Geometric Methods in Signal and Image Analysis

This comprehensive guide offers a new approach for developing and implementing robust computational methodologies that uncover the key geometric and topological information from signals and images.

With the help of detailed real-world examples and applications, readers will learn how to solve complex signal and image processing problems in fields ranging from remote sensing to medical imaging, bioinformatics, robotics, security, and defense. With an emphasis on intuitive and application-driven arguments, this text not only covers a range of methods in use today, but also introduces promising new developments for the future, bringing the reader up-to-date with the state-of-the-art in signal and image analysis.

Covering basic principles as well as advanced concepts and applications, and with examples and homework exercises, this is an invaluable resource for graduate students, researchers, and industry practitioners in a range of fields including signal and image processing, biomedical engineering, and computer graphics.

Hamid Krim is Professor of Electrical and Computer Engineering and Director of the Vision, Information and Statistical Signal Theories and Applications group at North Carolina State University. Previously he was a member of technical staff at AT&T Bell Labs and has spent nearly two decades bringing geometric and topological tools to solve real-world and applied problems in signal and image analysis, developing innovative tools which are being used in industry and government alike.

A. Ben Hamza is Associate Professor and Associate Director of the Concordia Institute for Information Systems Engineering (CIISE) at Concordia University, Montreal. Previously he was a postdoctoral research associate at Duke University in North Carolina, affiliated with both the Department of Electrical and Computer Engineering and the Fitzpatrick Center for Photonics and Communications Systems. He is also a licensed professional engineer and a senior member of the IEEE.
Geometric Methods in Signal and Image Analysis

HAMID KRIM
North Carolina State University

A. BEN HAMZA
Concordia University
To my parents M. Cherif Krim and Z. Belahcene for their love and for teaching me the value of education, to my late brother Ali who instilled in me the thirst for pursuing the unknown, and to my children Kenan A. and Kendra C. who made it all worthy.

Hamid Krim

To my parents and my wife, whose unconditional love and support have served as a constant source of inspiration and encouragement.

A. Ben Hamza
Contents

1 Introduction

1.1 What is signal and image analysis?
1.2 Why geometric methods?
1.3 Applications
1.3.1 Image edge detection
1.3.2 Image segmentation
1.3.3 Diffusion tensor imaging
1.3.4 Surface denoising
1.3.5 Surface compression
1.3.6 Shape skeletonization
1.3.7 Shape recognition
1.3.8 Networked sensors and data

2 Fundamentals of group theory

2.1 Elements of group theory
2.1.1 Groups: definitions and examples
2.1.2 Homomorphisms of groups
2.1.3 Cyclic groups
2.1.4 Permutation groups
2.1.5 Matrix groups
2.2 Topological and symmetry groups
2.2.1 Topological spaces
2.2.2 Topological groups
2.2.3 Isometry between metric spaces
2.2.4 Symmetry groups
2.3 Geometric groups
2.3.1 Introduction to graph theory
2.3.2 Geometric groups and Cayley graphs
2.4 Symmetry discovery of nonrigid 3D shapes
2.4.1 Skeleton path acquisition
2.4.2 Endpoints matching
2.4.3 Symmetry discovery 49
2.4.4 Symmetric components discovery 50

3 Vector spaces 53

3.1 Vector space theory 53
3.1.1 Vector spaces over a field 54
3.1.2 Cartesian product of spaces 59
3.1.3 Subspaces of vector spaces 59
3.1.4 Linear independence and bases 60
3.1.5 Direct sum 62
3.1.6 Quotient spaces 62

3.2 Linear operators 63
3.2.1 Isomorphism 68
3.2.2 Kernel and image 69
3.2.3 Matrix of a linear operator 71
3.2.4 Eigenvalues and eigenvectors of linear operators 72
3.2.5 Eigendecomposition of matrices 73
3.2.6 Linear functionals and dual space 76

3.3 Inner product spaces 77
3.3.1 Dot and cross products 77
3.3.2 Inner product 78
3.3.3 Orthogonal bases 83
3.3.4 Orthogonal complements 84
3.3.5 Orthonormal bases 85
3.3.6 Normed vector spaces 87
3.3.7 From vector spaces to Hilbert spaces 90
3.3.8 Bounded operators 91
3.3.9 Adjoint operators 92
3.3.10 Unitary and orthogonal operators 93
3.3.11 Self-adjoint operators 96
3.3.12 Compact operators 98
3.3.13 Positive definite operators 99

3.4 Topological vector spaces 102
3.5 Generalized eigendecomposition of matrices 103
3.6 Singular value decomposition 103
3.6.1 Geometric interpretation of SVD 104
3.6.2 Low-rank approximation 106

