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Calderón’s inverse problem:
imaging and invisibility

KARI ASTALA, MATTI LASSAS AND LASSI PÄIVÄRINTA

We consider the determination of a conductivity function in a two-dimensional
domain from the Cauchy data of the solutions of the conductivity equation
on the boundary. In the first sections of the paper we consider this inverse
problem, posed by Calderón, for conductivities that are in L1 and are bounded
from below by a positive constant. After this we consider uniqueness results
and counterexamples for conductivities that are degenerate, that is, not neces-
sarily bounded from above or below. Elliptic equations with such coefficient
functions are essential for physical models used in transformation optics and
metamaterial constructions. The present counterexamples for the inverse
problem have been related to invisibility cloaking. This means that there are
conductivities for which a part of the domain is shielded from detection via
boundary measurements. Such conductivities are called invisibility cloaks. At
the end of the paper we consider the borderline of the smoothness required
for the visible conductivities and the borderline of smoothness needed for
invisibility cloaking conductivities.

1. Introduction

In electrical impedance tomography one aims to determine the internal structure
of a body from electrical measurements on its surface. To consider the precise
mathematical formulation of the electrical impedance tomography problem,
suppose that �� R

n is a bounded domain with connected complement and let
us start with the case when � W � ! .0;1/ be a measurable function that is
bounded away from zero and infinity.

Then the Dirichlet problem

r � �ru D 0 in �; (1)

u
ˇ

ˇ

@�
D � 2 W 1=2;2.@�/ (2)

The authors were supported by the Academy of Finland, the Finnish Centres of Excellence in
Analysis and Dynamics and Inverse Problems, and the Mathematical Sciences Research Institute.

1

www.cambridge.org/9781107032019
www.cambridge.org


Cambridge University Press
978-1-107-03201-9 — Inverse Problems and Applications
Edited by Gunther Uhlmann 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2 KARI ASTALA, MATTI LASSAS AND LASSI PÄIVÄRINTA

admits a unique solution u in the Sobolev space W 1;2.�/. Here

W 1=2;2.@�/D H 1=2.@�/D W 1;2.�/=W
1;2

0
.�/

stands for the space of equivalence classes of functions W 1;2.�/ that are the
same up to a function in W

1;2
0
.�/ D clW 1;2.�/.C

1
0
.�//. This is the most

general space of functions that can possibly arise as Dirichlet boundary values
or traces of general W 1;2.�/-functions in a bounded domain �.

In terms of physics, if the electric potential of a body � at point x is u.x/,
having the boundary value � D uj@�, and there are no sources inside the body,
u satisfies the equations (1)–(2). The electric current J in the body is equal to

J D ��ru:

In electrical impedance tomography, one measures only the normal component
of the current, � � J j@� D �� � �ru, where � is the unit outer normal to the
boundary. For smooth � this quantity is well defined pointwise, while for general
bounded measurable � we need to use the (equivalent) definition of � � �ruj@�,

h� � �ru;  iD

Z

�

�.x/ru.x/ �r .x/ dm.x/ for all  2W 1;2.�/.�/; (3)

as an element of H �1=2.@�/, the dual of space of H 1=2.@�/D W 1=2;2.@�/.
Here, m is the Lebesgue measure.

Calderón’s inverse problem is the question whether an unknown conductivity
distribution inside a domain can be determined from the voltage and current
measurements made on the boundary. The measurements correspond to the
knowledge of the Dirichlet-to-Neumann map ƒ� (or the equivalent quadratic
form) associated to � , i.e., the map taking the Dirichlet boundary values of the
solution of the conductivity equation

r � �.x/ru.x/D 0 (4)

to the corresponding Neumann boundary values,

ƒ� W uj@� 7! � � �ruj@�: (5)

For sufficiently regular conductivities the Dirichlet-to-Neumann map ƒ� can be
considered as an operator from W 1=2;2.@�/ to W �1=2;2.@�/. In the classical
theory of the problem, the conductivity � is bounded uniformly from above and
below. The problem was originally proposed by Calderón [1980]. Sylvester
and Uhlmann [1987] proved the unique identifiability of the conductivity in
dimensions three and higher for isotropic conductivities which are C 1-smooth,
and Nachman [1988] gave a reconstruction method. In three dimensions or
higher unique identifiability of the conductivity is proven for conductivities
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with 3=2 derivatives [Päivärinta et al. 2003; Brown and Torres 2003] and C 1;˛-
smooth conductivities which are C 1 smooth outside surfaces on which they
have conormal singularities [Greenleaf et al. 2003b]. Haberman and Tataru
[2011] have recently proven uniqueness for the C 1-smooth conductivities. The
problems has also been solved with measurements only on a part of the boundary
[Kenig et al. 2007].

