Analytic Combinatorics in Several Variables

Mathematicians have found it useful to enumerate all sorts of things arising in discrete mathematics: elements of finite groups, configurations of ones and zeros, graphs of various sorts; the list is endless. Analytic combinatorics uses analytic techniques to do the counting: generating functions are defined and their coefficients are then estimated via complex contour integrals. This book is the result of nearly fifteen years of work on developing analytic machinery to recover, as effectively as possible, asymptotics of the coefficients of a multivariate generating function. It is the first book to describe many of the results and techniques necessary to estimate coefficients of generating functions in more than one variable.

Aimed at graduate students and researchers in enumerative combinatorics, the book contains all the necessary background, including a review of the uses of generating functions in combinatorial enumeration as well as chapters devoted to saddle point analysis, Groebner bases, Laurent series and amoebas, and a smattering of differential and algebraic topology. All software along with other ancillary material can be located via the book website, www.cs.auckland.ac.nz/~mcw/Research/mvGF/asymultseq/ACSVbook/.

ROBIN PEMANTLE is a Professor in the Department of Mathematics at the University of Pennsylvania.

MARK C. WILSON is a Senior Lecturer in the Department of Computer Science at the University of Auckland.
The titles listed below can be obtained from good booksellers or from Cambridge University Press.

For a complete series listing visit: www.cambridge.org/mathematics.

Already published

99 D. Goldfeld Automorphic forms and L-functions for the group GL(n,R)
100 M. B. Marcus & J. Rosen Markov processes, Gaussian processes, and local times
101 P. Gille & T. Szamuely Central simple algebras and Galois cohomology
102 J. Bertoin Random fragmentation and coagulation processes
103 E. Freelen Langlands correspondence for loop groups
104 A. Ambrosetti & A. Malchiodi Nonlinear analysis and semilinear elliptic problems
105 T. Tao & V. H. Yu Additive combinatorics
106 E. B. Davies Linear operators and their spectra
107 K. Kodaira Complex analysis
108 T. Ceccherini-Silberstein, F. Scarabotti & F. Tolli Harmonic analysis on finite groups
109 H. Geiges An introduction to contact topology
110 J. Faraut Analysis on Lie groups: An introduction
111 E. Park Complex topological K-theory
112 D. W. Stroock Partial differential equations for probabilists
113 A. Kirillov, Jr An introduction to Lie groups and Lie algebras
114 F. Gesztesy et al. Soliton equations and their algebro-geometric solutions, II
115 E. de Faria & W. de Melo Mathematical tools for one-dimensional dynamics
116 D. Applebaum Lévy processes and stochastic calculus (2nd Edition)
117 T. Szamuely Galois groups and fundamental groups
118 G. W. Anderson, A. Guionnet & O. Zeitouni An introduction to random matrices
119 C. Perez-Garcia & W. H. Schikhof Locally convex spaces over non-Archimedean valued fields
120 P. K. Friz & N. B. Victoir Multidimensional stochastic processes as rough paths
121 T. Ceccherini-Silberstein, F. Scarabotti & F. Tolli Representation theory of the symmetric groups
122 S. Kalikow & R. McCutcheon An outline of ergodic theory
123 G. F. Lawler & V. Limic Random walk: A modern introduction
124 K. Lux & H. Pahlings Representations of groups
125 K. S. Kedlaya p-adic differential equations
126 R. Beals & R. Wong Special functions
127 E. de Faria & W. de Melo Mathematical aspects of quantum field theory
128 A. Terras Zeta functions of graphs
129 D. Goldfeld & J. Hundley Automorphic representations and L-functions for the general linear group, I
130 D. Goldfeld & J. Hundley Automorphic representations and L-functions for the general linear group, II
131 D. A. Craven The theory of fusion systems
132 J. Viinänen Models and games
133 G. Malle & D. Testerman Linear algebraic groups and finite groups of Lie type
134 P. Li Geometric analysis
135 F. Maggi Sets of finite perimeter and geometric variational problems
136 M. Brodmann & R. Y. Sharp Local cohomology (2nd Edition)
137 C. Muscalu & W. Schlag Classical and multilinear harmonic analysis, I
138 C. Muscalu & W. Schlag Classical and multilinear harmonic analysis, II
139 B. Helffer Spectral theory and its applications
Analytic Combinatorics in Several Variables

ROBIN PEMANTLE

The University of Pennsylvania

MARK C. WILSON

University of Auckland
To the memory of Philippe Flajolet, on whose shoulders stands all of the work herein.
Contents

Preface
page xi

PART I: COMBINATORIAL ENUMERATION

1 **Introduction**
1.1 Arrays of Numbers
1.2 Generating Functions and Asymptotics
1.3 New Multivariate Methods
1.4 Outline of the Remaining Chapters
Notes
Exercises