3.7 Principal component analysis 108
3.7.1 PCA algorithm 111
3.7.2 PCA theory 114
3.7.3 Scree plot 116
3.7.4 Biplot 117
Contents

4 Differential geometry of curves and surfaces 120

4.1 Local theory of curves 121
4.1.1 Curves and their tangents 121
4.1.2 Arc-length 124
4.1.3 Length of curves 125
4.1.4 Curvature of plane curves 126
4.1.5 Curvature and torsion of space curves 128
4.1.6 Fundamental theorem of curves 132
4.1.7 Implicit representation of curves in the plane 133

4.2 Local theory of surfaces 134
4.2.1 Parametric representation of surfaces 134
4.2.2 Tangent plane 137
4.2.3 Vector fields on surfaces 139
4.2.4 Gauss map 140
4.2.5 First fundamental form 140
4.2.6 Isometric surfaces 143
4.2.7 Geodesics 144
4.2.8 Area of a surface 148
4.2.9 Second fundamental form 148
4.2.10 Gaussian, mean, and principal curvatures 150
4.2.11 Orientability 157

4.3 Image segmentation using curve evolution 158

5 Geometric and differential topology of manifolds 168

5.1 Manifolds 169
5.1.1 Topological manifolds 169
5.1.2 Manifold with boundary 170
5.1.3 Smooth manifolds and smooth maps 171
5.1.4 Vector fields 174
5.1.5 Orientability 175
5.1.6 Pushforward and pullback 175
5.1.7 Whitney embedding theorem 177
5.1.8 Connections on manifolds 178
5.1.9 Quotient topology 179

5.2 Riemannian manifolds 179
5.2.1 Riemannian metric 181
5.2.2 Riemannian manifold 182
5.2.3 Area of a manifold 182
5.2.4 Laplace–Beltrami operator 182
5.2.5 Isometric manifolds 183

5.3 Graphs and topology 184
5.3.1 Triangular mesh representation 185
5.3.2 Topological invariants 186
5.3.3 Introduction to spectral graph theory 188
5.3.4 Introduction to spectral geometry 199

5.4 Introduction to Morse theory 203
5.4.1 Morse function 203
5.4.2 Level sets around Morse points 204
5.4.3 Handle decomposition 205
5.4.4 Reeb graph 205
5.4.5 Distance function 206

5.5 Applications 209
5.5.1 Shading problem 209
5.5.2 Morse-theoretic analysis of 3D shapes 212
5.5.3 Curve evolution on a manifold 218
5.5.4 Spectral graph wavelets for deformable 3D shape retrieval 220

6 Computational algebraic topology 238

6.1 Topological characterization by function evaluation 239
6.1.1 Morse function: a topological perspective 240
6.1.2 Almost all images are Morse functions 241
6.1.3 Topological equivalence of images 242

6.2 Discrete Morse theory: introduction 243
6.2.1 A simplex-based space 243
6.2.2 Critical simplices 246
6.2.3 A gradient vector field on a simplicial complex 247
6.2.4 Optimizing a discrete Morse function 248

6.3 An algebraic approach to topological analysis 249
6.3.1 Mapping-based equivalence of spaces 250
6.3.2 Simplicial homology 251
6.3.3 Singular homology 256
6.3.4 Homology-based topology characterization 258

6.4 Computational aspects of homology 259
6.4.1 Computing homology 260
6.4.2 Sensor networks: the coverage problem 261
6.4.3 Hole detection 264
6.4.4 Social networks 269

References 274
Index 282
Preface

This book is about the use of modern geometric methods for signal and image analysis. It provides a comprehensive coverage of the subject from the basic principles to state-of-the-art concepts and applications. The objective is to give the reader a sound understanding of the major theoretical concepts and computational approaches for applying geometric techniques and methodologies in solving various problems that arise naturally in signal and image processing, computer graphics, computer-aided design, bioinformatics, and other disciplines. The emphasis throughout is on intuitive and application-driven arguments. All methods are illustrated by well-chosen examples and applications, and are selected from core areas of modern geometric and topological computing. Furthermore, the purpose is for the reader to become aware of some recent developments in this fast-growing field.

Audience

The book is intended as a comprehensive and concise reference for geometric and topological methods in signal and image processing. The topics covered in this book are essential for research in numerical geometry and computational algebraic topology, and desirable for students, researchers, and practitioners pursuing research in signal and image processing, computer vision, computer graphics, computer-aided design, and other related fields.

The content grew from notes developed for graduate and undergraduate courses in signal processing, image processing, and computer graphics given at North Carolina State University and Concordia University, primarily targeted at electrical engineering, computer science, and software engineering students.