In two dimensions the first global solution of the inverse conductivity problem
is due to Nachman [1996a] for conductivities with two derivatives. In this
seminal paper the @ technique was first time used in the study of Calderón’s
inverse problem. The smoothness requirements were reduced in [Brown and
Uhlmann 1997a] to Lipschitz conductivities. Finally, in [Astala and Päivärinta
2006] the uniqueness of the inverse problem was proven in the form that the
problem was originally formulated in [Calderón 1980], i.e., for general isotropic
conductivities in L1 which are bounded from below and above by positive
constants.

The Calderón problem with an anisotropic, i.e., matrix-valued, conductivity
that is uniformly bounded from above and below has been studied in two di-
mensions [Sylvester 1990; Nachman 1996a; Lassas and Uhlmann 2001; Astala
et al. 2005; Imanuvilov et al. 2010] and in dimensions n � 3 [Lee and Uhlmann
1989; Lassas and Uhlmann 2001; Ferreira et al. 2009]. For example, for the
anisotropic inverse conductivity problem in the two-dimensional case it is known
that the Dirichlet-to-Neumann map determines a regular conductivity tensor up
to a diffeomorphism F W�!�, i.e., one can obtain an image of the interior of
� in deformed coordinates. This implies that the inverse problem is not uniquely
solvable, but the nonuniqueness of the problem can be characterized. We note
that the problem in higher dimensions is presently solved only in special cases,
like when the conductivity is real analytic.

Electrical impedance tomography has a variety of different applications for
instance in engineering and medical diagnostics. For a general expository pre-
sentations see [Borcea 2002; Cheney et al. 1999], for medical applications see
[Dijkstra et al. 1993].

In the last section we will study the inverse conductivity problem in the two-
dimensional case with degenerate conductivities. Such conductivities appear in
physical models where the medium varies continuously from a perfect conductor
to a perfect insulator. As an example, we may consider a case where the con-
ductivity goes to zero or to infinity near @D where D �� is a smooth open set.
We ask what kind of degeneracy prevents solving the inverse problem, that is,
we study what is the border of visibility. We also ask what kind of degeneracy
makes it even possible to coat of an arbitrary object so that it appears the same
as a homogeneous body in all static measurements, that is, we study what is the
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border of the invisibility cloaking. Surprisingly, these borders are not the same;
we identify these borderlines and show that between them there are the electric
holograms, that is, the conductivities creating an illusion of a nonexisting body
(see Figure 1 on page 43). These conductivities are the counterexamples for
the unique solvability of inverse problems for which even the topology of the
domain can not be determined using boundary measurements.

In this presentation we concentrate on solving Calderón’s inverse problem in
two dimensions. The presentation is based on the works [Astala and Päivärinta
2006; Astala et al. 2009; 2005; 2011a], where the problem is considered using
quasiconformal techniques. In higher dimensions the usual method is to reduce,
by substituting v D �1=2u, the conductivity equation (1) to the Schrödinger
equation and then to apply the methods of scattering theory. Indeed, after such a
substitution v satisfies

�v� qv D 0;

where q D ��1=2��1=2. This substitution is possible only if � has some smooth-
ness. In the case � 2 L1, relevant for practical applications the reduction to
the Schrödinger equation fails. In the two-dimensional case we can overcome
this by using methods of complex analysis. However, what we adopt from the
scattering theory type approaches is the use of exponentially growing solutions,
the so-called geometric optics solutions to the conductivity equation (1). These
are specified by the condition

u.z; �/D ei�z
�

1 C O

�

1

jzj

��

as jzj ! 1; (6)

where �; z 2 C and �z denotes the usual product of these complex numbers.
Here we have set � � 1 outside � to get an equation defined globally. Studying
the �-dependence of these solutions then gives rise to the basic concept of this
presentation, the nonlinear Fourier transform �� .�/. The detailed definition will
be given in Section 2F.

