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Part One

Prologue: The foundations of analysis
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1

The axioms of set theory

It is probably sensible to read through this chapter fairly quickly, to find out
the terminology and notation that we shall use, and then to return later to
read it and think about it more carefully.

1.1 The need for axiomatic set theory

Mathematics is written in many languages, such as French, German, Russian,
Chinese, and, as in the present case, English. Mathematics needs a particular
precision, and within each of these languages, most of mathematics, and all
the mathematics that we shall do, is written in the language of sets, using
statements and arguments that are based on the grammar and logic of the
predicate calculus. In this chapter we introduce the set theory that we shall
use. This provides us with a framework in which to work; this framework
includes a model for the natural numbers (1,2,3,...), together with tools
to construct all the other number systems (rational, real and complex) and
functions that are the subject of mathematical analysis.

The predicate calculus involves rules of grammar for writing ‘well-formed
formulae’, and for providing mathematical arguments which use them. Well-
formed formulae involve variables, and logical operations such as conjunction
(P and Q), disjunction (P or @ (or both)), implication (P implies @), nega-
tion (not P), and quantifiers ‘there exists’ and ‘for all’, together, in our case,
with sets and the relation €. We shall not describe the predicate calculus,
which formalizes the everyday use of these logical operations (for example,
‘P implies Q’ if and only if ‘(not @) implies (not P)’), but all our arguments
and constructions will be based on it, and we shall give plenty of examples
of well-formed formulae.!

1 For a good account, see A. G. Hamilton, Logic for Mathematicians, Cambridge University Press,
1988.
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4 The axioms of set theory

Since the beginning of the study of set theory by Cantor in the 1870s
and the introduction of Venn diagrams by Venn in 1881, the simple idea
of a set has become commonplace, and young children happily manipulate
sets such as {Catherine of Aragon, Ann Boleyn, Jane Seymour, Anne of
Cleves, Kathryn Howard, Katherine Parr}, or more prosaically {Alice, Bob},
or the set of numbers {5,13,17,29,37,41, 53,61, 73,89}. In mathematics, we
consider sets of mathematical objects, such as the last of these examples. Can
we not simply consider a mathematical object to be a collection of all those
things which can be defined by a well-formed formula? Then a set would be
something of the form ‘the collection of those things a for which the well-
formed formula P(a) holds’, where P(z) is a well-formed formula with one
free variable x, and conversely, each such formula would define a set. This
approach is known as the comprehension principle. Unfortunately, it leads
to contradictions. Consider the well-formed statement ‘x does not belong to
x’; according to the comprehension principle, there should be a set b which
consists of those sets which do not belong to themselves. Does b belong to b?
If it does, it fails the criterion for belonging to b, and so it does not belong to
b. But if it does not belong to b, then it meets the criterion, and so it belongs
to b. Thus, either way, we reach a contradiction.

This phenomenon was described by Bertrand Russell in 1901, and is known
as Russell’s paradox. It caused him a great deal of pain, as he described in
his autobiography.? Concerning the events of May 1901, he wrote

Cantor had a proof that there is no greatest number, and it seemed
to me that the number of things in the world should be the greatest
possible. Accordingly, I examined his proof with some minuteness,
and endeavoured to apply it to the class of all things there are.
This led me to consider those classes which are not members of
themselves, and to ask whether the class of all such classes is or
is not a member of itself. I found that either answer implied its
contradictory.

He continued to consider the problem for several years. Describing the
summers of 1903 and 1904, he wrote

I was trying hard to solve the contradictions mentioned above.
Every morning I would sit down before a blank sheet of paper.
Throughout the day, with a brief interval for lunch, I would stare
at the blank sheet. Often when evening came it was still empty.

Russell’s paradox required a new approach to the theory of sets, which
would provide a framework where Russell’s paradox, and other paradoxes,

2 The Autobiography of Bertrand Russell, George Allen and Unwin, 1967-69.
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1.2 The first few axioms of set theory )

are avoided. In 1908, Zermelo introduced a system of axioms; these were
modified in 1922 by Fraenkel and Skolem. The resulting system, known as
the Zermelo--Fraenkel axiom system ZF, has stood the test of time, and it is
the one that we shall describe and use.

