Contents

List of figures
List of tables
List of boxes
List of screenshots
Preface to the third edition
Acknowledgements

1 Introduction
1.1 What is econometrics?
1.2 Is financial econometrics different from ‘economic econometrics’?
1.3 Types of data
1.4 Returns in financial modelling
1.5 Steps involved in formulating an econometric model
1.6 Points to consider when reading articles in empirical finance
1.7 A note on Bayesian versus classical statistics
1.8 An introduction to EViews
1.9 Further reading
1.10 Outline of the remainder of this book

2 Mathematical and statistical foundations
2.1 Functions
2.2 Differential calculus
2.3 Matrices
2.4 Probability and probability distributions
2.5 Descriptive statistics

3 A brief overview of the classical linear regression model
3.1 What is a regression model?
3.2 Regression versus correlation
3.3 Simple regression
3.4 Some further terminology
3.5 Simple linear regression in EViews – estimation of an optimal hedge ratio

© in this web service Cambridge University Press

www.cambridge.org
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6</td>
<td>The assumptions underlying the classical linear regression model</td>
<td>90</td>
</tr>
<tr>
<td>3.7</td>
<td>Properties of the OLS estimator</td>
<td>91</td>
</tr>
<tr>
<td>3.8</td>
<td>Precision and standard errors</td>
<td>93</td>
</tr>
<tr>
<td>3.9</td>
<td>An introduction to statistical inference</td>
<td>98</td>
</tr>
<tr>
<td>3.10</td>
<td>A special type of hypothesis test: the (t)-ratio</td>
<td>111</td>
</tr>
<tr>
<td>3.11</td>
<td>An example of a simple (t)-test of a theory in finance: can US mutual funds beat the market?</td>
<td>113</td>
</tr>
<tr>
<td>3.12</td>
<td>Can UK unit trust managers beat the market?</td>
<td>115</td>
</tr>
<tr>
<td>3.13</td>
<td>The overreaction hypothesis and the UK stock market</td>
<td>116</td>
</tr>
<tr>
<td>3.14</td>
<td>The exact significance level</td>
<td>120</td>
</tr>
<tr>
<td>3.15</td>
<td>Hypothesis testing in EViews – example 1: hedging revisited</td>
<td>121</td>
</tr>
<tr>
<td>3.16</td>
<td>Hypothesis testing in EViews – example 2: the CAPM</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>Appendix: Mathematical derivations of CLRM results</td>
<td>127</td>
</tr>
<tr>
<td>4.1</td>
<td>Generalising the simple model to multiple linear regression</td>
<td>134</td>
</tr>
<tr>
<td>4.2</td>
<td>The constant term</td>
<td>135</td>
</tr>
<tr>
<td>4.3</td>
<td>How are the parameters (the elements of the (\beta) vector) calculated in the generalised case?</td>
<td>137</td>
</tr>
<tr>
<td>4.4</td>
<td>Testing multiple hypotheses: the (F)-test</td>
<td>139</td>
</tr>
<tr>
<td>4.5</td>
<td>Sample EViews output for multiple hypothesis tests</td>
<td>144</td>
</tr>
<tr>
<td>4.6</td>
<td>Multiple regression in EViews using an APT-style model</td>
<td>145</td>
</tr>
<tr>
<td>4.7</td>
<td>Data mining and the true size of the test</td>
<td>150</td>
</tr>
<tr>
<td>4.8</td>
<td>Goodness of fit statistics</td>
<td>151</td>
</tr>
<tr>
<td>4.9</td>
<td>Hedonic pricing models</td>
<td>156</td>
</tr>
<tr>
<td>4.10</td>
<td>Tests of non-nested hypotheses</td>
<td>159</td>
</tr>
<tr>
<td>4.11</td>
<td>Quantile regression</td>
<td>161</td>
</tr>
<tr>
<td></td>
<td>Appendix 4.1: Mathematical derivations of CLRM results</td>
<td>168</td>
</tr>
<tr>
<td></td>
<td>Appendix 4.2: A brief introduction to factor models and principal components analysis</td>
<td>170</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>179</td>
</tr>
<tr>
<td>5.2</td>
<td>Statistical distributions for diagnostic tests</td>
<td>180</td>
</tr>
<tr>
<td>5.3</td>
<td>Assumption 1: (E(u_i) = 0)</td>
<td>181</td>
</tr>
<tr>
<td>5.4</td>
<td>Assumption 2: (\text{var}(u_i) = \sigma^2 < \infty)</td>
<td>181</td>
</tr>
<tr>
<td>5.5</td>
<td>Assumption 3: (\text{cov}(u_i, u_j) = 0) for (i \neq j)</td>
<td>188</td>
</tr>
<tr>
<td>5.6</td>
<td>Assumption 4: the (x_i) are non-stochastic</td>
<td>208</td>
</tr>
<tr>
<td>5.7</td>
<td>Assumption 5: the disturbances are normally distributed</td>
<td>209</td>
</tr>
<tr>
<td>5.8</td>
<td>Multicollinearity</td>
<td>217</td>
</tr>
<tr>
<td>5.9</td>
<td>Adopting the wrong functional form</td>
<td>220</td>
</tr>
<tr>
<td>5.10</td>
<td>Omission of an important variable</td>
<td>224</td>
</tr>
<tr>
<td>5.11</td>
<td>Inclusion of an irrelevant variable</td>
<td>225</td>
</tr>
</tbody>
</table>
5.12 Parameter stability tests
5.13 Measurement errors
5.14 A strategy for constructing econometric models and a discussion of model-building philosophies
5.15 Determinants of sovereign credit ratings

6 Univariate time series modelling and forecasting
6.1 Introduction
6.2 Some notation and concepts
6.3 Moving average processes
6.4 Autoregressive processes
6.5 The partial autocorrelation function
6.6 ARMA processes
6.7 Building ARMA models: the Box–Jenkins approach
6.8 Constructing ARMA models in EViews
6.9 Examples of time series modelling in finance
6.10 Exponential smoothing
6.11 Forecasting in econometrics
6.12 Forecasting using ARMA models in EViews
6.13 Exponential smoothing models in EViews

7 Multivariate models
7.1 Motivations
7.2 Simultaneous equations bias
7.3 So how can simultaneous equations models be validly estimated?
7.4 Can the original coefficients be retrieved from the \(\pi \)'s?
7.5 Simultaneous equations in finance
7.6 A definition of exogeneity
7.7 Triangular systems
7.8 Estimation procedures for simultaneous equations systems
7.9 An application of a simultaneous equations approach to modelling bid–ask spreads and trading activity
7.10 Simultaneous equations modelling using EViews
7.11 Vector autoregressive models
7.12 Does the VAR include contemporaneous terms?
7.13 Block significance and causality tests
7.14 VARs with exogenous variables
7.15 Impulse responses and variance decompositions
7.16 VAR model example: the interaction between property returns and the macroeconomy
7.17 VAR estimation in EViews

8 Modelling long-run relationships in finance
8.1 Stationarity and unit root testing
8.2 Tests for unit roots in the presence of structural breaks
8. Modelling unit roots

- **8.3** Testing for unit roots in EViews
- **8.4** Cointegration
- **8.5** Equilibrium correction or error correction models
- **8.6** Testing for cointegration in regression: a residuals-based approach
- **8.7** Methods of parameter estimation in cointegrated systems
- **8.8** Lead–lag and long-term relationships between spot and futures markets
- **8.9** Testing for and estimating cointegrating systems using the Johansen technique based on VARs
- **8.10** Purchasing power parity
- **8.11** Cointegration between international bond markets
- **8.12** Testing the expectations hypothesis of the term structure of interest rates
- **8.13** Testing for cointegration and modelling cointegrated systems using EViews

