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In the last two decades, the scientific community has witnessed a surge in
activity, interesting results, and notable progress in our conceptual understand-
ing of computing and information based on the laws of quantum theory. One
of the significant aspects of these developments has been an integration of
several fields of inquiry that not long ago appeared to be evolving, more or less,
along narrow disciplinary paths without any major overlap with each other. In
the resulting body of work, investigators have revealed a deeper connection
among the ideas and techniques of (apparently) disparate fields. As is evident
from the title of this volume, logic, mathematics, physics, computer science
and information theory are intricately involved in this fascinating story. The
inquisitive reader might focus, perhaps, on the marriage of the most unlikely
and intriguing fields of quantum theory and logic and ask: Why quantum logic?
By many, “logic” is deemed to be panacea for faulty intuition. It is often
associated with the rules of correct thinking and decision-making, but not
necessarily in its most sublime role as a deep intellectual subject underlying the
validity of mathematical structures and worthy of investigation and discovery
in its own right. Indeed, within the realm of the classical theories of nature,
one may encounter situations that defy comprehension, should one hold to the
intuition developed through experiencing familiar macroscopic scenarios in
our routine impressions of natural phenomena.
One such example is a statement within the special theory of relativity that
the speed of light is the same in all inertial frames. It certainly defies the
common intuition regarding the observation of velocities of familiar objects in
relative motion. One might be tempted to dismiss it as contrary to observation.
However, while analyzing natural phenomena for objects moving close to
the speed of light and, therefore, unfamiliar in the range of velocities we
are normally accustomed to, logical deductions based on the postulates of
the special relativity theory lead to the correct predictions of experimental
observations.
There exists an undeniable interconnection between the deepest theories of
nature and mathematical reasoning, famously stated by Eugene Wigner as
the unreasonable efficacy of mathematics in physical theories. The sciences,
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and in particular physics, have relied on, and benefited from, the economy of
mathematical expressions and the efficacy and rigor of mathematical reasoning
with its underlying logical structure to make definite statements and predictions
about nature. Mathematics has become the de facto language of the quantitative
sciences, particularly scientific theories, and themajor discoveries andpredictive
statements of these theories (whenever possible) are cast in the language of
mathematics, as it affords them elegance as well as economy of expression.
What happens if the syntax and grammar of such a language become inadequate?

This seems to have been the case when some of the more esoteric predictions
of the then new theory of quantum mechanics began to challenge the scientific
intuition of the times around the turn of the 20th century. This violation
of intuition was so severe that even the most prominent of scientists were
not able to reconcile the dictates of their intuition with the experimentally
confirmed predictions of the theory. The discomfort with some of the features
and predictions of quantum theory were, perhaps, most prominently brought
out in the celebrated work of Einstein, Podolsky, and Rosen (EPR) in the
mid 1930s. EPR fueled several decades of investigations on the foundations
of quantum theory that continue to this day. The main assertion of the
EPR work was that quantum theory had to be, by necessity, incomplete.
Otherwise, long held understanding of what should be taken for granted as
“elements of reality” had to be abandoned. Here, according to EPR, logical
deductions based on primitives that were the very essence of reality and logical
consistency forced the conclusion of the incompleteness of quantum theory;
as if considering quantum theory as complete would question one’s logical
fitness and one’s understanding of reality! Yet, in the decades since, with
increasing sophistication in experimentation, and multiple ways of testing
the theory, quantum theory has consistently outshined the alternatives. In
particular, many predictions relying on the sensibilities of classical theories,
where concepts such as separability, locality, and causality are the seemingly
indispensable factors in our understanding of reality, are found to be entirely
inconsistent with the actual reality around us. Quantum theory has not (as
yet) suffered any such blow.
Confronted with the stark inability to reconcile the predictions of a theory,

