Quantum Information Theory

Finally, here is a modern, self-contained text on quantum information theory suitable for graduate-level courses. Developing the subject “from the ground up,” it covers classical results as well as major advances of the past decade.

Beginning with an extensive overview of classical information theory suitable for the non-expert, the author then turns his attention to quantum mechanics for quantum information theory, and the important protocols of teleportation, super-dense coding, and entanglement distribution. He develops all of the tools necessary for understanding important results in quantum information theory, including capacity theorems for classical, entanglement-assisted, private, and quantum communication. The book also covers important recent developments such as superadditivity of private, coherent, and Holevo information, and the superactivation of quantum capacity.

This book will be warmly welcomed by the upcoming generation of quantum information theorists and by the already established community of classical information theorists.

Mark M. Wilde is currently a Lecturer in the School of Computer Science at McGill University, Montréal and will begin in August 2013 as an Assistant Professor with a joint appointment in the Department of Physics and Astronomy and the Center for Computation and Technology at Louisiana State University, Baton Rouge.
Quantum Information Theory

MARK M. WILDE
McGill University, Montréal
Contents

How To Use This Book xi
Acknowledgments xiv

Part I Introduction 1

1 Concepts in Quantum Shannon Theory 3
 1.1 Overview of the Quantum Theory 7
 1.2 The Emergence of Quantum Shannon Theory 11

2 Classical Shannon Theory 26
 2.1 Data Compression 26
 2.2 Channel Capacity 35
 2.3 Summary 49

Part II The Quantum Theory 51

3 The Noiseless Quantum Theory 53
 3.1 Overview 54
 3.2 Quantum Bits 55
 3.3 Reversible Evolution 61
 3.4 Measurement 68
 3.5 Composite Quantum Systems 74
 3.6 Summary and Extensions to Qudit States 89
 3.7 History and Further Reading 96

4 The Noisy Quantum Theory 97
 4.1 Noisy Quantum States 98
 4.2 Measurement in the Noisy Quantum Theory 110
 4.3 Composite Noisy Quantum Systems 112
 4.4 Noisy Evolution 120
 4.5 Summary 139
 4.6 History and Further Reading 140

5 The Purified Quantum Theory 141
 5.1 Purification 142
 5.2 Isometric Evolution 143
Contents

5.3 Coherent Quantum Instrument 154
5.4 Coherent Measurement 155
5.5 History and Further Reading 156

Part III Unit Quantum Protocols 157

6 Three Unit Quantum Protocols 159
6.1 Non-local Unit Resources 160
6.2 Protocols 162
6.3 Optimality of the Three Unit Protocols 171
6.4 Extensions for Quantum Shannon Theory 173
6.5 Three Unit Qudit Protocols 174
6.6 History and Further Reading 180

7 Coherent Protocols 181
7.1 Definition of Coherent Communication 182
7.2 Implementations of a Coherent Bit Channel 184
7.3 Coherent Dense Coding 185
7.4 Coherent Teleportation 187
7.5 The Coherent Communication Identity 189
7.6 History and Further Reading 190

8 The Unit Resource Capacity Region 191
8.1 The Unit Resource Achievable Region 191
8.2 The Direct Coding Theorem 195
8.3 The Converse Theorem 196
8.4 History and Further Reading 200

Part IV Tools of Quantum Shannon Theory 201

9 Distance Measures 203
9.1 Trace Distance 204
9.2 Fidelity 212
9.3 Relationships between Trace Distance and Fidelity 219
9.4 Gentle Measurement 223
9.5 Fidelity of a Noisy Quantum Channel 226
9.6 The Hilbert–Schmidt Distance Measure 230
9.7 History and Further Reading 231