2 **Generating Functions**
2.1 Formal Power Series
2.2 Rational Operations on Generating Functions
2.3 Algebraic Generating Functions
2.4 Generating Functions
2.5 Exponentiation: Set Partitions
Notes
Exercises

3 **Univariate Asymptotics**
3.1 Rational Functions: An Explicit Formula
3.2 Saddle Point Methods
3.3 Circle Methods
3.4 Transfer Theorems
Notes
Exercises

vii
PART II: MATHEMATICAL BACKGROUND

4 Fourier-Laplace Integrals in One Variable 67
 4.1 Statement of Main Result 67
 4.2 Real Integrand 69
 4.3 Complex Phase 74
 4.4 Classical Methods: Steepest Descent (Saddle Point) and Watson’s Lemma 78
 4.5 Analytic Versus C^∞ Category 80
 Notes 87
 Exercises 87

5 Fourier-Laplace Integrals in More than One Variable 89
 5.1 Overview 89
 5.2 Standard Phase 91
 5.3 Real Part of Phase Has a Strict Minimum 93
 5.4 Localization 97
 5.5 Examples and Extensions 103
 Notes 104
 Exercises 105

6 Techniques of Symbolic Computation via Gröbner Bases 106
 6.1 Solving Systems of Polynomial Equations 106
 6.2 Examples of Gröbner Basis Computation 112
 6.3 D-Modules: Computing with D-Finite Functions 116
 Notes 118
 Exercises 118

7 Cones, Laurent Series, and Amoebas 120
 7.1 Cones and Dual Cones 121
 7.2 Laurent Series 123
 7.3 Amoebas 127
 Notes 131
 Exercises 131

PART III: MULTIVARIATE ENUMERATION

8 Overview of Analytic Methods for Multivariate Generating Functions 135
 8.1 Exponential Rate 136
 8.2 Morse Theory Redux 138
 8.3 Critical Points 144
Contents

8.4 Minimal Points 148
8.5 Describing the Quasi-Local Cycles 152
8.6 Evaluating the Integral on a Quasi-Local Cycle 157
Notes 159
Exercises 159

9 Smooth Point Asymptotics 160
9.1 Smooth Points 161
9.2 The Smooth Point Integral via Surgery 163
9.3 The Smooth Point Integral via Residue Forms 171
9.4 Effectively Computing the Intersection Class in Two Cases 175
9.5 Explicit Formulae for the Leading Term 185
9.6 Limit Laws from Probability Theory 198
Notes 207
Exercises 208

10 Multiple Point Asymptotics 209
10.1 Multiple Points 211
10.2 Iterated Residues 219
10.3 Formulae for Coefficients 232
10.4 The Base Case via Surgery 240
Notes 251
Exercises 252

11 Cone Point Asymptotics 253
11.1 Cones, Hyperbolicity, and Deformations 254
11.2 Evaluating the Asymptotics 264
11.3 Examples and Consequences 269
Notes 275
Exercises 276

12 Worked Examples 278
12.1 Four Independent Examples 278
12.2 Powers, Quasi-Powers, and Riordan Arrays 286
12.3 Lagrange Inversion 292
12.4 Transfer Matrices 295
Notes 299
Exercises 299

13 Extensions 300
13.1 The Diagonal Method 300
13.2 Algebraic Generating Functions 304
13.3 Higher-Order Asymptotics 308
13.4 Phase Transitions 312
13.5 Conclusion 313
Notes 314
Exercises 315

PART IV: APPENDIXES

Appendix A Integration on Manifolds 319
A.1 Differential Forms in \(\mathbb{R}^n \) 320
A.2 Differential Forms in \(\mathbb{C}^n \) 325
A.3 Algebraic Topology 326
A.4 Intersection Classes 333
A.5 Residue Forms and the Residue Integral Theorem 336
Notes 338
Exercises 339

Appendix B Morse Theory 340
B.1 Classical Morse Theory 340
B.2 Description at the Level of Homology 345
B.3 Morse Theory for Complex Manifolds 348
Notes 349
Exercises 349

Appendix C Stratification and Stratified Morse Theory 351
C.1 Whitney Stratification 351
C.2 Critical Points and the Fundamental Lemma 354
C.3 Description of the Attachments 356
C.4 Stratified Morse Theory for Complex Manifolds 358
Notes 360
Exercises 361

References 363
Author Index 373
Subject Index 376
Preface

The term “analytic combinatorics” refers to the use of complex analytic methods to solve problems in combinatorial enumeration. Its chief objects of study are generating functions (Flajolet and Sedgewick, 2009, page vii). Generating functions have been used for enumeration for more than a hundred years, going back to Hardy and, arguably, to Euler. Their systematic study began in the 1950s (Hayman, 1956). Much of the impetus for analytic combinatorics comes from the theory of algorithms, arising, for example, in the work of Knuth (2006). The recent, seminal work by Flajolet and Sedgewick (2009) describes the rich univariate theory with literally hundreds of applications.

The multivariate theory, as recently as the mid-1990s, was still in its infancy. Techniques for deriving multivariate generating functions have been well understood, sometimes paralleling the univariate theory and sometimes achieving surprising depth (Fayolle, Iasnogorodski, and Malyshev, 1999). Analytic methods for recovering coefficients of generating functions once the functions have been derived have, however, been sorely lacking. A small body of analytic work goes back to the early 1980s (Bender and Richmond, 1983); however, even by 1995, of 100+ pages in the Handbook of Combinatorics devoted to asymptotic enumeration (Odlyzko, 1995), multivariate asymptotics received fewer than six.

This book is the result of work spanning nearly fifteen years. Our aim has been to develop analytic machinery to recover, as effectively as possible, asymptotics of the coefficients of a multivariate generating function. Both authors feel drawn to this area of study because it combines many areas of modern mathematics. Functions of one or more complex variables are essential, but also algebraic topology in the Russian style, stratified Morse theory, computational algebraic methods, saddle-point integration, and of course the basics of combinatorial enumeration. The many applications of this work in areas such as bioinformatics, queuing theory, and statistical mechanics are not surprising when we realize how widespread is the use of generating functions in applied combinatorics and probability.

The purpose of this book is to pass on what we have learned, so that others may learn it and use it before we forget it. The present form of the book grew out of graduate-level mathematics courses that developed, along with the theory, at
Preface

the University of Wisconsin, Ohio State University, and the University of Pennsylvania. The course was intended to be accessible to students in their second year of graduate study. Because of the eclectic nature of the required background, this presents something of a challenge. One may count on students having seen calculus on manifolds by the end of a year of graduate studies, in addition to some complex variable theory. One may also assume some willingness to do some outside reading. However, some of the more specialized areas on which multivariate analytic combinatorics must draw are not easy to get from books. This includes topics such as the theory of amoebas (Gel’fand, Kapranov, and Zelevinsky, 1994) and the Leray-Petrovsky-Gårding theory of inverse Fourier transforms. Other topics such as saddle-point integration and stratified Morse theory exist in books but require being summarized to avoid a semester-long detour.

We have dealt with these problems by summarizing a great amount of background material. Part I contains the combinatorial background and will be known to students who have taken a graduate-level course in combinatorial enumeration. Part II contains mathematical background from outside of combinatorics. The topics in Part II are central to the understanding and execution of the techniques of analytic combinatorics in several variables. Part III contains the theory, all of which is new since the turn of the millennium and only parts of which exist in published form. Finally, there are appendices, almost equal in total size to Part II, which include necessary results from algebraic and differential topology. Some students will have seen these, but for the rest, the inclusion of these topics will make the present book self-contained rather than one that can only be read in a library.

We hope to recruit further researchers into this field, which still has many interesting challenges to offer, and this explains the rather comprehensive nature of the book. However, we are aware that some readers will be more focused on applications and seek the solution of a given problem. The book is structured so that after reading Chapter 1, it should be possible to skip to Part III and pick up supporting material as required from previous chapters. A list of publications using the multivariate methods described in this book can be found on our website: www.cs.auckland.ac.nz/~mcw/Research/mvGF/asymultseq/ACSVbook/.

The mathematical development of the theory belongs mostly to the two authors, but there are a number of individuals whose help was greatly instrumental in moving the theory forward. The complex analysts at the University of Wisconsin-Madison, Steve Wainger, Jean-Pierre Rosay, and Andreas Seeger, helped the authors (then rather junior researchers) to grapple with the problem in its earliest incarnation. A similar role was played several years later by Jeff McNeal. Perhaps the greatest thanks are due to Yuliy Baryshnikov, who translated the Leray-Petrovsky theory and the work of Atiyah-Bott-Gårding into terms the authors could understand and coauthored several articles. Frank Sottile provided help with algebra on many occasions; Persi Diaconis arranged for a graduate course while the
first author visited Stanford in 2000; Richard Stanley answered our numerous miscellaneous queries. Thanks are also due to our other coauthors on articles related to this project, listed on the project website linked from the book website. Alex Raichev and Torin Greenwood helped substantially with proofreading and with computer algebra implementations of some parts of the book. Thanks also to valuable proofreading contributions from Lily Yen. All software can be located via the book website.

On a more personal level, the first author would like to thank his wife, Diana Mutz, for encouraging him to follow this unusual project wherever it took him, even if it meant abandoning a still productive vein of problems in probability theory. The sentiment in the probability theory community may be otherwise, but the many connections of this work to other areas of mathematics have been a source of satisfaction to the authors. The first author would also like to thank his children, Walden, Maria, and Simi, for their participation in the project via the Make-A-Plate company (see Figure 0.1).

The second author thanks his wife Golbon Zakeri, children Yusef and Yahya, and mother-in-law Shahin Sabetghadam for their help in carving out time for him to work on this project, sometimes at substantial inconvenience to themselves. He hopes they will agree that the result is worth it.