Chapter organization and topics covered

This book abandons the classical definition–theorem–proof model, and instead heavily relies on effective computational techniques with concrete applications to image analysis, computer vision, geometry processing, and computer graphics. The pitfalls of including all the technical details at the expense of foregone physical intuition of
many heavily mathematical texts are largely avoided. The first chapter presents a brief motivation behind geometric methods and their various applications in imaging and computer graphics. Chapters 2 and 3 lay the foundations for our coverage of geometry and topology, and are essential to the rest of the book. The remaining three chapters are, however, almost completely independent of each other. All chapters include lots of examples sprinkled throughout the book to keep the reader actively involved in the process of learning and discovering. In addition, each chapter concludes with applications to signal and image analysis, and/or geometry processing of three-dimensional shapes.

Building up gently from a very low level, Chapters 2 and 3 carefully introduce the reader to the basics of group theory and vector spaces. Motivated by the concept of symmetry, we introduce the theory of groups. We define the notion of a group, and describe in detail the essential group-theoretical concepts through illustrative examples. We then present the formal definition of a vector space, along with some of its basic properties. We also provide an introduction to the theory of linear operators between vector spaces, and examine their key properties. In particular, we show that each linear operator can be represented by a matrix, which plays an important role in the algebra of vector spaces. This allows us to work directly with matrices in lieu of linear operators. We also discuss the eigenvalue decomposition of linear operators and their associated matrices. Motivated by the basic properties of the dot product and its key role in expressing the concepts of length, angle, and area in the Euclidean geometry, we introduce the fundamental metric function of the inner product and discuss how metric concepts of geometry may be applied to general or abstract vector spaces. In addition, we discuss two eigenvalue-based methods – singular value decomposition and principal component analysis – which are commonly used to reduce high-dimensional data into fewer dimensions while retaining important information.

Chapter 4 introduces the local theory of curves and surfaces, focusing primarily on their local properties. By local properties, we mean the properties that are defined in a neighborhood of a point on the curve or surface. In the local theory of curves, we cover the concepts of the tangent, speed, length, arc-length, curvature, and torsion of parametrized curves, and Frenet–Serret apparatus, and we also describe the fundamental theorem of curves. In the local surface theory, we introduce the essential notions of tangent plane, vector fields, Gauss map, orientability, first and second fundamental forms, and surface curvatures.

Motivated by Chapter 4, we introduce in Chapter 5 the basic concepts of manifold theory. For the purpose of visualizing manifolds intuitively, the reader should basically keep in mind the familiar example of a surface in the three-dimensional Euclidean space, which is the space we live and move around in. We describe in particular smooth manifolds and smooth functions on manifolds, vector fields, pushforward and pullback, the Whitney embedding theorem, connections on manifolds, and quotient topology. We also discuss the basic elements of Riemannian geometry, including a Riemannian metric on a Riemannian manifold, the Laplace–Beltrami operator, and isometry between manifolds. In addition, we introduce the concepts of a Morse function and topological Reeb graph.
Chapter 6 introduces the reader to topological data analysis (TDA), also referred to as computational topology, as an algebraic alternative to graph-based analysis. This approach is particularly important and powerful when geometry of the data is either absent or unaccounted for. One case in point is the analysis of a sensor network. The nodes represent randomly deployed sensors, whose precise coordinates are unknown. These sensors typically have a wireless communication ability within some range, thereby establishing connectivity with other sensors within range. The topology of such a constructed flag graph can be systematically investigated to provide insight into the network functionality and failures. In its raw form, such analysis may be viewed as generically addressing a point cloud as a sampled data from a manifold. Other important results which are developed include higher-order Laplacians, which represent natural generalizations of the so-called graph Laplacian. They are also a very important and popular topic of research.

Prerequisites

We assume some familiarity with the basic concepts of linear algebra and calculus, albeit the book is largely self-contained. On its own, the present book may be used as a textbook for a single semester graduate course in geometric methods for signal and image analysis. Furthermore, a one semester advanced undergraduate course could also be partly based on Chapters 2, 3, and 4.

Acknowledgments

We would like to express our appreciation to those who have helped make this book a reality. We would like to thank all the sponsors who have made much of the work related to this subject possible over a period of nearly two decades, namely AFOSR, AFRL, ARO, IBM, MDA, NASA, NSF, ONR, Scynexis, and DOE, and particularly former as well as current students whose help was key to all. We would also like to thank and acknowledge the help of Anathasios Gentimis through many heated discussions and critical comments, as well as Yufang (Tracy) Bao, Jon A. Sjogren, Sheng Yi, and Sajjad Baloch for their sharp editing skills and very useful comments. Special thanks also go to Maggie Zhang and Chunyuan Li. Finally, we would like to thank Heather Brolly, Phil Meyler, and the rest of the Cambridge University Press staff for their help, patience, and efficient assistance with this project.