which are shown to be correct every time subjected to experimental verification,
and a logical structure that seems to fall short in facilitating correct thinking
and correct decision making (at least, in so far as the behavior of natural
phenomena at the quantum level is concerned), one is forced to consider and
question the validity of the premises on which that logical structure is built, or
to discover alternative structures. Furthermore, the striking applications of
quantum theory in the theory of computation, development of new algorithms,
and the promising prospects for the building of a computing machine operating
on the basis of the laws of quantum theory, necessitate a deeper investigation of
alternative logical structures that encompass the elements of this new quantum
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reality. One must then give credence to the argument that, perhaps, the fault is
not with the revolutionary quantum theory; rather, it is with the inadequacies
of logical structures that were insufficient to be expanded and applied to a
world that does not comply with the notions embodied in our understanding
of the macroscopic classical physical theories of nature.
The utility of logical rules is most pronounced when applied to the building
and operation of computing machines. With the advent of computing that
takes advantage of the laws of quantum theory, i.e., quantum computing,
it is only natural to search for those logical and algebraic structures that
underlie the scaffolding of the quantum rules in computations. As obvious
as it is that Boolean logic underlies classical computing and much of classical
reasoning, it is equally obvious that it is not sufficient to express the logic
underlying quantum mechanics or quantum computing. Birkhoff and von
Neumann were among the first to propose a generalization of Boolean logic in
which propositions about quantum systems could be formulated. While their
endeavor was revolutionary, the Birkhoff-von Neumann quantum logic was
not to be the final word on the subject of a logic for quantum mechanics, and
indeed the investigation continues with increasing urgency.
In this volume, we present the work of a select group of scholars with an abid-

ing interest in tackling some of the fundamental issues facing quantum comput-
ing and information theory, as investigated from the perspective of logical and al-
gebraic structures. This selection, no doubt, reflects the intellectual proclivities
and curiosities of the editors, within the reasonable limitations of space and cov-
erage of topics for a volume of this size, and for the purpose of generating ideas
that would fuel further investigation and research in these and related fields.
The first two articles, by Stairs and Parke, address philosophical and histori-

cal issues. Brandenburger and Keisler use ideas from continuous model theory
to explore determinism and locality in quantummechanical systems. Abramsky
and Heunen, and Jacobs and Mandemaker describe the relationship between
the category-theoretic and operator-theoretic approaches to the foundations
of quantum physics. Döring gives a topos-based distributive form of quantum
logic as an alternative to the quantum logic of Birkhoff and von Neumann.
The papers by Coecke and Kartsaklis et al. use a diagrammatic calculus in
analyzing quantum mechanical systems and, very recently, in computational
linguistics. Kauffman’s article presents an extensive treatment of the prominent
role of algebraic structures arising from topological considerations in quantum
information and computing; the pictorial approach used in knot theory is
closely related to the quantum categorical logic presented in other articles in
this volume.

Could logic be empirical? The Putnam-Kripke debate, by Allen Stairs. In
his article in the present volume, Stairs outlines Hilary Putnam’s position that
quantum mechanics provides an empirical basis for a re-evaluation of our
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idea of logic and Saul Kripke’s response, in which he takes issue with the very
idea of a logic that is based on anything empirical. Stairs carefully interprets
their positions, and in the end offers the beginnings of a compromise, which
includes “disjunctive facts,” which can be true even if their disjuncts are not,
and the notion of “l-complementarity,” to describe the relationship between
statements having non-commuting associated projectors. The article wrestles
with the idea of whether and how quantum mechanics should inform our logic
and reasoning processes.

The essence of quantum theory for computers, by William C. Parke. In this
article, Parke provides a thorough yet succinct introduction to the elements
of physical theories, classical and quantum, which are relevant to a deeper
understanding of the mathematical and logical structures underlying (or
derived) from such theories, and important in the appreciation of the more
subtle quandaries of quantum theory, leading to its utilization in computation.
The emphasis has been placed on the physical content of information and
elements of computation from a physicist’s point of view. This includes a
treatment of the role of space-time in the development of physical theories from
an advanced point of view, and the limitations that our current understanding
of space-time imposes on building and utilizing computing machines based
on the rules of quantum theory. The treatment of the principles of quantum
theory is also developed from an advanced point of view, without too much
focus on unnecessary details, but covering the essential conceptual ingredients,
in order to set the stage properly and provide motivation for the work of the
others on logical and algebraic structures.

Fiber products of measures and quantum foundations, by Adam Branden-

burger and H. Jerome Keisler. In this model-theoretic article, the authors use
fiber products of (probability) measures within a framework they construct
for empirical and hidden-variable models to prove determinization theorems.
These objects (fiber products) were conceived by Rae Shortt in a 1984 paper,
and were used recently by Itaı̈ Ben Yaacov and Jerome Keisler in their work on
continuous model theory (2009). Techniques in continuous model theory are
relevant to the notion of models of quantum structures as in that context the
“truth value” of a statement may take on a continuum of values, and can be
thought of as probabilistic. In this case, a technique employed in continuous
model theory is used in the construction of models in proofs of theorems
that assert that every empirical model can be realized by an extension that is
a deterministic hidden-variable model, and for every hidden-variable model
satisfying locality and �-independence, there is a realization-equivalent (both
models extend a common empirical submodel) hidden-variable model satisfy-
ing determinism and �-independence. The latter statement, together with Bell’s
theorem, precludes the existence of a hidden-variable model in which both
determinism and �-independence hold. The notion of �-independence was
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first formulated by W. Michael Dickson (2005). It says that the choices made
by an entity as to which observable to measure in a system are not influenced
by the process of the determination of the value of a relevant hidden-variable.

