
1 Introduction to Python

1.1 General Information

Quick Overview

This chapter is not a comprehensive manual of Python. Its sole aim is to provide suf-
ficient information to give you a good start if you are unfamiliar with Python. If you
know another computer language, and we assume that you do, it is not difficult to
pick up the rest as you go.

Python is an object-oriented language that was developed in the late 1980s as
a scripting language (the name is derived from the British television series, Monty
Python’s Flying Circus). Although Python is not as well known in engineering circles as
are some other languages, it has a considerable following in the programming com-
munity. Python may be viewed as an emerging language, because it is still being de-
veloped and refined. In its current state, it is an excellent language for developing
engineering applications.

Python programs are not compiled into machine code, but are run by an
interpreter.1 The great advantage of an interpreted language is that programs can be
tested and debugged quickly, allowing the user to concentrate more on the principles
behind the program and less on the programming itself. Because there is no need to
compile, link, and execute after each correction, Python programs can be developed
in much shorter time than equivalent Fortran or C programs. On the negative side,
interpreted programs do not produce stand-alone applications. Thus a Python pro-
gram can be run only on computers that have the Python interpreter installed.

Python has other advantages over mainstream languages that are important in a
learning environment:

• Python is an open-source software, which means that it is free; it is included in
most Linux distributions.

• Python is available for all major operating systems (Linux, Unix, Windows, Mac
OS, and so on). A program written on one system runs without modification on
all systems.

1 The Python interpreter also compiles byte code, which helps speed up execution somewhat.

1

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-03385-6 - Numerical Methods in Engineering with Python 3
Jaan Kiusalaas
Excerpt
More information

http://www.cambridge.org/9781107033856
http://www.cambridge.org
http://www.cambridge.org

2 Introduction to Python

• Python is easier to learn and produces more readable code than most languages.
• Python and its extensions are easy to install.

Development of Python has been clearly influenced by Java and C++, but there is
also a remarkable similarity to MATLABR (another interpreted language, very popular
in scientific computing). Python implements the usual concepts of object-oriented
languages such as classes, methods, inheritance etc. We do not use object-oriented
programming in this text. The only object that we need is the N-dimensional array
available in the module numpy (this module is discussed later in this chapter).

To get an idea of the similarities and differences between MATLAB and Python,
let us look at the codes written in the two languages for solution of simultaneous
equations Ax = b by Gauss elimination. Do not worry about the algorithm itself (it
is explained later in the text), but concentrate on the semantics. Here is the function
written in MATLAB:

function x = gaussElimin(a,b)

n = length(b);

for k = 1:n-1

for i= k+1:n

if a(i,k) ˜= 0

lam = a(i,k)/a(k,k);

a(i,k+1:n) = a(i,k+1:n) - lam*a(k,k+1:n);

b(i)= b(i) - lam*b(k);

end

end

end

for k = n:-1:1

b(k) = (b(k) - a(k,k+1:n)*b(k+1:n))/a(k,k);

end

x = b;

The equivalent Python function is

from numpy import dot

def gaussElimin(a,b):

n = len(b)

for k in range(0,n-1):

for i in range(k+1,n):

if a[i,k] != 0.0:

lam = a [i,k]/a[k,k]

a[i,k+1:n] = a[i,k+1:n] - lam*a[k,k+1:n]

b[i] = b[i] - lam*b[k]

for k in range(n-1,-1,-1):

b[k] = (b[k] - dot(a[k,k+1:n],b[k+1:n]))/a[k,k]

return b

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-03385-6 - Numerical Methods in Engineering with Python 3
Jaan Kiusalaas
Excerpt
More information

http://www.cambridge.org/9781107033856
http://www.cambridge.org
http://www.cambridge.org

3 1.1 General Information

The command from numpy import dot instructs the interpreter to load the
function dot (which computes the dot product of two vectors) from the module
numpy. The colon (:) operator, known as the slicing operator in Python, works the
same way as it does in MATLAB and Fortran90—it defines a slice of an array.

The statement for k = 1:n-1 in MATLAB creates a loop that is executed with
k = 1, 2, . . . , n − 1. The same loop appears in Python as for k in range(n-1).
Here the function range(n-1) creates the sequence [0, 1, . . . , n − 2]; k then loops
over the elements of the sequence. The differences in the ranges of k reflect the native
offsets used for arrays. In Python all sequences have zero offset, meaning that the
index of the first element of the sequence is always 0. In contrast, the native offset in
MATLAB is 1.