10 Classical Information and Entropy 232
10.1 Entropy of a Random Variable 233
10.2 Conditional Entropy 237
10.3 Joint Entropy 239
10.4 Mutual Information 239
10.5 Relative Entropy 240
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.6</td>
<td>Conditional Mutual Information</td>
<td>241</td>
</tr>
<tr>
<td>10.7</td>
<td>Information Inequalities</td>
<td>243</td>
</tr>
<tr>
<td>10.8</td>
<td>Classical Information and Entropy of Quantum Systems</td>
<td>249</td>
</tr>
<tr>
<td>10.9</td>
<td>History and Further Reading</td>
<td>251</td>
</tr>
<tr>
<td>11</td>
<td>Quantum Information and Entropy</td>
<td>252</td>
</tr>
<tr>
<td>11.1</td>
<td>Quantum Entropy</td>
<td>253</td>
</tr>
<tr>
<td>11.2</td>
<td>Joint Quantum Entropy</td>
<td>258</td>
</tr>
<tr>
<td>11.3</td>
<td>Potential yet Unsatisfactory Definitions of Conditional Quantum Entropy</td>
<td>261</td>
</tr>
<tr>
<td>11.4</td>
<td>Conditional Quantum Entropy</td>
<td>263</td>
</tr>
<tr>
<td>11.5</td>
<td>Coherent Information</td>
<td>265</td>
</tr>
<tr>
<td>11.6</td>
<td>Quantum Mutual Information</td>
<td>267</td>
</tr>
<tr>
<td>11.7</td>
<td>Conditional Quantum Mutual Information</td>
<td>270</td>
</tr>
<tr>
<td>11.8</td>
<td>Quantum Relative Entropy</td>
<td>272</td>
</tr>
<tr>
<td>11.9</td>
<td>Quantum Information Inequalities</td>
<td>275</td>
</tr>
<tr>
<td>11.10</td>
<td>History and Further Reading</td>
<td>290</td>
</tr>
<tr>
<td>12</td>
<td>The Information of Quantum Channels</td>
<td>292</td>
</tr>
<tr>
<td>12.1</td>
<td>Mutual Information of a Classical Channel</td>
<td>293</td>
</tr>
<tr>
<td>12.2</td>
<td>Private Information of a Wiretap Channel</td>
<td>299</td>
</tr>
<tr>
<td>12.3</td>
<td>Holevo Information of a Quantum Channel</td>
<td>303</td>
</tr>
<tr>
<td>12.4</td>
<td>Mutual Information of a Quantum Channel</td>
<td>309</td>
</tr>
<tr>
<td>12.5</td>
<td>Coherent Information of a Quantum Channel</td>
<td>314</td>
</tr>
<tr>
<td>12.6</td>
<td>Private Information of a Quantum Channel</td>
<td>319</td>
</tr>
<tr>
<td>12.7</td>
<td>Summary</td>
<td>325</td>
</tr>
<tr>
<td>12.8</td>
<td>History and Further Reading</td>
<td>326</td>
</tr>
<tr>
<td>13</td>
<td>Classical Typicality</td>
<td>327</td>
</tr>
<tr>
<td>13.1</td>
<td>An Example of Typicality</td>
<td>328</td>
</tr>
<tr>
<td>13.2</td>
<td>Weak Typicality</td>
<td>329</td>
</tr>
<tr>
<td>13.3</td>
<td>Properties of the Typical Set</td>
<td>331</td>
</tr>
<tr>
<td>13.4</td>
<td>Application of Typical Sequences: Shannon Compression</td>
<td>333</td>
</tr>
<tr>
<td>13.5</td>
<td>Weak Joint Typicality</td>
<td>335</td>
</tr>
<tr>
<td>13.6</td>
<td>Weak Conditional Typicality</td>
<td>338</td>
</tr>
<tr>
<td>13.7</td>
<td>Strong Typicality</td>
<td>341</td>
</tr>
<tr>
<td>13.8</td>
<td>Strong Joint Typicality</td>
<td>350</td>
</tr>
<tr>
<td>13.9</td>
<td>Strong Conditional Typicality</td>
<td>352</td>
</tr>
<tr>
<td>13.10</td>
<td>Application: Shannon's Channel Capacity Theorem</td>
<td>358</td>
</tr>
<tr>
<td>13.11</td>
<td>Concluding Remarks</td>
<td>362</td>
</tr>
<tr>
<td>13.12</td>
<td>History and Further Reading</td>
<td>363</td>
</tr>
<tr>
<td>14</td>
<td>Quantum Typicality</td>
<td>364</td>
</tr>
<tr>
<td>14.1</td>
<td>The Typical Subspace</td>
<td>365</td>
</tr>
<tr>
<td>14.2</td>
<td>Conditional Quantum Typicality</td>
<td>375</td>
</tr>
</tbody>
</table>
Contents

14.3 The Method of Types for Quantum Systems 384
14.4 Concluding Remarks 387
14.5 History and Further Reading 387

15 The Packing Lemma 388
15.1 Introductory Example 389
15.2 The Setting of the Packing Lemma 389
15.3 Statement of the Packing Lemma 391
15.4 Proof of the Packing Lemma 393
15.5 Derandomization and Expurgation 398
15.6 History and Further Reading 400