1.2 The first few axioms of set theory

In Zermelo—Fraenkel set theory, the basic objects are all called sets, denoted
by upper- or lower-case letters, and there is one relation, €. Thus, if ¢ and
b are sets, then either a € b, or this is not so, in which case we write a & b.
(We use the symbol / to mean ‘not’, in a similar way, for other relations.) If
a € b, we say that a belongs to b, or that a is a member or element or point of
b, or, more simply, that a is in b.

The sets and the relation € are required to satisfy certain axioms, and we
shall spend the rest of this chapter introducing and explaining them.

Axziom 1: The extension axiom

This states that two sets are equal if and only if they have the same elements.
Thus the set with members 1, 2 and 3 and the set with members 1, 3, 2 and
1 are the same; the order in which they are listed is unimportant, as is the
fact that repetition can occur. Set theory is all about membership, and about
nothing else.

If a and b are sets, and every member of a is a member of b, then we say
that a is a subset of b, or that b contains a, and write a C bor b D a. Thus the
extension axiom says that a = b if and only if a C band b C a. If a C b and
a # b, we say that a is a proper subset of b, or that a is properly contained in
b, and write a C bor b D a.

Axiom 2: The empty set axiom

This states that there is a set with no members. The extension axiom then
implies that there is only one such set: we denote it by () and call it the empty
set. It is easy to overlook the empty set: arguments involving it take on an
idiosyncratic form. It also has a rather paradoxical nature, since it is a subset
of every set a (if not, there is a member b of () which is not in a; but () has
no members). Thus (looking ahead to some familiar sorts of sets) we can
consider the set I’ of natural numbers n greater than 2 for which there exist
natural numbers a, b and ¢ with a™ + b" = ¢", and we can consider the set
Q of those complex quadratic polynomials of the form 2% 4+ az + b for which
the equation z? + az + b = 0 has no complex solutions. Then F = Q, since
each is the empty set.
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6 The azioms of set theory

The next four axioms are concerned with creating new sets from old.

Aziom 8: The pairing axiom

This says that if @ and b are sets then there exists a set whose members are
a and b. The extension axiom again says that there is only one such set: we
denote it by {a, b}. Note that {a,b} = {b, a}: we have an unordered pair. We
can take a = b: then the set {a, a} has only one element a. We write this set
as {a} and call it a singleton set.

We can use the pairing axiom to define ordered pairs. If a and b are sets,
we define the ordered pair (a,b) to be the set {{a},{a,b}}.

Proposition 1.2.1  If (a,b) and (c,d) are ordered pairs and (a,b) = (¢,d),
then a = c and b = d.

Proof The proof makes repeated use of the extension axiom. First, suppose
that @ = b. Then (a,b) = {{a}} = {{c},{c,d}}, and so {c,d} = {a}, and
a=c=d. Thus a =b=c=d. Similarly, ifc=d thena =b=c=d.
Finally, suppose that a # b and ¢ # d. Since {a} € (c,d), either {a} = {c}
or {a} = {c,d}. But if {a} = {¢,d} then ¢ = a = d, giving a contradiction.
Thus {a} = {c} and a = ¢. Since {a,b} € (c,d), either {a,b} = {c} or
{a,b} = {c,d}. But if {a,b} = {c}, then a = ¢ = b, giving a contradiction.
Thus {a,b} = {c¢,d}, and sob = cor b = d. But if b = c then b = ¢ = a,
giving a contradiction. Thus b = d. O

If A is a set, then all its members are sets, and they, in turn, can have
members.

Aziom 4: The union axiom

This says that there is a set whose elements are exactly the sets which are
members of members of A. We denote this set by U,c 4a (here a is a variable,
so we could as well write U,c42) and call it the union of the members of A.
The essential feature of this axiom is that the sets whose members make up
the union must all be members of a single set; we cannot form the union of all
sets since, as we shall see, there is no set to which all sets belong. If A and B
are sets, we can consider the set Ugecqa, pyC. This is the set whose elements
are either in A or in B: we write this as AU B.

