ξ t ∼ NID
(
0, σ 2

)
, t = 1, . . . , T , (1.2)

but with restrictions on θ. For example, when φ = 1, 0 ≤ θ ≤ 1. The forecasts
from the unobserved components (UC) model and reduced form are the same.
An autoregressive approximation to the reduced form is possible, but, if q is
close to zero, a large number of lags may be needed for the approximation to
yield acceptable forecasts.
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1.1 Unobserved Components and Filters 3

The UC model in (1.1) is effectively in state space form (SSF), and as such, it
may be handled by the Kalman filter (KF); see Harvey (1989). The parameters
φ and q can be estimated by maximum likelihood, with the likelihood function
constructed from the one-step-ahead prediction errors. The KF can be expressed
as a single equation which combines the estimator of μt based on information
at time t − 1 with the t-th observation in order to produce the best estimator
of μt+1. Writing this equation together with an equation that defines the one-
step-ahead prediction error, vt , gives the innovations form (IF) of the Kalman
filter:

yt = μt |t−1 + vt , t = 1, . . . , T , (1.3)

μt+1|t = φμt |t−1 + ktvt .
The Kalman gain, kt , depends on φ and q. In the steady-state, kt is constant.
Setting it equal to a parameter, κ, and rearranging gives the ARMA model,
(1.2), with ξ t = vt and φ − κ = θ. A pure autoregressive (AR) model is a
special case in which κ = φ, so that μt |t−1 = φyt−1.

Now suppose that the noise in a UC model comes from a heavy-tailed
distribution, such as Student’s t . Such a distribution can give rise to obser-
vations which, when judged against the yardstick of a Gaussian distribution,
are considered to be outliers. In the case of (1.1), the reduced form is still an
ARMA(1, 1) process, but with disturbances which, although they are serially
uncorrelated, are not independently and identically distributed. Allowing the
disturbances to have a heavy-tailed distribution does not deal with the problem.
A large value of εt only affects the current observation, but in the reduced form,
it is incorporated into the level and takes time to work through the system. To
be specific, the AR representation of an ARMA(1, 1) process is

yt = (φ − θ )
∞∑
j=1

φj−1yt−j + ξ t = μt |t−1 + ξ t .

If the t-th observation is contaminated by adding an arbitrary amount, C, then,
after τ periods, the prediction of the next observation is still contaminated by
C because it contains the quantity (φ − θ )φτC.

An ARMA or AR model in which the disturbances are allowed to have a
heavy-tailed distribution is designed to handle innovation outliers, as opposed
to additive outliers. There is a good deal of discussion of outliers, and how
to handle them, in the robustness literature; see, for example, the book by
Maronna, Martin and Yohai (2006, Chapter 8) and the recent article by Muler,
Pena and Yohai (2009) on robust estimation for ARMA models. The view taken
here is that a model-based approach is not only simpler, both conceptually and
computationally, than the usual robust methods, but is also more amenable to
diagnostic checking and generalization.

Simulation methods, such as Markov chain Monte Carlo (MCMC), import-
ance sampling and particle filtering, provide the basis for a direct attack on
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4 Introduction

models that are nonlinear and/or non-Gaussian. The aim is to extend the Kal-
man filtering and smoothing algorithms that have proved so effective in handling
linear Gaussian models. Considerable progress has been made in recent years;
see Robert and Casella (2010), Durbin and Koopman (2012) and Koopman,
Lucas and Schartha (2012). However, the fact remains that simulation-based
estimation can be time-consuming and subject to a degree of uncertainty. In
addition, the statistical properties of the estimators are not easy to establish.

The approach here begins by writing down the distribution of the t-th obser-
vation, conditional on past observations. Time-varying parameters are then
updated by a suitably defined filter. Such a model is what Cox (1981) called
observation-driven. In a linear Gaussian UC model, which is parameter-driven
in Cox’s terminology, the KF is driven by the one-step-ahead prediction error,
as in (1.3). The main ingredient in the filter developed here for non-Gaussian
distributions is the replacement of vt in the KF equation by a variable, ut , that
is proportional to the score of the conditional distribution, that is the logarithm
of the probability density function at time t differentiated with respect toμt |t−1.
Thus the second equation in (1.3) becomes

μt+1|t = φμt |t−1 + κut ,
where κ is treated as an unknown parameter.