16 The Covering Lemma 401
16.1 Introductory Example 402
16.2 Setting and Statement of the Covering Lemma 404
16.3 Proof of the Covering Lemma 406
16.4 History and Further Reading 413

Part V Noisless Quantum Shannon Theory 415

17 Schumacher Compression 417
17.1 The Information-Processing Task 418
17.2 The Quantum Data-Compression Theorem 420
17.3 Quantum Compression Example 424
17.4 Variations on the Schumacher Theme 425
17.5 Concluding Remarks 427
17.6 History and Further Reading 427

18 Entanglement Concentration 429
18.1 An Example of Entanglement Concentration 430
18.2 The Information-Processing Task 433
18.3 The Entanglement Concentration Theorem 433
18.4 Common Randomness Concentration 440
18.5 Schumacher Compression versus Entanglement Concentration 441
18.6 Concluding Remarks 445
18.7 History and Further Reading 445

Part VI Noisy Quantum Shannon Theory 447

19 Classical Communication 451
19.1 Naive Approach: Product Measurements at the Decoder 453
19.2 The Information-Processing Task 456
19.3 The Classical Capacity Theorem 458
19.4 Examples of Channels 463
Contents

19.5 Superadditivity of the Holevo Information 471
19.6 Concluding Remarks 474
19.7 History and Further Reading 475

20 Entanglement-Assisted Classical Communication 477
20.1 The Information-Processing Task 479
20.2 A Preliminary Example 480
20.3 The Entanglement-Assisted Classical Capacity Theorem 484
20.4 The Direct Coding Theorem 484
20.5 The Converse Theorem 493
20.6 Examples of Channels 501
20.7 Concluding Remarks 506
20.8 History and Further Reading 507

21 Coherent Communication with Noisy Resources 508
21.1 Entanglement-Assisted Quantum Communication 509
21.2 Quantum Communication 514
21.3 Noisy Super-Dense Coding 515
21.4 State Transfer 518
21.5 Trade-off Coding 522
21.6 Concluding Remarks 530
21.7 History and Further Reading 531

22 Private Classical Communication 532
22.1 The Information-Processing Task 533
22.2 The Private Classical Capacity Theorem 536
22.3 The Direct Coding Theorem 536
22.4 The Converse Theorem 545
22.5 Discussion of Private Classical Capacity 546
22.6 History and Further Reading 549

23 Quantum Communication 550
23.1 The Information-Processing Task 551
23.2 The No-Cloning Theorem and Quantum Communication 553
23.3 The Quantum Capacity Theorem 554
23.4 The Direct Coding Theorem 555
23.5 Converse Theorem 562
23.6 An Interlude with Quantum Stabilizer Codes 564
23.7 Example Channels 571
23.8 Discussion of Quantum Capacity 574
23.9 Entanglement Distillation 579
23.10 History and Further Reading 582
Contents

24 Trading Resources for Communication
- 24.1 The Information-Processing Task 586
- 24.2 The Quantum Dynamic Capacity Theorem 588
- 24.3 The Direct Coding Theorem 593
- 24.4 The Converse Theorem 596
- 24.5 Examples of Channels 606
- 24.6 History and Further Reading 616

25 Summary and Outlook
- 25.1 Unit Protocols 619
- 25.2 Noiseless Quantum Shannon Theory 619
- 25.3 Noisy Quantum Shannon Theory 620
- 25.4 Protocols Not Covered in This Book 623
- 25.5 Network Quantum Shannon Theory 624
- 25.6 Future Directions 625

Appendix A Miscellaneous Mathematics 626

Appendix B Monotonicity of Quantum Relative Entropy 633

References 639

Index 653
How To Use This Book

For Students

Prerequisites for understanding the content in this book are a solid background in probability theory and linear algebra. If you are new to information theory, then there is enough background in this book to get you up to speed (Chapters 2, 10, 12, and 13). Though, classics on information theory such as Cover and Thomas (1991) and MacKay (2003) could be helpful as a reference. If you are new to quantum mechanics, then there should be enough material in this book (Part II) to give you the background necessary for understanding quantum Shannon theory. The book of Nielsen and Chuang (sometimes known as “Mike and Ike”) has become the standard starting point for students in quantum information science and might be helpful as well (Nielsen & Chuang, 2000). Some of the content in that book is available in Nielsen’s dissertation (Nielsen, 1998). If you are familiar with Shannon’s information theory (at the level of Cover and Thomas (1991), for example), then this book should be a helpful entry point into the field of quantum Shannon theory. We build on intuition developed classically to help in establishing schemes for communication over quantum channels. If you are familiar with quantum mechanics, it might still be worthwhile to review Part II because some content there might not be part of a standard course on quantum mechanics.