Axiom 5: The power set axiom

There is an essential difference between the statements b € A (b is a member
of A) and b C A (b is a subset of A). The power set axiom states that if A
is a set, then there exists a set, the power set P(A) of A, whose elements
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1.2 The first few axioms of set theory 7

are the subsets of A. Thus b € P(A) if and only if b C A. For example,
the elements of P({a,b}) are 0, {a}, {b} and {a,b}, and the ordered pair
(a,b) = {{a}, {a,b}} is an element of P(P({a,b})).

Axiom 6: The separation axiom

This is particularly important, and is an axiom that is used all the time in
mathematics. It states that if A is a set and Q(z) is a well-formed formula,
then there exists a subset of A whose elements are just those members a of A
for which @(a) holds. By extensionality, there is only one such set; we denote
it by {z € A: Q(z)}. With this axiom in place, we can use the argument of
Russell’s paradox to show that there is no universal set to which every set
belongs.

Theorem 1.2.2  There is no set £ such that if a is a set then a € €.

Proof Suppose that such a set were to exist. Then the formula x ¢ z is a
well-formed formula, and so there exists a set b = {x € Q : = &€ x}. Does
b € b? If it does, it fails the criterion for membership, giving a contradiction.
If it does not, then it meets the criterion, and so belongs to b, giving another
contradiction. This exhausts all possibilities, and so no such universal set can
exist. O

Let us give some more examples of the use of the separation axiom. Suppose
that A and B are sets. The expression z € B is a well-formed formula, and
so the set {x € A : x € B} is a subset of A, the intersection of A and B,
denoted by AN B. Note that ANB =BNA={x € B:x¢€ A}, since a
set ¢ is an element of either intersection if and only if it belongs to both A
and B. We say that A and B are disjoint if AN B = (); A and B are disjoint
if A and B have no member in common. Similarly, the expression z ¢ B is
a well-formed formula, and so the set {x € A : x ¢ B} is a subset of A, the
set difference A\ B. A\ B is also called the relative complement of B in A.
It frequently happens that we consider a particular set A, say, and are only
concerned with subsets of A. In this case, if B C A, then we denote A\ B by
C(B), or B, and call it the complement of B.

We can extend the notion of intersection considerably. Suppose that A is
a set. The expression ‘for all a € A, z € a’ is a well-formed formula with a a
bound variable and x a free variable, and so we can form the set

{z € Useaa :foralla € A,z € a}.
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8 The azioms of set theory

This is the intersection Ngeaa of all the sets a that belong to A: b € Ngeaa
if and only if b € a, for each a € A. Here again a is a variable, and we could
also write Nzecax. We must reconcile the two definitions of intersection that
we have made: this is easy because AN B = Nyc(a 312

A word about notation here. Our aim will be to be accurate and clear
without being pedantic. Suppose that A is a set. For each a € A, we can form
the intersection Nyeqa. Using the separation axiom, we can then define the
set I whose elements are exactly these intersections, and can then form the
set Ujcri. In fact, we write this in the form

UaGA(maeaa)a

and use other similar expressions. In the same way, we shall use natural
variations of the notation {z € A : Q(z)} to denote sets whose existence
is ensured by the separation axiom; but in each case such a set is a sub-
set of a given set, and it can be written, at greater length, in the form
{z€eA: Q(x)}.

From now on, we shall define sets without appealing to the axioms to ensure
that they are in fact sets. It is a useful exercise for the reader to consider, in
each case, how suitable justification can be given.

It is unfortunately the case that the separation axiom is not strong enough
for all purposes, and another axiom, the replacement axiom, is needed. We
shall defer discussion of this and of the other axioms of ZF, until later. Let
us first see what we can do with the axioms that we now have.

Exercises

Suppose that A, B, C, D are sets.