Thus to start the study of �� .�/ we need first to establish the existence of
exponential solutions. Already here the quasiconformal techniques are essential.
We note that the study of the inverse problems is closely related to the nonlinear
Fourier transform: It is not difficult to show that the Dirichlet-to-Neumann
boundary operator ƒ� determines the nonlinear Fourier transforms �� .�/ for
all � 2 C. Therefore the main difficulty, and our main strategy, is to invert the
nonlinear Fourier transform, show that �� .�/ determines �.z/ almost everywhere.

The properties of the nonlinear Fourier transform depend on the underlying
differential equation. In one dimension the basic properties of the transform
are fairly well understood, while deeper results such as analogs of Carleson’s
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L2-convergence theorem remain open. The reader should consult the excellent
lecture notes by Tao and Thiele [2003] for an introduction to the one-dimensional
theory.

For (1) with nonsmooth � , many basic questions concerning the nonlinear
Fourier transform, even such as finding a right version of the Plancherel formula,
remain open. What we are able to show is that for �˙1 2 L1, with � � 1 near
1, we have a Riemann–Lebesgue type result,

�� 2 C0.C/:

Indeed, this requires the asymptotic estimates of the solutions (6), and these
are the key point and main technical part of our argument. For results on
related equations, see [Brown 2001]. The nonlinear Fourier transform in the two-
dimensional case is also closely related to the Novikov–Veselov (NV) equation,
which is a (2+1)-dimensional nonlinear evolution equation that generalizes the
(1+1)-dimensional Korteweg-deVries(KdV) equation; see [Boiti et al. 1987;
Lassas et al. 2007; Tsai 1993; Veselov and Novikov 1984].

2. Calderón’s inverse for isotropic L
1-conductivity

To avoid some of the technical complications, below we assume that the domain
�D D D D.1/, the unit disk. In fact the reduction of general � to this case is
not difficult; see [Astala and Päivärinta 2006]. Our main aim in this section is to
consider the following uniqueness result and its generalizations:

Theorem 2.1 [Astala and Päivärinta 2006]. Let �j 2 L1.D/, j D 1; 2. Suppose

that there is a constant c > 0 such that c�1 � �j � c. If

ƒ�1
Dƒ�2

;

then �1 D �2 almost everywhere. Here ƒ�i
, i D 1; 2, are defined by (5).

For the first steps in numerical implementation of the solution of the inverse
problem based on quasiconformal methods see [Astala et al. 2011b].

Our approach will be based on quasiconformal methods, which also enables the
use of tools from complex analysis. These are not available in higher dimensions,
at least to the same extent, and this is one of the reasons why the problem is
still open for L1-coefficients in dimensions three and higher. The complex
analytic connection comes as follows: From Theorem 2.3 below we see that if
u 2 W 1;2.D/ is a real-valued solution of (1), then it has the � -harmonic conjugate
v 2 W 1;2.D/ such that

@xv D ��@y u; @yv D �@x u: (7)
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Equivalently (see (26)), the function f D u C iv satisfies the R-linear Beltrami
equation

@f

@Nz
D �.z/

@f

@z
; (8)

where @f
@Nz

D @Nzf D 1
2
.@xf C i@yf /,

@f

@z
D @Nzf D 1

2
.@xf � i@yf /, and

�D
1 � �

1 C �
:

In particular, note that � is real-valued and that the assumptions on � in
Theorem 2.1 imply k�kL1 � k < 1. This reduction to the Beltrami equation and
the complex analytic methods it provides will be the main tools in our analysis
of the Dirichlet-to-Neumann map and the solutions to (1).

2A. Linear and nonlinear Beltrami equations. A powerful tool for finding the
exponential growing solutions to the conductivity equation (including degenerate
conductivities) are given by the nonlinear Beltrami equation. We therefore first
review a few of the basic facts here. For more details and results see [Astala
et al. 2009].