Also note that Python has no end statements to terminate blocks of code (loops,
subroutines, and so on). The body of a block is defined by its indentation; hence in-
dentation is an integral part of Python syntax.

Like MATLAB, Python is case sensitive. Thus the names n and N would represent
different objects.

Obtaining Python

The Python interpreter can be downloaded from

http : //www.python.org/getit

It normally comes with a nice code editor called Idle that allows you to run programs
directly from the editor. If you use Linux, it is very likely that Python is already in-
stalled on your machine. The download includes two extension modules that we use
in our programs: the numpy module that contains various tools for array operations,
and the matplotlib graphics module utilized in plotting.

The Python language is well documented in numerous publications. A com-
mendable teaching guide is Python by Chris Fehly (Peachpit Press, CA, 2nd ed.). As a
reference, Python Essential Reference by David M. Beazley (Addison-Wesley, 4th ed.)
is highly recommended. Printed documentation of the extension modules is scant.
However, tutorials and examples can be found on various websites. Our favorite ref-
erence for numpy is

http://www.scipy.org/Numpy Example List

For matplotlib we rely on

http://matplotlib.sourceforge.net/contents.html

If you intend to become a serious Python programmer, you may want to acquire
A Primer on Scientific Programming with Python by Hans P. Langtangen (Springer-
Verlag, 2009).

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-03385-6 - Numerical Methods in Engineering with Python 3
Jaan Kiusalaas
Excerpt
More information

http://www.cambridge.org/9781107033856
http://www.cambridge.org
http://www.cambridge.org

4 Introduction to Python

1.2 Core Python

Variables

In most computer languages the name of a variable represents a value of a given type
stored in a fixed memory location. The value may be changed, but not the type. This
is not so in Python, where variables are typed dynamically. The following interac-
tive session with the Python interpreter illustrates this feature (>>> is the Python
prompt):

>>> b = 2 # b is integer type

>>> print(b)

2

>>> b = b*2.0 # Now b is float type

>>> print(b)

4.0

The assignment b = 2 creates an association between the name b and the in-
teger value 2. The next statement evaluates the expression b*2.0 and associates the
result with b; the original association with the integer 2 is destroyed. Now b refers to
the floating point value 4.0.

The pound sign (#) denotes the beginning of a comment—all characters between
and the end of the line are ignored by the interpreter.

Strings

A string is a sequence of characters enclosed in single or double quotes. Strings are
concatenated with the plus (+) operator, whereas slicing (:) is used to extract a por-
tion of the string. Here is an example:

>>> string1 = ’Press return to exit’

>>> string2 = ’the program’

>>> print(string1 + ’ ’ + string2) # Concatenation

Press return to exit the program

>>> print(string1[0:12]) # Slicing

Press return

A string can be split into its component parts using the split command. The
components appear as elements in a list. For example,

>>> s = ’3 9 81’

>>> print(s.split()) # Delimiter is white space

[’3’, ’9’, ’81’]

A string is an immutable object—its individual characters cannot be modified
with an assignment statement, and it has a fixed length. An attempt to violate im-
mutability will result in TypeError, as follows:

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-03385-6 - Numerical Methods in Engineering with Python 3
Jaan Kiusalaas
Excerpt
More information

http://www.cambridge.org/9781107033856
http://www.cambridge.org
http://www.cambridge.org

5 1.2 Core Python

>>> s = ’Press return to exit’

>>> s[0] = ’p’

Traceback (most recent call last):

File ’’<pyshell#1>’’, line 1, in ?

s[0] = ’p’

TypeError: object doesn’t support item assignment

Tuples

A tuple is a sequence of arbitrary objects separated by commas and enclosed
in parentheses. If the tuple contains a single object, a final comma is required;
for example, x = (2,). Tuples support the same operations as strings; they are
also immutable. Here is an example where the tuple rec contains another tuple
(6,23,68):

>>> rec = (’Smith’,’John’,(6,23,68)) # This is a tuple

>>> lastName,firstName,birthdate = rec # Unpacking the tuple

>>> print(firstName)