The aim of this book is to develop “from the ground up” many of the major, exciting, pre- and post-millennium developments in the general area of study known as quantum Shannon theory. As such, we spend a significant amount of time on quantum mechanics for quantum information theory (Part II), we give a careful study of the important unit protocols of teleportation, super-dense coding, and entanglement distribution (Part III), and we develop many of the tools necessary for understanding information transmission or compression (Part IV). Parts V and VI are the culmination of this book, where all of the tools developed come into play for understanding many of the important results in quantum Shannon theory.
For Instructors

This book could be useful for self-learning or as a reference, but one of the main goals is for it to be employed as an instructional aid for the classroom. To aid instructors in designing a course to suit their own needs, a preprint version of this book is available from http://arxiv.org/abs/1106.1445 under a Creative Commons Attribution-NonCommercial-ShareAlike license. This means that you can modify and redistribute the preprint version of this book as you wish, as long as you attribute the author, you do not use it for commercial purposes, and you share a modification or derivative work under the same license (see http://creativecommons.org/licenses/by-nc-sa/3.0/ for a readable summary of the terms of the license). These requirements can be waived if you obtain permission from the present author. By releasing the preprint version of this book under this license, I expect and encourage instructors to modify it for their own needs. This will allow for the addition of new exercises, new developments in the theory, and the latest open problems. It might also be a helpful starting point for a book on a related topic, such as network quantum Shannon theory.

I used an earlier version of this book in a one-semester course on quantum Shannon theory at McGill University during Winter semester 2011 (in many parts of the USA, this semester is typically called “Spring semester”). We almost went through the entire book, but it might also be possible to spread the content over two semesters instead. Here is the order in which we proceeded:

1. Introduction in Part I.
2. Quantum mechanics in Part II.
3. Unit protocols in Part III.
4. Chapter 9 on distance measures, Chapter 10 on classical information and entropy, and Chapter 11 on quantum information and entropy.
5. The first part of Chapter 13 on classical typicality and Shannon compression.
6. The first part of Chapter 14 on quantum typicality.
7. Chapter 17 on Schumacher compression.
8. Back to Chapters 13 and 14 for the method of types.
9. Chapter 18 on entanglement concentration.
10. Chapter 19 on classical communication.
11. Chapter 20 on entanglement-assisted classical communication.
12. The final explosion of results in Chapter 21 (one of which is a route to proving the achievability part of the quantum capacity theorem).

The above order is just a particular order that suited the needs for the class at McGill, but other orders are of course possible. One could sacrifice the last part of Part III on the unit resource capacity region if there is no desire to cover the quantum dynamic capacity theorem. One could also focus on going from classical communication to private classical communication to quantum communication in order to develop some more intuition behind the quantum capacity theorem.
Other Sources

There are many other sources to obtain a background in quantum Shannon theory. The standard reference has become the book of Nielsen and Chuang (2000), but it does not feature any of the post-millennium results in quantum Shannon theory. Other books that cover some aspects of quantum Shannon theory are Hayashi (2006) and Holevo (2002a). Patrick Hayden has had a significant hand as a collaborative guide for many PhD and Masters’ theses in quantum Shannon theory, during his time as a postdoctoral fellow at the California Institute of Technology and as a professor at McGill University. These include the theses of Yard (2005), Abeyesinghe (2006), Savov (2008, 2012), Dupuis (2010), and Dutil (2011). All of these theses are excellent references. Naturally, Hayden also had a strong influence over the present author during the development of this book.
Acknowledgments

I began working on this book in the summer of 2008 in Los Angeles, with much
time to spare in the final months of dissertation writing. I had a strong determina-
tion to review quantum Shannon theory, a beautiful area of quantum information
science that Igor Devetak had taught me three years earlier at USC in fall 2005.
I was carefully studying a manuscript entitled “Principles of Quantum Informa-
tion Theory,” a text that Igor had initiated in collaboration with Patrick Hayden
and Andreas Winter. I read this manuscript many times, and many parts of it I
understood well, though other parts I did not.

