Geometric Methods in Signal and Image Analysis

This comprehensive guide offers a new approach for developing and implementing robust computational methodologies that uncover the key geometric and topological information from signals and images.

With the help of detailed real-world examples and applications, readers will learn how to solve complex signal and image processing problems in fields ranging from remote sensing to medical imaging, bioinformatics, robotics, security, and defense. With an emphasis on intuitive and application-driven arguments, this text not only covers a range of methods in use today, but also introduces promising new developments for the future, bringing the reader up-to-date with the state-of-the-art in signal and image analysis.

Covering basic principles as well as advanced concepts and applications, and with examples and homework exercises, this is an invaluable resource for graduate students, researchers, and industry practitioners in a range of fields including signal and image processing, biomedical engineering, and computer graphics.

Hamid Krim is Professor of Electrical and Computer Engineering and Director of the Vision, Information and Statistical Signal Theories and Applications group at North Carolina State University. Previously he was a member of technical staff at AT&T Bell Labs and has spent nearly two decades bringing geometric and topological tools to solve real-world and applied problems in signal and image analysis, developing innovative tools which are being used in industry and government alike.

A. Ben Hamza is Associate Professor and Associate Director of the Concordia Institute for Information Systems Engineering (CIISE) at Concordia University, Montreal. Previously he was a postdoctoral research associate at Duke University in North Carolina, affiliated with both the Department of Electrical and Computer Engineering and the Fitzpatrick Center for Photonics and Communications Systems. He is also a licensed professional engineer and a senior member of the IEEE.

Geometric Methods in Signal and Image Analysis

HAMID KRIM North Carolina State University

A. BEN HAMZA Concordia University

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107033900

© Cambridge University Press & Assessment 2015

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2015

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication data Kim, Hamid.

Geometric methods in signal and image analysis / Hamid Krim, North Carolina State University, A. Ben Hamza, Concordia University.

pages cm

ISBN 978-1-107-03390-0 (Hardback)

Signal processing–Digital techniques–Mathematics.
Image processing–Digital techniques–Mathematics.
Geometric analysis.
Hamza, A. Ben.
Title.
TK5102.9.K75 2015
006.4–dc23 2014050238

ISBN 978-1-107-03390-0 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> To my parents M. Cherif Krim and Z. Belahcene for their love and for teaching me the value of education, to my late brother Ali who instilled in me the thirst for pursuing the unknown, and to my children Kenan A. and Kendra C. who made it all worthy.

Hamid Krim

To my parents and my wife, whose unconditional love and support have served as a constant source of inspiration and encouragement.

A. Ben Hamza

1

2

Cambridge University Press & Assessment 978-1-107-03390-0 — Geometric Methods in Signal and Image Analysis Hamid Krim , Abdessamad Ben Hamza Frontmatter <u>More Information</u>

Contents

Preface			<i>page</i> xi	
Intro	duction		1	
1.1	What is signal and image analysis?		1	
1.2	Why g	eometric methods?	1	
1.3	Applic	4		
	1.3.1	Image edge detection	4	
	1.3.2	Image segmentation	6	
	1.3.3	Diffusion tensor imaging	6	
	1.3.4	Surface denoising	7	
	1.3.5	Surface compression	8	
	1.3.6	Shape skeletonization	9	
	1.3.7	Shape recognition	10	
	1.3.8	Networked sensors and data	13	
Fund	amentals	s of group theory	14	
2.1	Elements of group theory		15	
	2.1.1	Groups: definitions and examples	15	
	2.1.2	Homomorphisms of groups	22	
	2.1.3	Cyclic groups	26	
	2.1.4	Permutation groups	26	
	2.1.5	Matrix groups	29	
2.2	Topological and symmetry groups		29	
	2.2.1	Topological spaces	30	
	2.2.2	Topological groups	32	
	2.2.3	Isometry between metric spaces	33	
	2.2.4	Symmetry groups	35	
2.3	Geometric groups		36	
	2.3.1	Introduction to graph theory	36	
	2.3.2	Geometric groups and Cayley graphs	42	
2.4	Symmetry discovery of nonrigid 3D shapes		43	
	2.4.1	Skeleton path acquisition	44	
	2.4.2	Endpoints matching	48	