Why the score? If the signal in (1.1) were fixed, that is φ = 1 and σ 2
η = 0

so μt = μ, the sample mean, μ̂, would satisfy the condition

T∑
t=1

(yt − μ̂) = 0.

The maximum likelihood (ML) estimator is obtained by differentiating the
log-likelihood function with respect to μ and setting the resulting derivative,
the score, equal to zero. When the observations are normally distributed, the
ML estimator is the same as the sample mean, the moment estimator. However,
for a non-Gaussian distribution, the moment estimator and the ML estimator
differ. Once the signal in a Gaussian model becomes dynamic, as in (1.1), its
estimate can be updated with each new observation using the Kalman filter.
With a non-normal distribution, exact updating is no longer possible, but the
fact that ML estimation in the static case sets the score to zero provides a
rationale for replacing the prediction error, which has mean zero, by the score,
which for each individual observation also has mean zero. The resulting filter
might, therefore, be regarded as an approximation to the computer-intensive
solution for the UC model, and the evidence presented later lends support
to this notion. Further theoretical support comes from the conditional mode
approach to smoothing for nonlinear models. Indeed the argument presented in
Sub-section 3.7.3 is a more comprehensive one.

The attraction of treating the filter driven by the score of the conditional
distribution as a model in its own right is that it becomes possible to derive
the asymptotic distribution of the ML estimator and to generalize in various
directions. Thus the same approach can then be used to model scale, using an
exponential link function, and to model location and scale for non-negative
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1.2 Independence, White Noise and Martingale Differences 5

variables. The first equation in (1.3) is then nonlinear. The justification for
the class of dynamic conditional score models is not that they approximate
corresponding UC models, but rather that their statistical properties are both
comprehensive and straightforward.

The use of the score of the conditional distribution to robustify the Kalman
filter was originally proposed by Masreliez (1975). However, it has often been
argued that a crucial assumption made by Masreliez (concerning the approxim-
ate normality of the prior at each time step) is, to quote Schick and Mitter (1994,
p. 1054), ‘insufficiently justified and remains controversial’. Nevertheless, they
note that the procedure ‘has been found to perform well both in simulation stud-
ies and with real data’. Schick and Mitter (1994) suggested a generalization of
the Masreliez filter based on somewhat stronger theoretical foundations. The
observation noise is assumed to come from a contaminated normal distribu-
tion, and the resulting estimator employs banks of Kalman filters and smoothers
weighted by posterior probabilities. As a result, it is considerably more com-
plicated than the Masreliez filter. Once the realm of computationally intensive
techniques has been entered, it seems better to adopt the simulation-based
methods alluded to earlier.

The situations tackled by Masreliez are more complicated than those con-
sidered here because the system matrices in the state space model may be
time-varying. The models in this monograph are simpler in structure, and as a
result, the use of the score to drive the dynamics can be put on much firmer
statistical foundations.

1.2 INDEPENDENCE, WHITE NOISE AND
MARTINGALE DIFFERENCES

The study of models that are not linear and Gaussian requires a careful distinc-
tion to be made between the concepts of independence, uncorrelatedness and
martingale differences. But before proceeding, some basic statistical results
need to be stated. The proofs can be found in many introductory time series
and econometrics texts.