After a few weeks of reading and rereading, I decided “if I can write it out
myself from scratch, perhaps I would then understand it!”, and thus began the
writing of the chapters on the packing lemma, the covering lemma, and quantum
typicality. I knew that Igor’s (now former) students Min-Hsiu Hsieh and Zhicheng
Luo knew the topic well because they had already written several quality research
papers with him, so I requested if they could meet with me weekly for an hour
to review the fundamentals. They kindly agreed and helped me quite a bit in
understanding the packing and covering techniques.

Not much later, after graduating, I began collaborating with Min-Hsiu on
a research project that Igor had suggested to the both of us: “find the triple
trade-off capacity formulas of a quantum channel.” This was perhaps the best
starting point for me to learn quantum Shannon theory because proving this
theorem required an understanding of most everything that had already been
accomplished in the area. After a month of effort, I continued to work with
Min-Hsiu on this project while joining Andreas Winter’s Singapore group for
a two-month visit. As I learned more, I added more to the notes, and they
continued to grow.

After landing a job in the DC area for January 2009, I realized that I had
almost enough material for teaching a course, and so I contacted local universities
in the area to see if they would be interested. Can Korman, formerly chair of
the Electrical Engineering Department at George Washington University, was
excited about the possibility. His enthusiasm was enough to keep me going on the
notes, and so I continued to refine and add to them in my spare time in preparing
for teaching. Unfortunately (or perhaps fortunately?), the course ended up being
canceled. This was disheartening to me, but in the mean time, I had contacted
Patrick Hayden to see if he would be interested in having me join his group at
McGill University for postdoctoral studies. Patrick Hayden and David Avis then offered me a postdoctoral fellowship, and I moved to Montréal in October 2009.

After joining, I learned a lot by collaborating and discussing with Patrick and his group members. Patrick offered me the opportunity to teach his graduate class on quantum Shannon theory while he was away on sabbatical, and this encouraged me further to persist with the notes.

I am grateful to everyone mentioned above for encouraging and supporting me during this project, and I am also grateful to everyone who provided feedback during the course of writing up. In this regard, I am especially grateful to Dave Touchette for detailed feedback on all of the chapters in the book. Dave’s careful reading and spotting of errors has immensely improved the quality of the book. I am grateful to my father, Gregory E. Wilde, Sr., for feedback on earlier chapters and for advice and love throughout. I thank Ivan Savov for encouraging me, for feedback, and for believing that this is an important scholarly work. I also thank Constance Caramanolis, Raza-Ali Kazmi, John M. Schanck, Bilal Shaw, and Anna Vershynina for valuable feedback. I am grateful to Min-Hsiu Hsieh for the many research topics we have worked on together that have enhanced my knowledge of quantum Shannon theory. I thank Michael Nielsen and Victor Shoup for advice on Creative Commons licensing and Kurt Jacobs for advice on book publishing. I acknowledge funding from the MDEIE (Quebec) PSR-SIIRI international collaboration grant. I am grateful to Sarah Payne and David Tranah of Cambridge University Press for their extensive feedback on the manuscript and their outstanding support throughout the publication process.

I am indebted to my mentors who took me on as a student during my career. Todd Brun was a wonderful PhD supervisor—helpful, friendly, and encouraging of creativity and original pursuit. Igor Devetak taught me quantum Shannon theory in fall 2005 and helped me once per week during his office hours. He also invited me to join Todd’s and his group, and more recently, Igor provided much encouragement and “big-picture” feedback during the writing of this book. Bart Kosko shaped me as a scholar during my early years at USC and provided helpful advice regarding the book project. Patrick Hayden has been an immense bedrock of support at McGill. His knowledge of quantum information and many other areas is unsurpassed, and he has been kind, inviting, and helpful during my time at McGill. I am also grateful to Patrick for giving me the opportunity to teach at McGill and for advice throughout the development of this book.

I thank my mother, father, sister, and brother and all of my surrounding family members for being a source of love and support. Finally, I am indebted to my wife Christabelle and her family for warmth and love. I dedicate this book to the memory of my grandparents Joseph and Rose McMahon, and Norbert Jay and Mary Wilde. Lux aeterna luceat eis, Domine.