vii

viii	Contents						
		2.4.3	Symmetry discovery	49			
		2.4.4	Symmetric components discovery	50			
3	Vect	53					
	3.1	Vector	space theory	53			
		3.1.1	Vector spaces over a field	54			
		3.1.2	Cartesian product of spaces	59			
		3.1.3	Subspaces of vector spaces	59			
		3.1.4	Linear independence and bases	60			
		3.1.5	Direct sum	62			
		3.1.6	Quotient spaces	62			
	3.2	Linear	operators	63			
		3.2.1	Isomorphism	68			
		3.2.2	Kernel and image	69			
		3.2.3	Matrix of a linear operator	71			
		3.2.4	Eigenvalues and eigenvectors of linear operators	72			
		3.2.5	Eigendecomposition of matrices	73			
		3.2.6	Linear functionals and dual space	76			
	3.3	Inner p	roduct spaces	77			
		3.3.1	Dot and cross products	77			
		3.3.2	Inner product	78			
		3.3.3	Orthogonal bases	83			
		3.3.4	Orthogonal complements	84			
		3.3.5	Orthonormal bases	85			
		3.3.6	Normed vector spaces	87			
		3.3.7	From vector spaces to Hilbert spaces	90			
		3.3.8	Bounded operators	91			
		3.3.9	Adjoint operators	92			
		3.3.10	Unitary and orthogonal operators	93			
		3.3.11	Self-adjoint operators	96			
		3.3.12	Compact operators	98			
		3.3.13	Positive definite operators	99			
	3.4	Topolo	102				
	3.5	Genera	103				
	3.6	3.6 Singular value decomposition					
		3.6.1	Geometric interpretation of SVD	104			
		3.6.2	Low-rank approximation	106			
	3.7	Princip	bal component analysis	108			
		3.7.1	PCA algorithm	111			
		3.7.2	PCA theory	114			
		3.7.3	Scree plot	116			
		3.7.4	Biplot	110			
		2.7.1	r	11/			

				Contents	ix	
4	Differential geometry of curves and surfaces					
	4.1	Local t	heory of curves		121	
		4.1.1	Curves and their tangents		121	
		4.1.2	Arc-length		124	
		4.1.3	Length of curves		125	
		4.1.4	Curvature of plane curves		126	
		4.1.5	Curvature and torsion of space curves		128	
		4.1.6	Fundamental theorem of curves		132	
		4.1.7	Implicit representation of curves in the plane		133	
	4.2	Local t	heory of surfaces		134	
		4.2.1	Parametric representation of surfaces		134	
		4.2.2	Tangent plane		137	
		4.2.3	Vector fields on surfaces		139	
		4.2.4	Gauss map		140	
		4.2.5	First fundamental form		140	
		4.2.6	Isometric surfaces		143	
		4.2.7	Geodesics		144	
		4.2.8	Area of a surface		148	
		4.2.9	Second fundamental form		148	
		4.2.10	Gaussian, mean, and principal curvatures		150	
		4.2.11	Orientability		157	
	4.3	Image	segmentation using curve evolution		158	
5	Geor	Geometric and differential topology of manifolds				
	5.1	Manifo	blds		169	
		5.1.1	Topological manifolds		169	
		5.1.2	Manifold with boundary		170	
		5.1.3	Smooth manifolds and smooth maps		171	
		5.1.4	Vector fields		174	
		5.1.5	Orientability		175	
		5.1.6	Pushforward and pullback		175	
		5.1.7	Whitney embedding theorem		177	
		5.1.8	Connections on manifolds		178	
		5.1.9	Ouotient topology		179	
	5.2	Riema	nnian manifolds		179	
		5.2.1	Riemannian metric		181	
		5.2.2	Riemannian manifold		182	
		523	Area of a manifold		182	
		5.2.4	Laplace–Beltrami operator		182	
		525	Isometric manifolds		183	
	53	Granhs	and topology		18/	
	5.5	5 3 1	Triangular mesh representation		185	
		537	Topological invariants		185	
		5.5.4	ropological invaliants		100	