1.2.1 The Law of Iterated Expectations and Optimal Predictions

A key element in some of the statistical derivations that follow is the law of
iterated expectations (LIE). Suppose that it is difficult to find the expected value
of a random variable, y, but evaluating its expectation conditional on another
random variable, x, is straightforward. Then E(y) may be obtained as

E(y) = Ex[E(y | x)],

because

Ex[E(y |x)] =
∫ [∫

yf (y |x) dy

]
f (x) dx

=
∫ ∫

yf (y, x) dydx=E(y).
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6 Introduction

The above process may be generalized and repeated. Thus, if g (yt ) is a function
of yt , an expected value several steps ahead can be found from the sequence of
one-step-ahead conditional expectations because

E
t−j

[g (yt )] = E
t−j

· · · E
t−1

[g (yt )] , j = 2, 3, . . . .

The unconditional expectation is found by letting j → ∞. The expectation of
a function of the observation at time T + � based on information available at
time T is given by setting t = T + � and j = � so

E
T

[g (yT+�)] = E
T

· · · E
T+�−1

[g(yT+�)] , � = 2, 3, . . . . (1.4)

When the objective is to predict a future observation based on current inform-
ation, the conditional expectation,ET (yT+�) , � = 1, 2, 3, . . . , is optimal in the
sense that it minimizes the mean square error (MSE) of the prediction error;
see, for example, Harvey (1993, p. 33). As such, it is called the minimum mean
square error (MMSE) predictor. For nonlinear models, expression (1.4) is of
considerable practical importance for finding MMSE predictors.

1.2.2 Definitions and Properties

The following important definitions should be noted.

Definition 1 White noise (WN) variables are serially uncorrelated with con-
stant mean and variance.

Definition 2 A martingale difference (MD) has a zero (or constant) conditional
expectation, that is,

E
t−1

(yt ) = E (yt | Yt−1) = 0.

It is also necessary for the unconditional expectation of the absolute value to
be finite, that is, E |yt | < ∞; see Davidson (2000, pp. 121–2).

Definition 3 Strict white noise variables are independent and identically
distributed (IID).

The relationship between a martingale difference and the two kinds of white
noise is given by the following proposition.

Proposition 1 (a) All zero mean independent sequences are martingale
differences and (b) all martingale differences are white noise, provided that
the variance is finite. In neither case is the converse true.

Proof. Part (a) requires no proof. Part (b) follows because all MDs have zero
unconditional mean and are serially uncorrelated. Specifically

E (yt ) = E [E (yt | Yt−1)] = 0
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1.3 Volatility 7

and yt is uncorrelated with any function of past observations because

E [ytf (Yt−1) | Yt−1] = f (Yt−1)E (yt | Yt−1) = 0.

Hence the unconditional expectation of ytf (Yt−1) is zero.
The heteroscedastic models introduced in the next section produce obser-

vations that are MDs but not IID. That a WN sequence is not necessarily an
MD can be demonstrated by a simple example showing that there may be a
nontrivial nonlinear predictor. To be specific, the observations in the model

yt = εt + βεt−1εt−2, εt ∼ IID(0, σ 2), t = 1, . . . , T ,

where ε0 and ε−1 are fixed and known, are white noise, but not an MD because
E (yT+1 | YT ) = βεT εT−1.

Remark 1 When a variable is normally distributed, the distinction between
WN, strict WN and MDs disappears, the reason being that a normal distribution
is fully described by its first two moments. Thus Gaussian white noise is strict
white noise.

A linear process is usually defined as one that can be written as an infinite
moving average in IID(0, σ 2) disturbances, with the sum of the squares of the
coefficients being finite, that is,

yt =
∞∑
j=0

ψjεt−j ,
∞∑
j=0

ψ2
j < ∞, εt ∼ IID(0, σ 2). (1.5)

More generally, a linear process may be defined as a linear combination of past
observations and/or strict white noise disturbances, with appropriately defined
initial conditions.1 For a stationary process, the representation in (1.5) means
that all the information about the dynamics is in the autocorrelation function
(ACF). Furthermore, the minimum mean square error predictor of yT+� is linear,
and its MSE is σ 2 ∑�−1

j=0 ψ
2
j . However, unless the disturbances are Gaussian,

the linearity of (1.5) is of limited practical value since it is not usually possible
to derive the multistep predictive distribution. On the other hand, the optimal
forecasts in a model which is a linear function of current and past MDs are the
same as in a model in which the MDs are replaced by strict WN, and if the
conditional variances are constant, the MSEs are the same.