Operational theories and categorical quantum mechanics, by Samson Abram-

sky and Chris Heunen. There are two complementary research programs in
the foundations of quantum mechanics, one based on operational theories
(also called general probabilistic theories) and the other on category-theoretic
foundation of quantum theory. Samson Abramsky and Chris Heunen establish
strong and important connections between these two formalisms. Operational
theories focus on empirical and observational content, and quantum mechan-
ics occupies one point in a space of possible theories. The authors define a
symmetric monoidal categorical structure of an operational theory, which they
call process category, and exploit the ideas of categorical quantum mechanics
to obtain an operational theory as a certain representation of this process
category. They lift the notion of non-locality to the general level of operational
category. They further propose to apply a similar analysis to contextuality,
which can be viewed as a broader phenomenon than non-locality.

Relating operator spaces via adjunctions, by Bart Jacobs and Jorik Mande-

maker. By exploiting techniques of category theory, Jacobs and Mandemaker
clarify and present in a unified framework various, seemingly different results
in the foundation of quantum theory found in the literature. They use category-
theoretic tools to describe relations between various spaces of operators on
a finite-dimensional Hilbert space, which arise in quantum theory, including
bounded, self-adjoint, positive, effect, projection, and density operators. They
describe the algebraic structure of these sets of operators in terms of modules
over various semirings, such as the complex numbers, the real numbers, the
non-negative real numbers. The authors give a uniform description of such
modules via the notion of an algebra of the multiset monad. They show how
some spaces of operators are related by free constructions between categories
of modules, while the other spaces of operators are related by a dual adjunction
between convex sets (conveniently described via a monad) and effect modules.

Topos-based logic for quantum systems and bi-Heyting algebras, by Andreas

Döring. Döring replaces the standard quantum logic, introduced by Birkhoff
and von Neumann, which comes with a host of conceptual and interpretational
problems, by the topos-based distributive form of quantum logic. Instead of
having a non-distributive orthomodular lattice of projections, he considers
a complete bi-Heyting algebra of propositions. More specifically, Döring
considers clopen subobjects of the presheaf attaching the Gelfand spectrum to
each abelian vonNeumann algebra, and shows that these clopen subojects form
a bi-Heyting algebra. He gives various physical interpretations of the objects
in this algebra and of the operations on them. For example, he introduces two
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6 JENNIFER CHUBB, ALI ESKANDARIAN, AND VALENTINA HARIZANOV

kinds of negation associated with the Heyting and co-Heyting algebras, and
gives physical interpretation of the two kinds of negation. Döring considers the
map called outer daseinisation of projections, which provides a link between
the usual Hilbert space formalism and his topos-based quantum logic.

The logic of quantum mechanics – Take II, by Bob Coecke. Schrödinger
maintained that composition of systems is the heart of quantum computing,
and Coecke agrees. He suggests that the Birkhoff-von Neumann formulation
of quantum logic fails to adequately and elegantly capture composition of
quantum systems. The author puts forth a model of quantum logic that is
based on composition rather superposition. He axiomatizes composition
without reference to underlying systems using strict monoidal categories as
the basic structures and explains a graphical language that exactly captures
these structures. Imposing minimal additional structure on these categories
(to obtain dagger compact categories) allows for the almost trivial derivation
of a number of quantum phenomena, including quantum teleportation and
entanglement swapping. This (now widely adopted) formalism has been used
not only to solve open problems in quantum information theory, but has also
provided new insight into non-locality.
Coecke’s framework has been applied both to logic concerned with natural

language interpretations, and to more formal automated reasoning processes.
In this article, the focus is on the former. Coecke applies the graphical language
of dagger compact categories to natural language processing—“from word
meaning to sentence meaning”—implementing Lambek’s theory of grammar
and the notion of words as “meaning vectors.” He argues that sentence
meaning amounts to more than the meanings of the constituent words, but
also the way in which they compose.
In the end, Coecke confesses that dagger compact categories do not capture
all we might want them to, in particular, measurement, observables, and
complementarity are left by the wayside. The model can be expanded (using
spiders!) in such a way that all these are captured. Coecke closes with
speculation about an important question: Where is the traditional logic hiding
in all this?

