COMPUTATIONAL METHODS FOR PHYSICS

There is an increasing need for undergraduate students in physics to have a core set of computational tools. Most problems in physics benefit from numerical methods, and many of them resist analytical solution altogether. This textbook presents numerical techniques for solving familiar physical problems, where a complete solution is inaccessible using traditional mathematical methods.

The numerical techniques for solving the problems are clearly laid out, with a focus on the logic and applicability of the method. The same problems are revisited multiple times using different numerical techniques, so readers can easily compare the methods. The book features over 250 end-of-chapter exercises. A website hosted by the author features a complete set of programs used to generate the examples and figures, which can be used as a starting point for further investigation. A link to this can be found at www.cambridge.org/9781107034303.

JOEL FRANKLIN is an Associate Professor in the Physics Department of Reed College. He focuses on mathematical and computational methods with applications to classical mechanics, quantum mechanics, electrodynamics, general relativity, and modifications of general relativity.
COMPUTATIONAL METHODS
FOR PHYSICS

JOEL FRANKLIN

Reed College
For Lancaster, Lewis, and Oliver
Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Programing overview</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Arithmetic operations</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Comparison operations</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Variables</td>
<td>3</td>
</tr>
<tr>
<td>1.4 Control structures</td>
<td>5</td>
</tr>
<tr>
<td>1.5 Functions</td>
<td>6</td>
</tr>
<tr>
<td>1.6 Input and output</td>
<td>8</td>
</tr>
<tr>
<td>1.7 Recursion</td>
<td>8</td>
</tr>
<tr>
<td>1.8 Function pointers</td>
<td>10</td>
</tr>
<tr>
<td>1.9 Mathematica-specific array syntax</td>
<td>11</td>
</tr>
<tr>
<td>1.10 Implementations and pseudo-code</td>
<td>12</td>
</tr>
<tr>
<td>1.11 Timing and operation counts</td>
<td>14</td>
</tr>
<tr>
<td>1.12 Units and dimensions</td>
<td>15</td>
</tr>
<tr>
<td>2 Ordinary differential equations</td>
<td>21</td>
</tr>
<tr>
<td>2.1 Physical motivation</td>
<td>21</td>
</tr>
<tr>
<td>2.1.1 Newton’s second law</td>
<td>21</td>
</tr>
<tr>
<td>2.1.2 Relativistic mechanics</td>
<td>28</td>
</tr>
<tr>
<td>2.2 The Verlet method</td>
<td>30</td>
</tr>
<tr>
<td>2.3 Discretization</td>
<td>33</td>
</tr>
<tr>
<td>2.3.1 Euler’s method</td>
<td>35</td>
</tr>
<tr>
<td>2.3.2 Improved accuracy</td>
<td>37</td>
</tr>
<tr>
<td>2.4 Runge–Kutta methods</td>
<td>39</td>
</tr>
<tr>
<td>2.4.1 Adaptive step size</td>
<td>41</td>
</tr>
<tr>
<td>2.4.2 Vectors</td>
<td>42</td>
</tr>
<tr>
<td>2.5 Stability of numerical methods</td>
<td>44</td>
</tr>
<tr>
<td>2.6 Multi-step methods</td>
<td>47</td>
</tr>
</tbody>
</table>
Contents

3 Root-finding 54
3.1 Physical motivation 54
3.1.1 Roots of functions 55
3.1.2 Shooting for Newton’s second law 62
3.1.3 Shooting for eigenvalues 66
3.2 Finding roots 73
3.2.1 Bisection 73
3.2.2 Newton’s method 74
3.2.3 Newton’s method and shooting 77
3.2.4 Steepest descent 78
4 Partial differential equations 86
4.1 Physical motivation 87
4.1.1 One dimension 88
4.1.2 Two dimensions 89
4.2 Finite difference in one dimension 93
4.3 Finite difference in two dimensions 98
4.4 Examples 102
4.4.1 Empty box 102
4.4.2 Parallel plate capacitor 102
4.4.3 Constant surface charge box 103
4.4.4 Grounded plate with hole 107
5 Time-dependent problems 114
5.1 Physical motivation 114
5.1.1 Conservation laws 115
5.1.2 The wave equation 116
5.1.3 Traffic flow 119
5.1.4 Shock solutions 120
5.1.5 Fluids 122
5.1.6 Quantum mechanics 123
5.2 Exactly solvable cases 124
5.3 Discretization and methods 125
5.3.1 Nonlinear modification 127
5.3.2 Lax–Wendroff 129
5.4 Crank–Nicolson for the Schrödinger equation 131
6 Integration 141
6.1 Physical motivation 141
6.1.1 Direct integrals 142
6.1.2 Integrals that solve PDEs 146
6.2 One-dimensional quadrature 149
Contents