CAMBRIDGE

Cambridge University Press & Assessment 978-1-107-03390-0 — Geometric Methods in Signal and Image Analysis Hamid Krim , Abdessamad Ben Hamza Frontmatter <u>More Information</u>

Х	Conte	Contents					
		5.3.3	Introduction to spectral graph theory	188			
		5.3.4	Introduction to spectral geometry	199			
	5.4	Introduction to Morse theory		203			
		5.4.1	Morse function	203			
		5.4.2	Level sets around Morse points	204			
		5.4.3	Handle decomposition	205			
		5.4.4	Reeb graph	205			
		5.4.5	Distance function	206			
	5.5	Applic	eations	209			
		5.5.1	Shading problem	209			
		5.5.2	Morse-theoretic analysis of 3D shapes	212			
		5.5.3	Curve evolution on a manifold	218			
		5.5.4	Spectral graph wavelets for deformable 3D shape retrieval	220			
6	Com	mputational algebraic topology					
	6.1	Topological characterization by function evaluation		239			
		6.1.1	Morse function: a topological perspective	240			
		6.1.2	Almost all images are Morse functions	241			
		6.1.3	Topological equivalence of images	242			
	6.2	Discre	te Morse theory: introduction	243			
		6.2.1	A simplex-based space	243			
		6.2.2	Critical simplices	246			
		6.2.3	A gradient vector field on a simplicial complex	247			
		6.2.4	Optimizing a discrete Morse function	248			
	6.3	An alg	bebraic approach to topological analysis	249			
		6.3.1	Mapping-based equivalence of spaces	250			
		6.3.2	Simplicial homology	251			
		6.3.3	Singular homology	256			
		6.3.4	Homology-based topology characterization	258			
	6.4	Computational aspects of homology					
		6.4.1	Computing homology	260			
		6.4.2	Sensor networks: the coverage problem	261			
		6.4.3	Hole detection	264			
		6.4.4	Social networks	269			
	Refe	rences		274			
	Index	x		282			

Preface

This book is about the use of modern geometric methods for signal and image analysis. It provides a comprehensive coverage of the subject from the basic principles to state-of-the-art concepts and applications. The objective is to give the reader a sound understanding of the major theoretical concepts and computational approaches for applying geometric techniques and methodologies in solving various problems that arise naturally in signal and image processing, computer graphics, computer-aided design, bioinformatics, and other disciplines. The emphasis throughout is on intuitive and application-driven arguments. All methods are illustrated by well-chosen examples and applications, and are selected from core areas of modern geometric and topological computing. Furthermore, the purpose is for the reader to become aware of some recent developments in this fast-growing field.

Audience

The book is intended as a comprehensive and concise reference for geometric and topological methods in signal and image processing. The topics covered in this book are essential for research in numerical geometry and computational algebraic topology, and desirable for students, researchers, and practitioners pursuing research in signal and image processing, computer vision, computer graphics, computer-aided design, and other related fields.

The content grew from notes developed for graduate and undergraduate courses in signal processing, image processing, and computer graphics given at North Carolina State University and Concordia University, primarily targeted at electrical engineering, computer science, and software engineering students.

Chapter organization and topics covered

This book abandons the classical definition-theorem-proof model, and instead heavily relies on effective computational techniques with concrete applications to image analysis, computer vision, geometry processing, and computer graphics. The pitfalls of including all the technical details at the expense of foregone physical intuition of

Preface

Xİİ

many heavily mathematical texts are largely avoided. The first chapter presents a brief motivation behind geometric methods and their various applications in imaging and computer graphics. Chapters 2 and 3 lay the foundations for our coverage of geometry and topology, and are essential to the rest of the book. The remaining three chapters are, however, almost completely independent of each other. All chapters include lots of examples sprinkled throughout the book to keep the reader actively involved in the process of learning and discovering. In addition, each chapter concludes with applications to signal and image analysis, and/or geometry processing of three-dimensional shapes.