9. Modelling volatility and correlation

- **9.1** Motivations: an excursion into non-linearity land
- **9.2** Models for volatility
- **9.3** Historical volatility
- **9.4** Implied volatility models
- **9.5** Exponentially weighted moving average models
- **9.6** Autoregressive volatility models
- **9.7** Autoregressive conditionally heteroscedastic (ARCH) models
- **9.8** Generalised ARCH (GARCH) models
- **9.9** Estimation of ARCH/GARCH models
- **9.10** Extensions to the basic GARCH model
- **9.11** Asymmetric GARCH models
- **9.12** The GJR model
- **9.13** The EGARCH model
- **9.14** GJR and EGARCH in EViews
- **9.15** Tests for asymmetries in volatility
- **9.16** GARCH-in-mean
- **9.17** Uses of GARCH-type models including volatility forecasting
- **9.18** Testing non-linear restrictions or testing hypotheses about non-linear models
- **9.19** Volatility forecasting: some examples and results from the literature
- **9.20** Stochastic volatility models revisited
- **9.21** Forecasting covariances and correlations
- **9.22** Covariance modelling and forecasting in finance: some examples
- **9.23** Simple covariance models
- **9.24** Multivariate GARCH models
- **9.25** Direct correlation models
9.26 Extensions to the basic multivariate GARCH model 472
9.27 A multivariate GARCH model for the CAPM with time-varying covariances 474
9.28 Estimating a time-varying hedge ratio for FTSE stock index returns 475
9.29 Multivariate stochastic volatility models 478
9.30 Estimating multivariate GARCH models using EViews 480
Appendix: Parameter estimation using maximum likelihood 484

10 Switching models 490
10.1 Motivations 490
10.2 Seasonalities in financial markets: introduction and literature review 492
10.3 Modelling seasonality in financial data 493
10.4 Estimating simple piecewise linear functions 500
10.5 Markov switching models 502
10.6 A Markov switching model for the real exchange rate 503
10.7 A Markov switching model for the gilt–equity yield ratio 506
10.8 Estimating Markov switching models in EViews 510
10.9 Threshold autoregressive models 513
10.10 Estimation of threshold autoregressive models 515
10.11 Specification tests in the context of Markov switching and threshold autoregressive models: a cautionary note 516
10.12 A SETAR model for the French franc–German mark exchange rate 517
10.13 Threshold models and the dynamics of the FTSE 100 index and index futures markets 519
10.14 A note on regime switching models and forecasting accuracy 523

11 Panel data 526
11.1 Introduction – what are panel techniques and why are they used? 526
11.2 What panel techniques are available? 528
11.3 The fixed effects model 529
11.4 Time-fixed effects models 531
11.5 Investigating banking competition using a fixed effects model 532
11.6 The random effects model 536
11.7 Panel data application to credit stability of banks in Central and Eastern Europe 537
11.8 Panel data with EViews 541
11.9 Panel unit root and cointegration tests 547
11.10 Further reading 557

12 Limited dependent variable models 559
12.1 Introduction and motivation 559
12.2 The linear probability model 560
12.3 The logit model
12.4 Using a logit to test the pecking order hypothesis
12.5 The probit model
12.6 Choosing between the logit and probit models
12.7 Estimation of limited dependent variable models
12.8 Goodness of fit measures for linear dependent variable models
12.9 Multinomial linear dependent variables
12.10 The pecking order hypothesis revisited – the choice between financing methods
12.11 Ordered response linear dependent variables models
12.12 Are unsolicited credit ratings biased downwards? An ordered probit analysis
12.13 Censored and truncated dependent variables
12.14 Limited dependent variable models in EViews

Appendix: The maximum likelihood estimator for logit and probit models

13 Simulation methods
13.1 Motivations
13.2 Monte Carlo simulations
13.3 Variance reduction techniques
13.4 Bootstrapping
13.5 Random number generation
13.6 Disadvantages of the simulation approach to econometric or financial problem solving
13.7 An example of Monte Carlo simulation in econometrics: deriving a set of critical values for a Dickey–Fuller test
13.8 An example of how to simulate the price of a financial option
13.9 An example of bootstrapping to calculate capital risk requirements

14 Conducting empirical research or doing a project or dissertation in finance
14.1 What is an empirical research project and what is it for?
14.2 Selecting the topic
14.3 Sponsored or independent research?
14.4 The research proposal
14.5 Working papers and literature on the internet
14.6 Getting the data
14.7 Choice of computer software
14.8 Methodology
14.9 Event studies
14.10 Tests of the CAPM and the Fama–French Methodology
Contents

14.11 How might the finished project look? 661
14.12 Presentational issues 666

<table>
<thead>
<tr>
<th>Appendix 1</th>
<th>Sources of data used in this book</th>
<th>667</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix 2</td>
<td>Tables of statistical distributions</td>
<td>668</td>
</tr>
</tbody>
</table>

Glossary 680
References 697
Index 710