Reasoning about meaning in natural language with compact closed categories

and Frobenius algebras, by Dimitri Kartsaklis, Mehrnoosh Sadrzadeh, Stephen

Pulman, and Bob Coecke. The authors apply category-theoretic methods to
computational lingustics by mapping the derivations of the grammar logic to
the distributional interpretation via a strongly monoidal functor. Such functors
are structure preserving morphims. Grammatical structure is modeled through
the derivations of pregroup grammars. A pregroup is a partially ordered
monoid with left and right adjoints for every element in the partial order. The
authors build tensors for linguistic constructs with complex types by using
a Frobenius algebra. The Frobenius operations allow them to assign and
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compare the meanings of different language constructs such as words, phrases,
and sentences in a single space. The authors present their experimental results
for the evaluation of their model in a number of natural languages.

Knot logic and topological quantum computing with Majorana fermions, by

Louis H. Kauffman. Kauffman presents several topics exploring the relation-
ship between low-dimensional topology and quantum computing. These topics
have been introduced and developed by Kauffman and Samuel J. Lomonaco
over the last ten years. Kauffman uses the diagrammatic approach, and is
particularly interested in models based upon the Temperley-Lieb categories.
He discusses from several different perspectives the Fibonacci model related
to the Temperley-Lieb algebra at fifth roots of unity. Kauffman shows how
knots are related to braiding and quantum operators, as well as to quantum
set-theoretic foundations. For example, the negation can generate the fusion
algebra for a Majorana fermion, which is a particle that interacts with itself
and can even annihilate itself. Thus, Kauffman calls the negation the mark.
He investigates the relationship between knot-theoretic recoupling theory
and topological quantum field theory. Kauffman works with braid groups
and their representations, and produces unitary representations of the braid
groups that are dense in the unitary groups. He describes the Jones polynomial
in terms of his bracket polynomial and applies his approach to design a
quantum algorithm for computing the colored Jones polynomials for knots
and links. Kauffman also gives a quantum algorithm for computing the
Witten-Reshetikhin-Turaev invariant of three manifolds.
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A (VERY) BRIEF TOUR OF QUANTUM MECHANICS,

COMPUTATION, AND CATEGORY THEORY

JENNIFER CHUBB AND VALENTINA HARIZANOV

This chapter is intended to be a brief treatment of the basic mechanics,
framework, and concepts relevant to the study of quantum computing and
information for review and reference. Part 1 (sections 1–4) surveys quantum
mechanics and computation, with sections organized according to the com-
monly known postulates of quantum theory. The second part (sections 5–7)
provides a survey of category theory. Additional references to works in this
volume are included throughout, and general references appear at the end.

Part 1: Quantum mechanics & computation

§1. Qubits & quantum states.

Postulate of quantum mechanics: Representing states of systems. The state of
a quantum system is represented by a unit-length vector in a complex Hilbert
space1, H, that corresponds to that system. The state space of a composite
system is the tensor product of the state spaces of the subsystems.

The Dirac bra-ket notation for states of quantum systems is ubiquitous
in the literature, and we adopt it here. A vector in a complex Hilbert space
representing a quantum state is written as a ket, |�〉, and its conjugate-transpose
(adjoint, or sometimes Hermitian conjugate) is written as a bra, 〈�|. In this
notation, a bra-ket denotes an inner product, 〈ϕ|�〉, and a ket-bra denotes an
outer product, |ϕ〉〈�|.
Each one-dimensional subspace ofH corresponds to a possible state of the
system, and a state is usually described as a linear combination in a relevant
orthonormal basis. The basis elements are often thought of as basic states.
Quantum systems can exist in a superposition of more than one basic state: If a
quantum system has access to two basic states, say |α〉 and |�〉, then, in general,
the system’s “current state” can be represented by a linear combination of
these states in complex Hilbert space:

|�〉 = c1|α〉+ c2|�〉, where ||�〉| = 1.
1A Hilbert space is a complete, normed metric space, where the norm and distance function

are induced by an inner product defined on the space.
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QUANTUM MECHANICS & CATEGORY THEORY 9

The complex coefficients, c1 and c2, of |α〉 and |�〉 give classical probabilistic
information about the state. For example, the value |c1|2 is the probability that
the systemwould be found to be in state |α〉 uponmeasurement. The coefficient
itself, c1, is called the probability amplitude. Two vectors in H represent the
same state if they differ only by a global phase factor: If |�〉 = ei� |ϕ〉, then
|�〉 and |ϕ〉 represent the same state, and the (real) probabilities described by
the coefficients are the same.
The squared norm of the state vector |�〉 is the inner product of |�〉 with
itself, i.e., the bra-ket 〈�|�〉. The quantity |〈ϕ|�〉|2 is the probability that
upon measurement, |�〉 will be found to be in state |ϕ〉, and 〈ϕ|�〉 is the
corresponding probability amplitude. (More about measurement of quantum
systems can be found in Section 3 below.)