Building up gently from a very low level, Chapters 2 and 3 carefully introduce the reader to the basics of group theory and vector spaces. Motivated by the concept of symmetry, we introduce the theory of groups. We define the notion of a group, and describe in detail the essential group-theoretical concepts through illustrative examples. We then present the formal definition of a vector space, along with some of its basic properties. We also provide an introduction to the theory of linear operators between vector spaces, and examine their key properties. In particular, we show that each linear operator can be represented by a matrix, which plays an important role in the algebra of vector spaces. This allows us to work directly with matrices in lieu of linear operators. We also discuss the eigenvalue decomposition of linear operators and their associated matrices. Motivated by the basic properties of the dot product and its key role in expressing the concepts of length, angle, and area in the Euclidean geometry, we introduce the fundamental metric function of the inner product and discuss how metric concepts of geometry may be applied to general or abstract vector spaces. In addition, we discuss two eigenvalue-based methods - singular value decomposition and principal component analysis - which are commonly used to reduce high-dimensional data into fewer dimensions while retaining important information.

Chapter 4 introduces the local theory of curves and surfaces, focusing primarily on their local properties. By local properties, we mean the properties that are defined in a neighborhood of a point on the curve or surface. In the local theory of curves, we cover the concepts of the tangent, speed, length, arc-length, curvature, and torsion of parametrized curves, and Frenet–Serret apparatus, and we also describe the fundamental theorem of curves. In the local surface theory, we introduce the essential notions of tangent plane, vector fields, Gauss map, orientability, first and second fundamental forms, and surface curvatures.

Motivated by Chapter 4, we introduce in Chapter 5 the basic concepts of manifold theory. For the purpose of visualizing manifolds intuitively, the reader should basically keep in mind the familiar example of a surface in the three-dimensional Euclidean space, which is the space we live and move around in. We describe in particular smooth manifolds and smooth functions on manifolds, vector fields, pushforward and pullback, the Whitney embedding theorem, connections on manifolds, and quotient topology. We also discuss the basic elements of Riemannian geometry, including a Riemannian metric on a Riemannian manifold, the Laplace–Beltrami operator, and isometry between manifolds. In addition, we introduce the concepts of a Morse function and topological Reeb graph.

Preface

xiii

Chapter 6 introduces the reader to topological data analysis (TDA), also referred to as computational topology, as an algebraic alternative to graph-based analysis. This approach is particularly important and powerful when geometry of the data is either absent or unaccounted for. One case in point is the analysis of a sensor network. The nodes represent randomly deployed sensors, whose precise coordinates are unknown. These sensors typically have a wireless communication ability within some range, thereby establishing connectivity with other sensors within range. The topology of such a constructed flag graph can be systematically investigated to provide insight into the network functionality and failures. In its raw form, such analysis may be viewed as generically addressing a point cloud as a sampled data from a manifold. Other important results which are developed include higher-order Laplacians, which represent natural generalizations of the so-called graph Laplacian. They are also a very important and popular topic of research.

Prerequisites

We assume some familiarity with the basic concepts of linear algebra and calculus, albeit the book is largely self-contained. On its own, the present book may be used as a textbook for a single semester graduate course in geometric methods for signal and image analysis. Furthermore, a one semester advanced undergraduate course could also be partly based on Chapters 2, 3, and 4.

Acknowledgments

We would like to express our appreciation to those who have helped make this book a reality. We would like to thank all the sponsors who have made much of the work related to this subject possible over a period of nearly two decades, namely AFOSR, AFRL, ARO, IBM, MDA, NASA, NSF, ONR, Scynexis, and DOE, and particularly former as well as current students whose help was key to all. We would also like to thank and acknowledge the help of Anathasios Gentimis through many heated discussions and critical comments, as well as Yufang (Tracy) Bao, Jon A. Sjogren, Sheng Yi, and Sajjad Baloch for their sharp editing skills and very useful comments. Special thanks also go to Maggie Zhang and Chunyuan Li. Finally, we would like to thank Heather Brolly, Phil Meyler, and the rest of the Cambridge University Press staff for their help, patience, and efficient assistance with this project.