6.3 Interpolation 151
 6.3.1 Arbitrary interval 156
6.4 Higher-dimensional quadrature 158
6.5 Monte Carlo integration 160
 6.5.1 Statistical connection 163
 6.5.2 Extensions 164
7 Fourier transform 172
 7.1 Fourier transform 173
 7.2 Power spectrum 176
 7.3 Fourier series 177
 7.4 Discrete Fourier transform 178
 7.5 Recursion 180
 7.6 FFT algorithm 182
 7.7 Applications 186
 7.7.1 Sound input 186
 7.7.2 Low pass filter 187
 7.7.3 Two-dimensional Fourier transform 189
 7.7.4 Spectrogram 192
8 Harmonic oscillators 199
 8.1 Physical motivation 199
 8.1.1 Linear chains 200
 8.1.2 Molecular dynamics 200
 8.1.3 Harmonic approximation 201
 8.2 Three balls and two springs 201
 8.2.1 Equations of motion 202
 8.2.2 Solution 204
 8.3 Solution for a particular case 207
 8.4 General solution 211
 8.5 Balls and springs in $D = 3$ 211
9 Matrix inversion 220
 9.1 Definitions and points of view 221
 9.2 Physical motivation 222
 9.2.1 Circuits 222
 9.2.2 Fitting data 224
 9.3 How do you invert a matrix? 227
 9.3.1 Easy inversions 227
 9.3.2 The QR decomposition 228
 9.3.3 QR exists (for square A) 228
 9.3.4 The LU decomposition 231
Contents

9.3.5 LU exists 234
9.3.6 Computing the LU decomposition 236
9.3.7 Pivoting 238

9.4 Determinants 239

9.5 Constructing A^{-1} 240

10 The eigenvalue problem 246
10.1 Fitting data 246
10.2 Least squares 248
10.3 The eigenvalue problem 251
10.4 Physical motivation 251
\hspace{0.5cm} 10.4.1 Linear springs 251
\hspace{0.5cm} 10.4.2 Quantum mechanics 252
\hspace{0.5cm} 10.4.3 Image compression 255
10.5 The power method 260
10.6 Simultaneous iteration and QR iteration 262
\hspace{0.5cm} 10.6.1 Timing 264
10.7 Quantum mechanics and perturbation 265
\hspace{0.5cm} 10.7.1 Perturbation setup 265

11 Iterative methods 274
\hspace{0.5cm} 11.1 Physical motivation 274
\hspace{0.5cm} \hspace{0.5cm} 11.1.1 Particle motion 275
\hspace{0.5cm} \hspace{0.5cm} 11.1.2 Advertisement: sparse matrices 276
\hspace{0.5cm} 11.2 Iteration and decomposition 277
\hspace{0.5cm} \hspace{0.5cm} 11.2.1 Jacobi’s method 279
\hspace{0.5cm} \hspace{0.5cm} 11.2.2 Successive over-relaxation (SOR) 279
\hspace{0.5cm} 11.3 Krylov subspace 282
\hspace{0.5cm} \hspace{0.5cm} 11.3.1 Definition 282
\hspace{0.5cm} \hspace{0.5cm} 11.3.2 Constructing the subspace (Lanczos iteration) 284
\hspace{0.5cm} \hspace{0.5cm} 11.3.3 The eigenvalue problem 285
\hspace{0.5cm} \hspace{0.5cm} 11.3.4 Matrix inversion 287
\hspace{0.5cm} \hspace{0.5cm} 11.3.5 Conjugate gradient 289