1.3 VOLATILITY

If dividends and other payments are ignored, financial returns can be defined as
the first differences of the logarithm of the price; see Taylor (2005, Chapter 2
and pp. 100–2). When markets are working efficiently, returns are martingale
differences. In other words, they should not be predictable on the basis of past
information. However, returns are not usually independent, and so features

1 For further discussion, see Terasvirta et al. (2010, pp. 1–2).
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8 Introduction

of the conditional distribution apart from the mean may be predictable. In
particular, nontrivial predictions can be made for the variance or scale.

1.3.1 Stochastic Volatility

The variance in stochastic volatility (SV) models is driven by an unobserved
process. The first-order model, with the mean of the observations, yt , t =
1, .., T , assumed to be zero, is

yt = σ tεt , σ 2
t = exp (2λt ) , εt ∼ IID (0, 1) (1.6)

λt+1 = δ + φλt + ηt , ηt ∼ NID
(
0, σ 2

η

)
,

where the disturbances εt and ηt are mutually independent. Leverage effects,
which enable σ 2

t to respond asymmetrically to positive and negative values
of yt , can be introduced by allowing εt and ηt to be correlated, as in Harvey
and Shephard (1996). Shephard and Andersen (2009) discuss the relationship
between SV models and continuous time models in the finance literature.

The exponential link function ensures that the variance remains positive and
the restrictions needed for λt and yt to be stationary are straightforward; for
(1.6), |φ|< 1. Furthermore, analytic expressions for moments and ACFs of the
absolute values of the observations raised to any power can be derived.

Unfortunately, direct maximum likelihood estimation of the SV model is
not possible. A procedure can be based on the linear state space form obtained
by taking logarithms of the absolute values of the demeaned observations to
give the following measurement equation:

ln |yt | = λt + ln |εt | , t = 1, . . . , T . (1.7)

The parameters in the model are then estimated by using the Kalman filter, as
in Harvey, Ruiz and Shephard (1994). However, there is a loss in efficiency
because the distribution of ln |εt | is far from Gaussian. Efficient estimation
can be achieved by computer-intensive methods, as described in Creal (2012),
Andrieu et al. (2011) and Durbin and Koopman (2012).

1.3.2 Generalized Autoregressive Conditional Heteroscedasticity

The generalized autoregressive conditional heteroscedasticity (GARCH)
model, introduced, as ARCH, by Engle (1982) and generalized by Bollerslev
(1986) and Taylor (1986), is the classic way of modelling changes in the volat-
ility of returns. It does so by letting the variance be a linear function of past
squared observations. The first-order model, GARCH (1, 1), is

yt = σ t |t−1εt , εt ∼ NID(0, 1) (1.8)

and

σ 2
t |t−1 = δ + βσ 2

t−1|t−2 + αy2
t−1, δ > 0, β ≥ 0, α ≥ 0. (1.9)
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1.3 Volatility 9

The conditions on α and β ensure that the variance remains positive. The sum
of α and β is typically close to one, and the integrated GARCH (IGARCH)
model is obtained when the sum is equal to one. The variance in IGARCH is
an exponentially weighted moving average of past squared observations and,
as such, is often used by practitioners.

The model may be extended by adding lags of the variance and the squared
observations. Heavy tails are accommodated by letting the conditional distribu-
tion be Student’s t , as proposed by Bollerslev (1987). The GARCH (1, 1) − t
model has become something of an industry standard.

Leverage effects, which enable σ 2
t |t−1 to respond asymmetrically to positive

and negative values of yt , are typically incorporated into GARCH models by
including a variable in which the squared observations are multiplied by an
indicator that takes a value of unity when an observation is negative and is zero
otherwise; see Taylor (2005, pp. 220–1). The technique is often known as GJR,
after the originators, Glosten, Jagannanthan and Runckle (1993).