We start with general facts on the linear divergence-type equation

div A.z/ru D 0; z 2�� R
2 (9)

where we assume that u 2 W
1;2

loc .�/ and that the coefficient matrix

A D A.z/D

�

˛11 ˛12

˛21 ˛22

�

; ˛21 D ˛12; (10)

is symmetric and elliptic:

1

K.z/
j�j2 � hA.z/�; �i � K.z/j�j2; � 2 R

2; (11)

almost everywhere in �. Here, h�; �i D �1�1 C �2�2 for �; � 2 R
2. We denote

by KA.z/ the smallest number for which (11) is valid. We start with the case
when A.z/ is assumed to be isotropic, A.z/D �.z/I with �.z/ 2 RC. We also
assume that there is K 2 RC such that KA.z/� K almost everywhere.

For many purposes it is convenient to express the above ellipticity condition
(11) in terms of the single inequality

j�j2 C jA.z/�j2 �

�

KA.z/C
1

KA.z/

�

hA.z/�; �i (12)
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valid for almost every z 2� and all � 2 R
2. For the symmetric matrix A.z/ this

is seen by representing the matrix as a diagonal matrix in the coordinates given
by the eigenvectors.

Below we will study the divergence equation (9) by reducing it to the complex
Beltrami system. For solutions to (9) a conjugate structure, similar to harmonic
functions, is provided by the Hodge star operator �, which here really is nothing
more than the (counterclockwise) rotation by 90 degrees,

� D

�

0 � 1

1 0

�

W R
2 ! R

2; �� D �I: (13)

There are two vector fields associated with each solution to the homogeneous
equation

div A.z/ru D 0; u 2 W
1;2

loc .�/:

The first, E D ru, has zero curl (in the sense of distributions, the curl of any
gradient field is zero), while the second, B D A.z/ru, is divergence-free as a
solution to the equation.

It is the Hodge star � operator that transforms curl-free fields into divergence-
free fields, and vice versa. In particular, if

E D rw D .wx; wy/; w 2 W
1;1

loc .�/;

then �E D .�wy ; wx/ and hence

div.�E/D div.�rw/D 0;

at least in the distributional sense. We recall here a well-known fact from calculus
(the Poincaré lemma):

Lemma 2.2. Let E 2 Lp.�;R2/, p � 1, be a vector field defined on a simply

connected domain �. If Curl E D 0, then E is a gradient field; that is, there

exists a real-valued function u 2 W 1;p.�/ such that ru D E.

When u is A-harmonic function in a simply connected domain �, that is, u

solves the equation div A.z/ru D 0, then the field �Aru is curl-free and may
be rewritten as

rv D �A.z/ru; (14)

where v 2 W
1;2

loc .�/ is some Sobolev function unique up to an additive constant.
This function v we call the A-harmonic conjugate of u. Sometimes in the
literature one also finds the term stream function used for v.

The ellipticity conditions for A can be equivalently formulated for the induced
complex function f D u C iv. We arrive, after a lengthy but quite routine
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purely algebraic manipulation, at the equivalent complex first-order equation for
f D u C iv, which we record in the following theorem.

Theorem 2.3. Let � be a simply connected domain and let u 2 W
1;1

loc .�/ be a

solution to

div A ru D 0: (15)

If v 2 W 1;1.�/ is a solution to the conjugate A-harmonic equation (14), the

function f D u C iv satisfies the homogeneous Beltrami equation

@f

@Nz
��.z/

@f

@z
� �.z/

@f

@z
D 0: (16)

The coefficients are given by

�D
˛22 �˛11 � 2i˛12

1 C trace A C det A
; � D

1 � det A

1 C trace A C det A
: (17)

Conversely, if f 2 W
1;1

loc .�;C/ is a mapping satisfying (16), then u D Re .f / and

v D Im .f / satisfy (14) with A given by solving the complex equations in (17):

˛11.z/D
j1 ��j2 � j�j2

j1 C �j2 � j�j2
; (18)

˛22.z/D
j1 C�j2 � j�j2

j1 C �j2 � j�j2
; (19)

˛12.z/D ˛21.z/D
�2 Im .�/

j1 C �j2 � j�j2
; (20)

The ellipticity of A can be explicitly measured in terms of � and �. The
optimal ellipticity bound in (11) is

KA.z/D maxf�1.z/; 1=�2.z/g; (21)

where 0< �2.z/� �1.z/ <1 are the eigenvalues of A.z/. With this choice we
have pointwise

j�.z/j C j�.z/j D
KA.z/� 1

KA.z/C 1
< 1: (22)