1.1. Qubits. A classical bit can be in only one of two states at a given
time, |0〉 or |1〉. A quantum bit or qubitmay exist in a superposition of these
basic (orthogonal) states, |�〉 = c1|0〉 + c2|1〉, where c1 and c2 are complex
probability amplitudes. More precisely, a qubit is a 2-dimensional quantum
system, the state of which is a unit-length vector inH = C

2. The basic states
for this space are usually thought of as |0〉 and |1〉, but at times other bases
are used (for example, {|+〉, |−〉} or {| ↑〉, | ↓〉}). Basic states are typically
the eigenstates (eigenvectors) of an observable of interest (see discussion of
measurement below).
Any unit vector that is a (complex) linear combination of the basic states
is a pure state and non-trivial linear combinations are superpositions. So-
called mixed states are not proper state vectors, they are classical probabilistic
combinations of pure states and are best represented by density matrices.
The state space of a qubit is often visualized as a point on the Bloch sphere.

The norm of a state vector is always one, and states that differ only by a global
phase factor are identified, so two real numbers, � and φ, suffice to specify a
distinct state via the decomposition

|�〉 = cos
(
�

2

)
|0〉+ eiφ sin

(
�

2

)
|1〉.

Respectively, the range of values taken on by � and φ may be restricted
to the intervals [0, 	] and [0, 2	) without any loss of generality, and so the
corresponding distinct states may be mapped uniquely onto the unit sphere in
R
3. In this visualization, the basic vector |0〉 points up and |1〉 points down, �
describes the latitudinal angle, and ϕ the longitudinal angle. Orthogonal states
are antipodal on the Bloch sphere. Note that states that differ by a global
phase factor will (by design) coincide in this visualization.

1.2. Composite quantum systems. As described above, a single quantum
system (for example, a single qubit) exists in a pure state that may be a
superposition of basic states. A composition of systems may exist either in a
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10 JENNIFER CHUBB AND VALENTINA HARIZANOV

separable or an entangled state. Separable states are states that can be written
as tensor products of pure states of the constituent subsystems. Entangled
states cannot be so written; they are non-trivial (complex) linear combinations
of separable states. In the case of an entangled state, the subsystems cannot be
thought of as existing in states independent of the composed system.

Example 1.1. Suppose we have a system of two qubits, the first in state
|�〉 = (|0〉+ |1〉)/

√
2 and the second in state |ϕ〉 = (|0〉 − |1〉)/

√
2. The state

of the combined system is

|�〉 ⊗ |ϕ〉 = |�〉|ϕ〉 = 1
2
(|00〉 − |01〉+ |10〉 − |11〉).

Such a state of the composite system that can be written as a tensor product of
pure states is called separable.

Example 1.2. The Bell states of a 2-qubit system are not separable; they are
important and canonical examples of entangled states:

|00〉+ |11〉√
2

|00〉 − |11〉√
2

|01〉+ |10〉√
2

|01〉 − |10〉√
2

Example 1.3. The GHZ states (for Greenberger-Horne-Zeilinger) are ex-
amples of entangled states in composite systems that have three or more
subsystems. The GHZ state for a system with n subsystems is

|0〉⊗n + |1〉⊗n√
2

.

For more on entangled states, see Parke’s article in this volume, or Section 6
of Kauffman’s article.

§2. Transformations and quantum gates.

Postulate of quantum mechanics: Evolution of systems. The time evolution
of a closed quantum system is described by a unitary transformation.

A transformation is unitary if its inverse is equal to its adjoint. Such
transformations preserve inner products and are reversible, deterministic, and
continuous. In quantum computing, algorithms are often described as circuits
in which information (and time) flows from left to right. Quantum gates
represent unitary transformations applied to qubits in such a circuit.

Example 2.1. The Hadamard gate. The 1-qubit Hadamard gate has as input
and output one qubit, as shown in the simple circuit diagram below:
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