John

>>> birthYear = birthdate[2]

>>> print(birthYear)

68

>>> name = rec[1] + ’ ’ + rec[0]

>>> print(name)

John Smith

>>> print(rec[0:2])

(’Smith’, ’John’)

Lists

A list is similar to a tuple, but it is mutable, so that its elements and length can be
changed. A list is identified by enclosing it in brackets. Here is a sampling of opera-
tions that can be performed on lists:

>>> a = [1.0, 2.0, 3.0] # Create a list

>>> a.append(4.0) # Append 4.0 to list

>>> print(a)

[1.0, 2.0, 3.0, 4.0]

>>> a.insert(0,0.0) # Insert 0.0 in position 0

>>> print(a)

[0.0, 1.0, 2.0, 3.0, 4.0]

>>> print(len(a)) # Determine length of list

5

>>> a[2:4] = [1.0, 1.0, 1.0] # Modify selected elements

>>> print(a)

[0.0, 1.0, 1.0, 1.0, 1.0, 4.0]

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-03385-6 - Numerical Methods in Engineering with Python 3
Jaan Kiusalaas
Excerpt
More information

http://www.cambridge.org/9781107033856
http://www.cambridge.org
http://www.cambridge.org

6 Introduction to Python

If a is a mutable object, such as a list, the assignment statement b = a does not
result in a new object b, but simply creates a new reference to a . Thus any changes
made to b will be reflected in a . To create an independent copy of a list a , use the
statement c = a[:], as shown in the following example:

>>> a = [1.0, 2.0, 3.0]

>>> b = a # ’b’ is an alias of ’a’

>>> b[0] = 5.0 # Change ’b’

>>> print(a)

[5.0, 2.0, 3.0] # The change is reflected in ’a’

>>> c = a[:] # ’c’ is an independent copy of ’a’

>>> c[0] = 1.0 # Change ’c’

>>> print(a)

[5.0, 2.0, 3.0] # ’a’ is not affected by the change

Matrices can be represented as nested lists, with each row being an element of
the list. Here is a 3 × 3 matrix a in the form of a list:

>>> a = [[1, 2, 3], \

[4, 5, 6], \

[7, 8, 9]]

>>> print(a[1]) # Print second row (element 1)

[4, 5, 6]

>>> print(a[1][2]) # Print third element of second row

6

The backslash (\) is Python’s continuation character. Recall that Python se-
quences have zero offset, so that a[0] represents the first row, a[1] the second row,
etc. With very few exceptions we do not use lists for numerical arrays. It is much more
convenient to employ array objects provided by the numpy module. Array objects are
discussed later.

Arithmetic Operators

Python supports the usual arithmetic operators:

+ Addition

− Subtraction

∗ Multiplication

/ Division

∗∗ Exponentiation

% Modular division

Some of these operators are also defined for strings and sequences as follows:

>>> s = ’Hello ’

>>> t = ’to you’

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-03385-6 - Numerical Methods in Engineering with Python 3
Jaan Kiusalaas
Excerpt
More information

http://www.cambridge.org/9781107033856
http://www.cambridge.org
http://www.cambridge.org

7 1.2 Core Python

>>> a = [1, 2, 3]

>>> print(3*s) # Repetition

Hello Hello Hello

>>> print(3*a) # Repetition

[1, 2, 3, 1, 2, 3, 1, 2, 3]

>>> print(a + [4, 5]) # Append elements

[1, 2, 3, 4, 5]

>>> print(s + t) # Concatenation

Hello to you

>>> print(3 + s) # This addition makes no sense

Traceback (most recent call last):

File "<pyshell#13>", line 1, in <module>

print(3 + s)

TypeError: unsupported operand type(s) for +: ’int’ and ’str’

Python also has augmented assignment operators, such as a+ = b, that are famil-
iar to the users of C. The augmented operators and the equivalent arithmetic expres-
sions are shown in following table.

a += b a = a + b

a -= b a = a - b

a *= b a = a*b

a /= b a = a/b

a **= b a = a**b

a %= b a = a%b

Comparison Operators

The comparison (relational) operators return True or False. These operators are

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

== Equal to

!= Not equal to

Numbers of different type (integer, floating point, and so on) are converted to
a common type before the comparison is made. Otherwise, objects of different type
are considered to be unequal. Here are a few examples:

>>> a = 2 # Integer

>>> b = 1.99 # Floating point

>>> c = ’2’ # String

>>> print(a > b)

True

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-03385-6 - Numerical Methods in Engineering with Python 3
Jaan Kiusalaas
Excerpt
More information

http://www.cambridge.org/9781107033856
http://www.cambridge.org
http://www.cambridge.org

8 Introduction to Python

>>> print(a == c)

False

>>> print((a > b) and (a != c))

True

>>> print((a > b) or (a == b))

True

Conditionals

The if construct

if condition:
block

executes a block of statements (which must be indented) if the condition returns
True. If the condition returns False, the block is skipped. The if conditional can
be followed by any number of elif (short for “else if”) constructs

elif condition:
block

that work in the same manner. The else clause

else:

block

can be used to define the block of statements that are to be executed if none of the
if-elif clauses are true. The function sign of a illustrates the use of the condi-
tionals.

def sign_of_a(a):

if a < 0.0:

sign = ’negative’

elif a > 0.0:

sign = ’positive’

else:

sign = ’zero’

return sign

a = 1.5

print(’a is ’ + sign_of_a(a))

Running the program results in the output

a is positive

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-03385-6 - Numerical Methods in Engineering with Python 3
Jaan Kiusalaas
Excerpt
More information

http://www.cambridge.org/9781107033856
http://www.cambridge.org
http://www.cambridge.org

9 1.2 Core Python

Loops

The while construct

while condition:
block

executes a block of (indented) statements if the condition is True. After execution
of the block, the condition is evaluated again. If it is still True, the block is exe-
cuted again. This process is continued until the condition becomes False. The else
clause

else:

block

can be used to define the block of statements that are to be executed if the condition
is false. Here is an example that creates the list [1, 1/2, 1/3, . . .]:

nMax = 5

n = 1

a = [] # Create empty list

while n < nMax:

a.append(1.0/n) # Append element to list

n = n + 1

print(a)

The output of the program is

[1.0, 0.5, 0.33333333333333331, 0.25]

We met the for statement in Section 1.1. This statement requires a target and a
sequence over which the target loops. The form of the construct is

for tar get in sequence:
block

You may add an else clause that is executed after the for loop has finished.
The previous program could be written with the for construct as

nMax = 5

a = []

for n in range(1,nMax):

a.append(1.0/n)

print(a)

Here n is the target, and the range object [1, 2, . . . , nMax − 1] (created by calling
the range function) is the sequence.

Any loop can be terminated by the

break

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-03385-6 - Numerical Methods in Engineering with Python 3
Jaan Kiusalaas
Excerpt
More information

http://www.cambridge.org/9781107033856
http://www.cambridge.org
http://www.cambridge.org

10 Introduction to Python

statement. If there is an else cause associated with the loop, it is not executed. The
following program, which searches for a name in a list, illustrates the use of break
and else in conjunction with a for loop:

list = [’Jack’, ’Jill’, ’Tim’, ’Dave’]

name = eval(input(’Type a name: ’)) # Python input prompt

for i in range(len(list)):

if list[i] == name:

print(name,’is number’,i + 1,’on the list’)

break

else:

print(name,’is not on the list’)

Here are the results of two searches:

Type a name: ’Tim’

Tim is number 3 on the list

Type a name: ’June’

June is not on the list

The

continue

statement allows us to skip a portion of an iterative loop. If the interpreter encounters
the continue statement, it immediately returns to the beginning of the loop without
executing the statements that follow continue. The following example compiles a
list of all numbers between 1 and 99 that are divisible by 7.

x = [] # Create an empty list

for i in range(1,100):

if i%7 != 0: continue # If not divisible by 7, skip rest of loop

x.append(i) # Append i to the list

print(x)

The printout from the program is

[7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98]

Type Conversion

If an arithmetic operation involves numbers of mixed types, the numbers are
automatically converted to a common type before the operation is carried out.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-03385-6 - Numerical Methods in Engineering with Python 3
Jaan Kiusalaas
Excerpt
More information

http://www.cambridge.org/9781107033856
http://www.cambridge.org
http://www.cambridge.org

	http://www:
	cambridge:
	org:

	9781107033856:

