Contents

Preface to the second edition xi
Preface to the first edition, 1986 xiii
Acknowledgements xv
Acknowledgements for the second edition xv
Acknowledgements for the first edition (1986) xv

1 Introduction to spectroscopy, spectroscopes and spectrographs
1.1 Introduction 1
1.2 Basic concepts in spectroscopy
 1.2.1 Terminology 1
 1.2.2 Wavelength and colour 2
 1.2.3 Continuous, emission and absorption spectra 2
 1.2.4 Resolution and resolving power of spectroscopes 3
1.3 The development of the spectrograph and spectroscope design 3
 1.3.1 Prism instruments in the nineteenth and early twentieth centuries 3
 1.3.2 Early objective prism instruments 5
 1.3.3 Early grating spectroscopes and spectrographs 5
 1.3.4 The development of coude spectrographs 6
 1.3.5 The development of the echelle spectrograph 9
 1.3.6 The CCD as a detector for astronomical spectroscopy 11

2 The analysis of sunlight: the earliest pioneers 15
2.1 Isaac Newton and the composition of sunlight 15
2.2 Invisible rays in the solar spectrum: Thomas Young and the measurement of wavelength 16
2.3 William Wollaston and the discovery of the solar line spectrum 16
2.4 Joseph Fraunhofer and the solar line spectrum 17
2.5 Planetary and stellar spectra observed by Fraunhofer 19

3 The foundations of spectral analysis: from Fraunhofer to Kirchhoff 21
3.1 The beginnings of spectral analysis: the work of Sir John Herschel 21
3.2 Sir David Brewster and spectral analysis 21
3.3 Fox Talbot and the spectra of flames 22
3.4 Further progress in studying the solar infrared by J. Herschel, Fizeau and Foucault 22
3.5 Edmond Becquerel and solar spectrum photography 23
3.6 The photographic solar spectrum of J.W. Draper 24
3.7 Sir George Stokes and the fluorescent ultraviolet solar spectrum 25
3.8 The relationship between heat, light and 'chemical rays' 25
3.9 The origin of the Fraunhofer lines 26
3.10 A key observation by Foucault as a step towards understanding the Fraunhofer spectrum 27
3.11 Kirchhoff announces the presence of sodium in the Sun 27
Contents

3.12 The emission and absorption of radiation: the theoretical work of Balfour Stewart and Kirchhoff 28
3.13 Further laboratory work in the analysis of flame, arc and spark spectra 28
3.14 Bunsen and Kirchhoff: chemical analysis of the solar spectrum 28
3.15 Reactions to the work of Kirchhoff and Bunsen 29

4 Early pioneers in stellar spectroscopy 33
4.1 Stellar spectroscopy before 1860 33
4.2 Stellar spectroscopy: a new beginning 33
4.3 Lewis Rutherfurd 35
4.4 Early spectroscopy at Greenwich 35
4.5 Angelo Secchi and spectral classification 36
4.6 William Huggins and stellar composition 41
4.7 Wolf and Rayet and their emission-line stars 44
4.8 Huggins’ later work: comets and the Doppler effect 44
4.9 Henry Draper, Wm Huggins and spectrum photography 45
4.10 Hermann Carl Vogel 47
4.11 The discovery of helium 50
4.12 Vogel’s second classification 52
4.13 Vogel and photographic radial-velocity determinations 52
4.14 Norman Lockyer and the meteoritic hypothesis 53
4.15 New southern emission-line stars: Herschel, Ellery, Pechule, Copeland 56
4.16 The spectra of red stars: d’Arrest, Dunér, Espin 57
4.17 Nicholas von Konkoly, Eugen von Gothard and the first supernova spectrum 58
4.18 Spectrum photography in the 1890s: McClean, Scheiner, Sidgreaves 59

5 Spectral classification at Harvard 63
5.1 Edward Pickering at Harvard College Observatory 63
5.2 Mrs Draper and the Henry Draper Memorial 63
5.3 Williamina Fleming and the Draper Memorial Catalogue 64
5.4 Establishment of the Boyden Station at Arequipa, Peru 66
5.5 The Maury classification 66
5.6 Antonia Maury’s ‘collateral divisions’ based on line width 68
5.7 Ionized helium lines and the Pickering series 70
5.8 Annie Cannon and the Harvard classification of 1901 71
5.9 Annie Cannon’s classifications of 1912 73
5.10 The 1910 meeting of the International Solar Union and the spectral classification questionnaire 74
5.11 Williamina Fleming’s work on stars with peculiar spectra 75
5.12 Emission-line stars catalogued by Annie Cannon 78
5.13 The Henry Draper Catalogue: programme initiated by Pickering and Cannon 78
5.14 Publication of the HD Catalogue 79
5.15 The Henry Draper Extension 82
5.16 Statistical analysis of the HD data: Shapley and galactic structure 83

6 The Doppler effect 86
6.1 Early history of the Doppler effect 86
6.2 Fizeau and Mach and the concept of line displacements 86
6.3 First attempts to observe Doppler shifts by Secchi and Huggins 87
6.4 Visual Doppler shift programmes of Maunder and Christie (Greenwich) and Seabroke (Rugby) 88
6.5 The Doppler effect and solar rotation 89
6.6 Visual radial-velocity measurements by Keeler at Lick 89
6.7 Photographic radial-velocity work by Vogel and Scheiner at Potsdam 90
Chapter 8: Spectral classification: From the Henry Draper Catalogue to the MK system and beyond

8.1 The first International Astronomical Union meeting in Rome, May 1922

8.2 The classification of O stars

8.3 Spectral classification of nebulae

8.4 The spectroscopy of normal B stars

8.5 Spectral classification programmes in the 1920s and 1930s

8.6 Bertil Lindblad and the spectrophotometry of late-type stars

8.7 Barbier, Chalonge and the Balmer jump

8.8 To the MKK classification and beyond

8.8.1 The origins of the MKK two-dimensional classification

8.8.2 The MKK Atlas of Stellar Spectra

8.8.3 Some commentaries on the MKK system

8.8.4 Spectral classification at Yerkes after the MKK

8.8.5 The MK system

8.9 The classification of the carbon stars

8.10 The classification and spectra of S stars

8.11 Vanadium oxide and metallic hydrides in the M-type stars

8.13 The discovery of brown dwarfs and the introduction of the L and T spectral types

9 Spectroscopy of peculiar stars

9.1 Introduction to peculiar stars

9.2 Carlyle Beals and the Wolf–Rayet classification

9.3 Spectral classification of novae

9.4 Emission line B stars: the Be stars

9.5 The peculiar A-type stars: an astrophysical enigma

9.5.1 Discovery of peculiar A stars and early progress up to 1930

9.5.2 W.W. Morgan and Ap stars, 1931–1935

9.5.3 Horace Babcock and magnetic fields in the Ap stars

9.5.4 The oblique rotator model for magnetic stars

9.5.5 Spectral classification of Ap stars

9.5.6 The manganese stars and other early-type peculiar stars

9.5.7 Chemically peculiar stars
Table of Contents

9.6 The λ Booëtis stars 212
9.7 The metallic-line stars (Am) 215
 9.7.1 Early history to 1960 of Am stars 215
 9.7.2 Clarification of some of the metallic-line problems 216
 9.7.3 Am stars from 1970 217
9.8 White dwarf spectra 218
 9.8.1 Discovery of three white dwarfs 218
 9.8.2 The Einstein redshift 220
 9.8.3 New white dwarfs in the 1930s 221
 9.8.4 Luyten’s white dwarf discoveries and spectral classification scheme 222
 9.8.5 Classification and analysis of white dwarf spectra, 1957–1967 223
 9.8.6 The 1983 Sion spectral classification 224
9.9 The hydrogen-deficient stars 224
9.10 The T Tauri variable stars 227
9.11 The barium stars 231
9.12 The discovery of CH stars 233
9.13 Symbiotic stars 234
9.14 The spectra of supernovae 237
 9.14.1 A note on the paucity of bright supernovae 237
 9.14.2 S Andromedae and Z Centauri 237
 9.14.3 Supernova spectroscopy to 1937 238
 9.14.4 The classification of supernova spectra 239
 9.14.5 Further refinements in supernova spectral classification 240
 9.14.6 The supernova SN1987A in the Large Magellanic Cloud 242
10 Quantitative analysis of stellar spectra 253
 10.1 Introduction 253
 10.2 Stellar colour temperatures from 1925 254
 10.3 Early model stellar atmospheres 256
 10.4 Rupert Wildt and the negative hydrogen ion 258
 10.5 Early model atmospheres in the 1940s after Wildt’s discovery 260
 10.6 Empirical and theoretical solar models and the line-blanketing problem 262
 10.7 Successive refinements to stellar model atmospheres from 1940 264
 10.7.1 Convection and line blanketing in early model atmospheres 264
 10.7.2 The great debate: LTE versus non-LTE models 266
 10.8 The analysis of stellar spectra: four basic prerequisites 268
 10.8.1 The effect of adopted temperature on derived abundances 268
 10.8.2 Equivalent widths of lines by microdensitometry 268
 10.8.3 Line identification in standard stars 269
 10.8.4 The need for absolute oscillator strengths 271
 10.8.5 Blackwell’s precise Oxford oscillator strengths, and the great solar iron abundance controversy 273
 10.9 Four pioneers in stellar abundance analysis: Unsöld, Greenstein, Aller, Wright 274
 10.9.1 Unsöld and τ Sco: the method of ‘Grobanalyse’ 274
 10.9.2 Greenstein and the differential analysis of F stars 275
 10.9.3 Aller’s abundance analyses 277
 10.9.4 Kenneth Wright and the analysis of four solar-type stars 279
 10.9.5 Concluding remarks on abundance analyses in the 1940s 280
 10.10 Abundance analyses from 1950 281
 10.10.1 Overview 1950–1970: who analysed which stars when, where and how? 281
x Contents

10.10.2 Abundance analyses of stars of the halo population 284
10.10.3 G dwarfs analysed by Wallerstein and others 287
10.10.4 Lithium in the Sun and other stars 288
10.10.5 HD 33579 and the first spectral analysis of an extragalactic star 291

10.11 Stellar element abundances in the late twentieth century 292
10.11.1 New determinations of iron-to-hydrogen ratios [Fe/H] 292
10.11.2 Uranium and thorium lines and their use in cosmochronology 293
10.11.3 The great Population III treasure hunt 293
10.11.4 The age–metallicity relationship in the galactic disk 295

11 Some miscellaneous topics in stellar spectroscopy: individual stars of note, stellar chromospheres, interstellar lines and ultraviolet spectroscopy from space 304

11.1 Introduction 304
11.2 Some individual stars of note 304
 11.2.1 The spectrum of P Cygni 304
 11.2.2 η Carinae 306
 11.2.3 He^3 in 3 CenA 309
 11.2.4 Przybylski’s star, HD 101065 309
 11.2.5 The amazing Doppler shifts of SS 433 310
 11.2.6 The remarkable spectra of the post-AGB stars, FG Sagittae and Sakurai’s object 311

11.3 Emission lines at H and K and the Wilson–Bappu effect 313
11.4 Interstellar absorption lines and the dawn of ultraviolet spectroscopy from space 315
 11.4.1 The discovery of interstellar absorption lines 315
 11.4.2 New interstellar lines and bands and later research 317
 11.4.3 The dawn of ultraviolet spectroscopy from space 319

11.5 Ultraviolet stellar spectroscopy from satellites 321
 11.5.1 The Orbiting Astronomical Observatories 321
 11.5.2 Ultraviolet spectroscopy with Europe’s TD-1 satellite 322
 11.5.3 The International Ultraviolet Explorer 322
 11.5.4 The Goddard High Resolution Spectrograph on Hubble 323

Figure sources and acknowledgements 329
Appendix A: List of solar lines designated by letters by Fraunhofer and others 337
Appendix B: Vogel’s first spectral classification scheme of 1874 339
Index of names 341
Index of star names 349
Index of spectral lines 353
Index of subjects 355