12 Minimization 298
\hspace{0.5cm} 12.1 Physical motivation 298
\hspace{0.5cm} \hspace{0.5cm} 12.1.1 Variational method in quantum mechanics 299
\hspace{0.5cm} \hspace{0.5cm} 12.1.2 Data fitting 300
\hspace{0.5cm} \hspace{0.5cm} 12.1.3 Action extremization 301
\hspace{0.5cm} 12.2 Minimization in one dimension 302
\hspace{0.5cm} 12.3 Minimizing $u(x)$ 306
\hspace{0.5cm} \hspace{0.5cm} 12.3.1 Steepest descent 306
\hspace{0.5cm} \hspace{0.5cm} 12.3.2 Newton’s method 308
<table>
<thead>
<tr>
<th>Contents</th>
<th>xi</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4 Nonlinear least squares</td>
<td>309</td>
</tr>
<tr>
<td>12.5 Line minimization</td>
<td>313</td>
</tr>
<tr>
<td>12.6 Monte Carlo minimization</td>
<td>315</td>
</tr>
<tr>
<td>13 Chaos</td>
<td>323</td>
</tr>
<tr>
<td>13.1 Nonlinear maps</td>
<td>324</td>
</tr>
<tr>
<td>13.2 Periodicity and doubling</td>
<td>327</td>
</tr>
<tr>
<td>13.2.1 The logistic map</td>
<td>328</td>
</tr>
<tr>
<td>13.2.2 Making bifurcation diagrams</td>
<td>332</td>
</tr>
<tr>
<td>13.3 Characterization of chaos</td>
<td>333</td>
</tr>
<tr>
<td>13.3.1 Period doubling</td>
<td>333</td>
</tr>
<tr>
<td>13.3.2 Initial conditions</td>
<td>334</td>
</tr>
<tr>
<td>13.4 Ordinary differential equations</td>
<td>338</td>
</tr>
<tr>
<td>13.4.1 Linear problems</td>
<td>338</td>
</tr>
<tr>
<td>13.4.2 The Lorenz equations</td>
<td>339</td>
</tr>
<tr>
<td>13.5 Fractals and dimension</td>
<td>342</td>
</tr>
<tr>
<td>14 Neural networks</td>
<td>351</td>
</tr>
<tr>
<td>14.1 A neural network model</td>
<td>352</td>
</tr>
<tr>
<td>14.1.1 A linear model</td>
<td>352</td>
</tr>
<tr>
<td>14.1.2 A nonlinear model</td>
<td>354</td>
</tr>
<tr>
<td>14.1.3 The sigmoid function</td>
<td>354</td>
</tr>
<tr>
<td>14.2 Training</td>
<td>356</td>
</tr>
<tr>
<td>14.2.1 Setting coefficients</td>
<td>357</td>
</tr>
<tr>
<td>14.3 Example and interpretation</td>
<td>359</td>
</tr>
<tr>
<td>14.4 Hidden layers</td>
<td>361</td>
</tr>
<tr>
<td>14.5 Usage and caveats</td>
<td>363</td>
</tr>
<tr>
<td>14.6 Signal source</td>
<td>364</td>
</tr>
<tr>
<td>15 Galerkin methods</td>
<td>371</td>
</tr>
<tr>
<td>15.1 Physical motivation</td>
<td>372</td>
</tr>
<tr>
<td>15.1.1 Born–Infeld E&M</td>
<td>373</td>
</tr>
<tr>
<td>15.1.2 Nonlinear scalar fields</td>
<td>375</td>
</tr>
<tr>
<td>15.1.3 Nonlinear wave equation</td>
<td>376</td>
</tr>
<tr>
<td>15.1.4 The heat equation</td>
<td>377</td>
</tr>
<tr>
<td>15.2 Galerkin method</td>
<td>378</td>
</tr>
<tr>
<td>15.2.1 Nonlinear Klein–Gordon</td>
<td>382</td>
</tr>
<tr>
<td>15.2.2 Nonlinear string</td>
<td>384</td>
</tr>
</tbody>
</table>

References

Index

© in this web service Cambridge University Press
This book is meant to teach an advanced undergraduate physics major how to solve problems, that they can easily pose and understand, using numerical methods. It is self-contained (within reason) in its presentation of physical problems, so that a reader need not be previously familiar with all of the physical topics covered. The numerical techniques that are presented are complete, without being exhaustive. I have chosen a set of tools that can be motivated easily – some of these, like Runge–Kutta methods for solving ordinary differential equations, are themselves the “end of the story” for certain problems. In other cases, I choose to present a simplified method that will work for at least some problems, even if it is not what is actually implemented in practice. A homogenous and appropriate level of presentation is the goal. Sometimes that allows for a complete and formal discussion, in other cases, I motivate and inform while ensuring that a successful (if not competitive) method is carefully described.

The chapters are defined by computational technique, with chapters covering “Partial differential equations,” “Integration,” “Fourier transform,” “Matrix inversion,” etc. Each chapter introduces a disparate set of physical problems, most of which are “unsolvable” (meaning that there is no closed-form solution expressible in terms of simple functions). I have attempted to draw problems from as wide an array of physical areas as possible, so that in a single chapter, there may be examples from quantum mechanics, E&M, special relativity, etc. All of these physical setups end in a similar analytically intractable problem. That problem then becomes

1 This can lead to some repetition, of, for example, the meaning attached to the solutions of Schrödinger’s equation, or the definition of relativistic momentum, etc. But my hope is that repeated local definition allows for easier reading.