1.2.1 Show that AU(BNC)=(AUB)N(AUCQ).
1.2.2 Show that AN (BUC)=(ANB)U(ANCO).
1.2.3 Show that A\ (BUC)=(A\B)Nn(A\C).
1.2.4 Which of the following statements are necessarily true?
(a) P(ANnB)= P(A)N P(B).
(b) P(AUB) = P(A)U P(B).
1.2.5 Define a set I such that Ujcri = Ugea(Naca)-
1.2.6 Does Ugea(Naeqr) necessarily contain Ngea(Uaca@)? Is Ugea(Naca®)

= (
= (

necessarily contained in Nge4(Ugeqr)?

1.2.7 The symmetric difference aAb of two sets a and b is the set (a\b)U(b\a).
Establish the following:
(a) AAB=(AUB)\ (ANB).
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1.3 Relations and partial orders 9
(b) AAB = BAA.
(¢) AA(BAC) = (AAB)AC.
(d) AAD = A.
(e) AAA=10

1.3 Relations and partial orders

The Cartesian product A x B of two sets A and B is the set of all ordered
pairs (a,b) with a € A and b € B. More formally,

Ax B ={x € P(P(AU B)) : there exists a € A and there exists b € B
such that x = {{a}, {a,b}}}.

(The term Cartesian honours René Descartes, who introduced coordinates
to the plane, so that points in the plane are represented by ordered pairs of
real numbers; the plane is thus represented as the Cartesian product of two
copies of the set of real numbers.)

A relation on A x B is then simply a subset R of A x B. It is customary
to write aRb if (a,b) € R. The set

{a € A: there exists b € B such that (a,b) € R}
is then called the domain of R, and the set
{b € B : there exists a € A such that (a,b) € R}

is called the range of R. A relation on A x A is called a relation on A.
Let us give some examples. First, if A is a set then

€a={(b,B) € Ax P(A):be B}

is a relation on A x P(A). Recall that we introduced the relation € on the
collection of all sets, which we have seen is not a set; €4 is the restriction to
a set and its subsets.

Secondly, if A is a set then

Ca={(B,C) € P(A) x P(A): BC C}

is a relation on P(A). This is an example of a partial order relation. An order
< on a set A is a partial order or partial order relation if

(i) if a < b and b < ¢ then a < ¢ (transitivity), and

(i) a < band b < a if and only if a = b.
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10 The azioms of set theory

If a < b then we say that a is less than or equal to b, or that b is greater
than or equal to a, and we also write b > a.

Partial order relations play an important part in analysis. We make some
definitions concerning partial orders here, and will consider them in more
detail later.

Suppose that < is a partial order on a set A, that a € A and that B is a
subset of A.

e a is an upper bound of B if b < a for all b € B.
e ais a lower boundof Bifa <bforall b e B.

An upper bound of B need not belong to B. If it does, it is the greatest
element of B. B has at most one greatest element, but may have no greatest
element. Least elements are defined in the same way.

e a ia a mazimal element of B if a € B, and if b € B and a < b then a = b.
e a ia a minimal element of B ifa € B, and if b € B and b < a then a = b.

A greatest element of B is a maximal element of B, but the converse need
not hold.

e a is the supremum, or least upper bound, of B if a is an upper bound of B,
and if ¢ is an upper bound of B, then a < c¢. In other words, a is the least
element of the set of upper bounds of B.

e a is the infimum, or greatest lower bound, of B if a is a lower bound of B,
and if ¢ is an lower bound of B, then ¢ < a. In other words, a is the greatest
element of the set of lower bounds of B.

B has at most one least upper bound, but may have no least upper bound.
If a is the least upper bound of B then a may or may not be an element of
B. If a is an element of B, then a is the least upper bound of B if and only
if a is the greatest element of B.

If a < borb < athen we say that a and b are comparable. In general, not
all pairs are comparable. If, however, any two elements of A are comparable,
then we say that the relation is a total order. As an example, the usual order
on the set of natural numbers N = {1,2,3,...} (which we shall consider in
Section 2.1) is a total order.

The definition of the notion of partial order includes equality. There is
a closely related notion which forbids equality. Suppose that < is a partial
order relation on a set A. Then the relation

{(a,b) e Ax A:a <banda#b}
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