The autocorrelations of squared observations may be obtained relatively
easily, as they obey an ARMA process. For example, for GARCH (1, 1) with
zero mean

y2
t = γ + φy2

t−1 + vt + θ∗vt−1, (1.10)

where vt is white noise, φ = α + β and θ∗ = −β. The drawback to working
with squared observations is that outlying observations can seriously weaken
the serial correlation. The autocorrelations of absolute values tend to be larger
and so provide a better vehicle for detecting dynamic volatility and assessing
its nature.

The principal advantage of GARCH models over SV models is that, because
they are observation-driven, the likelihood function is immediately available.

1.3.3 Exponential GARCH

Nelson (1991) introduced the exponential GARCH (EGARCH) model in which
the dynamic equation for volatility is formulated in terms of the logarithm of
the conditional variance in (1.8). The leading case is

ln σ 2
t |t−1 = δ + φ ln σ 2

t−1|t−2 + α [|εt−1| − E |εt−1|] + α∗εt−1, (1.11)

where α and α∗ are parameters and, for a Gaussian model,E |εt | = √
2/π . The

role of εt is to capture leverage effects. As in the SV model, the exponential
link function ensures that the variance is always positive. Indeed, the model
has a structure similar to that of the SV model because |εt−1| − E |εt−1| ,
like εt−1, is an MD. Stationarity restrictions are similar to those in the SV
model; for example, in the preceding equation, |φ| < 1. The exponential link
permits models that would be problematic with GARCH because of the need
to ensure a positive variance. In particular, cycles and seasonal effects are
possible.
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10 Introduction

Nelson (1991) noted that if the conditional distribution of the observations
is Student’s t , with finite degrees of freedom, the conditions needed for the
existence of the moments of σ 2

t |t−1 and yt are rarely satisfied in practice. Hence
the model is of little practical value because, without a first moment, even
the sample mean is inconsistent. The lack of moments for Student’s t and the
fact that there is no asymptotic theory for ML has limited the application of
EGARCH.

1.3.4 Variance, Scale and Outliers

Substituting repeatedly for the conditional variance in (1.9) gives an infinite
autoregression in squared observations. In an ARCH (p) model, forecasts are
made directly from a finite number of past squared observations – hence the
name ARCH. From our perspective, the reason that GARCH is more plausible
than ARCH (p) is that estimating variance is an exercise in signal extraction,
and as such, the conditional variance cannot normally be a finite autoregression.
The ARCH (1) model is particularly problematic, as it is based on a single
squared observation which is bound to be a poor estimator of variance.

The great strength of the GARCH filter is its simple interpretation as an
estimate of variance constructed by weighting the squared observations. This is
also its weakness, because a linear combination of past squares (even if infinite)
may not be a good choice for modelling dynamics when the conditional distri-
bution is non-Gaussian. This stems from the fact that the sample variance in a
static model can be very inefficient. Indeed, for some heavy-tailed distributions,
the variance may not exist. The difficulties can be avoided by modelling scale
instead. Since scale is necessarily positive (as is variance), an exponential link
function is appropriate. Furthermore, a model for the logarithm of volatility
may be regarded as an approximation to an SV model. This reasoning led
to Nelson proposing EGARCH. The only flaw was to use absolute values in
the dynamic equation. Replacing the absolute value by the score resolves the
problem.

Outliers present a practical problem for GARCH models, even if the condi-
tional distribution is allowed to have heavy tails, as in GARCH-t. The reason is
that a large value becomes embedded in the conditional variance and typically
takes a long time to work through. This is the same difficulty that was noted
earlier in connection with additive outliers.

1.3.5 Location/Scale Models

Many variables are intrinsically non-negative. Examples in finance include
duration, range, realized volatility and spreads; see, for example, Brownlees
and Gallo (2010) and Russell and Engle (2010). Other situations in economics
in which distributions for non-negative variables are appropriate are in the study
of incomes and the size of firms; the book by Kleiber and Kotz (2003) describes
many case studies.
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