2 To be clear with an example: presenting a fast, research-grade eigenvalue solver requires more mathematics and programming ability than is available at the undergraduate level – that is not, therefore, a compelling target. But, the power method, and simultaneous iteration, which are easy (and delightful) to describe, will do the job in many cases and inform more sophisticated methods.

3 Of course, many “simple functions” still require numerical evaluation, even sine and cosine have interpolated or otherwise approximated value at most points.
the vehicle for the introduction of a numerical method (or in some cases, a few different methods) in which I focus on the mathematical ideas behind the method, including a discussion of its motivation, its limitations and possible extensions. At the end of each chapter, I include short further reading suggestions, and two types of exercise. The first, called “Problems,” are pencil-and-paper exercises. These can involve guiding a student through the analysis of a numerical method presented in the chapter, or setting up analytically solvable limiting cases of problems that will be solved numerically. Then there are “Lab problems,” these are physical problems (generally set up at the start of the chapter) that will be solved using the method(s) from the chapter.

The specific numerical methods I discuss in each chapter were chosen for their coverage (of a wide range of physical problems), and presentability. By the latter, I mean that any method should be transparent in its functioning (and implementation), and easy to analyze. Certain types of Monte Carlo “simulations” are omitted, since it is harder to prove (or in some cases even indicate) that they will succeed in solving a particular problem. One can motivate and a posteriori verify that such methods work, and they have a certain physically inspired allure, but my primary goal in choosing methods is to introduce students to ideas whose advantages and limitations can be judged easily. In addition to numerical methods, I discuss “traditional” mathematical methods relevant to the physical sciences. I have chosen specific mathematical methods to present (like separation of variables, shock solutions to time-dependent PDEs, or time-independent perturbation theory) based on the availability of a comparative discussion with numerical methods, and to set up limiting cases so that we can check the functioning of numerical methods on concrete test problems where the answer is known. I hope, then, that the book is more than “just” a numerical methods book, but one that can be used to learn some physics, learn methods for solving physical problems, and build confidence that those methods are working (in the appropriate regime).

Structure and teaching

Structurally, there are three sections to the book:

1. ODEs, PDEs, and integration. These are the topics covered in the first seven chapters. The idea is to get a bulk of the problem-solving tools out quickly, and most physical problems benefit from an ability to solve ODEs in initial
value (Chapter 2) and boundary value form (Chapter 3). There are two chapters on finite difference for PDEs: Chapter 4 covers static, linear operators (mainly the Poisson problem), and in Chapter 5, we see time-dependent PDEs (both linear, like Schrödinger’s equation, and nonlinear forms). Chapter 6 develops integration methods from interpolating polynomials, and connects the statistical Monte Carlo integration method to simple box sums. Finally, I count the chapter on the FFT as an integration topic.

2. Numerical linear algebra. Chapters 9–12 discuss numerical techniques for matrix inversion, least squares solution, and the eigenvalue problem. Some of the material in these chapters is required by topics in the first section (for example, solving Poisson’s problem in discretized form involves matrix inversion) where we used canned routines. Now we come back and pick up these topics, their motivation coming in part from previous discussions. Chapters 9 and 10 focus on “direct” solution of the matrix inverse and eigenvalue problem, while Chapter 11 introduces iterative techniques (Jacobi, SOR, and Krylov subspace methods).\(^5\) Chapter 12 is not, strictly speaking, a part of linear algebra – but minimization is usefully applied in the nonlinear least squares problem, so must come after the linear form of that problem.

3. Additional topics. The first two sections provide methods that cover many physical problems. The remaining chapters give interesting additional topics, but are slightly different in their coverage from the rest of the book. Chapter 13: “Chaos,” for example, has no numerical methods attached to it. The neural network chapter (14) presents these models in terms of their predictive ability for physical phenomena, with emphasis on the promise provided by the Cybenko theorem rather than the physiological inspiration normally encountered. Chapter 15 returns to PDEs and describes the Galerkin approach with some additional nonlinear PDE targets.

Two of the chapters do not fall neatly into these categories – the first chapter provides a review of the minimal programming tools that we need to use to implement the methods presented in the other chapters – it also provides some orienting Mathematica examples of these tools in action. The eighth chapter acts as a pivot between the first and second sections, and is meant to set up our interest in the eigenvalue problem.