We also denote by Kf .z/ the smallest number for which the inequality

kDf .z/k2 � Kf .z/J.z; f / (23)

is valid. Here, Df .z/ 2 R
2 is the Jacobian matrix (or the derivative) of f at z

and J.z; f /D det.Df .z// is the Jacobian determinant of f .
Below, let k 2 Œ0; 1� and K 2 Œ1;1� be constants satisfying

sup
z2�

.j�.z/j C j�.z/j/� k and K WD
1 C k

1 � k
: (24)
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Then (16) yields
ˇ

ˇ

ˇ

ˇ

@f

@Nz

ˇ

ˇ

ˇ

ˇ

� k

ˇ

ˇ

ˇ

ˇ

@f

@z

ˇ

ˇ

ˇ

ˇ

:

The above ellipticity bounds have then the relation

Kf .z/� KA.z/� K for a.e. z 2�: (25)

A mapping f 2 W
1;2

loc .�/ satisfying (23) with Kf .z/� K <1 is called a K-

quasiregular mappings. If f is a homeomorphism, we call it K-quasiconformal.
By Stoilow’s factorization (Theorem A.9), any K-quasiregular mapping is a
composition of holomorphic function and a K-quasiconformal mapping.

Remarks. 1. In this correspondence, � is real valued if and only if the matrix A

is symmetric.

2. A has determinant 1 if and only if �D 0 (this corresponds to the C-linear
Beltrami equation).

3. A is isotropic, that is, A D �.z/I with �.z/ 2 RC, if and only if �.z/D 0.
For such A, the Beltrami equation (16) then takes the form

@f

@Nz
�

1 � �

1 C �

@f

@z
D 0: (26)

2B. Existence and uniqueness for nonlinear Beltrami equations. Solutions to
the Beltrami equation conformal near infinity are particularly useful in solving
the equation.

When� and � as above have compact support and we have a W
1;2

loc .C/ solution
to the Beltrami equation fNz D �fz C �fNz in C, where fNz D @Nzf and fz D @zf ,
normalized by the condition

f .z/D z C O.1=z/

near 1, we call f a principal solution. Indeed, with the Cauchy and Beurling
transform (see the Appendix) we have the identities

@f

@z
D 1 C S

@f

@Nz
(27)

and

f .z/D z C C

�@f

@Nz

�

.z/; z 2 C: (28)

Principal solutions are necessarily homeomorphisms. In fact we have the
following fundamental measurable Riemann mapping theorem:
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Theorem 2.4. Let �.z/ be compactly supported measurable function defined in

C with k�kL1 � k < 1. Then there is a unique principal solution to the Beltrami

equation
@f

@Nz
D �.z/

@f

@z
for almost every z 2 C;

and the solution f 2 W
1;2

loc .C/ is a K-quasiconformal homeomorphism of C.

The result holds also for the general Beltrami equation with coefficients �
and �; see Theorem 2.5 below.

In constructing the exponentially growing solutions to the divergence and Bel-
trami equations, the most powerful approach is by nonlinear Beltrami equations
which we next discuss.

When one is looking for solutions to the general nonlinear elliptic systems

@f

@Nz
D H

�

z; f;
@f

@z

�

; z 2 C;

there are necessarily some constraints to be placed on the function H that we
now discuss. We write

H W C � C � C ! C:

We will not strive for full generality, but settle for the following special case.
For the most general existence results, with very weak assumptions on H , see
[Astala et al. 2009]. Here we assume

(1) the homogeneity condition, that fNz D 0 whenever fz D 0, equivalently,

H.z; w; 0/� 0; for almost every .z; w/ 2 C � CI

(2) the uniform ellipticity condition, that for almost every z; w 2 C and all
�; � 2 C,

jH.z; w; �/� H.z; w; �/j � kj� � �j; 0 � k < 1I (29)

(3) the Lipschitz continuity in the function variable,

jH.z; w1; �/� H.z; w2; �/j � C j�j jw1 �w2j

for some absolute constant C independent of z and �.

Theorem 2.5. Suppose H W C � C � C ! C satisfies the conditions (1)–(3)
above and is compactly supported in the z-variable. Then the uniformly elliptic

nonlinear differential equation

@f

@Nz
D H

�

z; f;
@f

@z

�

(30)

admits exactly one principal solution f 2 W
1;2

loc .C/.
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