The grouping above is informed by the course that inspired this book, and for which it was written – in it, the students present a final project of their own design,

\(^5\) Divorcing the finite difference setup from the iterative solutions (Jacobi and SOR) to the matrix inverse problem is not the traditional approach. Typically, authors will combine the discretization of the Laplacian with an iterative update. But I believe that the two pieces are logically separate – discretizing the Laplace operator gives us a matrix inverse problem to solve, how we go about solving it is a separate matter.
and they begin working on this at about the middle of the semester. That is when we have covered the bulk of item one above, so they have seen a number of different kinds of problems and understand numerical methods for solving them. The section on numerical linear algebra is interesting and informative, but students who need to, for example, invert matrices for their final projects can use a built-in routine (few students have made the process of matrix inversion the central idea of their projects) until the relevant material is covered (and even after, in most cases). The additional topics section has then come at a time when students can take advantage of the information in them without relying on it for their project (coupled, driven oscillators can be solved and studied numerically before the nonlinear analysis tools that are typically used to describe them are introduced).

While I use a subset of the programming language of Mathematica both in the book, and in the course, I have found that students can re-render the content in other languages relatively easily, and have had students work out the lab problems using python, Java, C, Sage, and matlab. For those students with less of a programming background, I provide, for each chapter, a Mathematica “notebook” that contains all the commands used to generate the figures and example solutions for the chapter. Then much of the programming can be done by re-working examples from the chapter notebook. My intention is for students who are not as interested in programming to have a way of learning the methods, without worrying about their implementation as much. The computational methods are based on implementation-independent mathematical ideas, and those are the core targets. For students who enjoy the implementation side (I always did, although I was never particularly good at it): optimizing and ordering commands efficiently, don’t look at the chapter notebooks, work out your own routines from scratch.

This course is one of my favorites to teach – there are limitless physical problems to set up, so it’s a great place for me to learn about new physics. Then the extent to which it is difficult to solve most problems (even simple ones) analytically is always surprising. And, finally, the numerical solutions that allow progress are often simple and fast. I usually cover each chapter in a week with three lectures: on Monday, we just set up physical problems, ones that come from different physics, but all end in a common, fundamental “problem.” On Wednesday, we develop a method that solves that problem, and then, during “Friday potpourri,” we return to some of the problems from Monday and solve them, and discuss limitations or extensions of the method. The chapter structure mimics these lectures, with physical problems presented first, then methods, then additional items, sometimes additional physics, other times, more in-depth discussion of the method or its variants.

What is notably missing from the weekly lectures is any sort of implementation discussion – in addition to the three lectures, I also run three-hour “labs” every week. Students come to these to work on the lab problems (I assign three or four
of these each week), and this is where implementation can be carefully discussed, with the relevant programming ideas built up on an individual basis, or through group discussion. Having a concrete problem to work on (the lab problems) gives natural focus to the programming. This separation between physics, the idea behind the method, and its implementation, is intentional. The goal is to help identify points of confusion as arising from the statement of a physical problem, the proper functioning of a numerical method, or its implementation. Keeping those three separate makes clearing up the confusion easier.

Website and materials

The book has a website, and on it, students can find all of the chapter notebooks (the Mathematica code that generated all the examples and figures in the book), a few sample “lab notebooks,” and some project ideas that students have come up with over the years. Some of the lab problems require mocked up data or other information, and those are also available on the website.

Acknowledgements

It is a pleasure to thank my colleagues in the Reed College physics department, especially Darrell Schroeter, who developed and taught an early version of the computational methods class at Reed with me, Nelie Mann who contributed useful comments and problems, David Latimer, a great sounding board, and David Griffiths for his usual outstanding commentary, criticism and encouragement. Outside the department, Jim Fix gave me some great image rotation advice, Olivia Schelly took the pictures that are used in Chapter 7, and Matt Sayre wrote the Gravitea-Time song for filtering. Simon Capelin and Lindsay Barnes at Cambridge University Press have once again made the publishing process enjoyable, and I thank them for their help at all stages of the project.

I would like to thank Sebastian Doniach and the Stanford University physics department for their hospitality in the winter of 2012: aside from a nice change of scene, and stimulating new environment, I got to teach this material to an entirely new audience, for which I am very grateful. The Writer’s Bloc has provided a wonderful setting for revising the manuscript. Finally, a special thanks to the Reed College students who helped me during the process of editing and refining the book: Tom Chartrand, Todd Garon, and Reuven Lazarus.