
PART I

Combinatorial Enumeration

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-03157-9 - Analytic Combinatorics in Several Variables
Robin Pemantle and Mark C. Wilson
Excerpt
More information

http://www.cambridge.org/9781107031579
http://www.cambridge.org
http://www.cambridge.org


www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-03157-9 - Analytic Combinatorics in Several Variables
Robin Pemantle and Mark C. Wilson
Excerpt
More information

http://www.cambridge.org/9781107031579
http://www.cambridge.org
http://www.cambridge.org


1

Introduction

1.1 Arrays of Numbers

The main subject of this book is an array of numbers

{ar1,...,rd : r1, . . . , rd ∈ N} .
This is usually written as {ar : r ∈ Nd}, where as usual N = {0, 1, 2, . . .}. The
numbers ar may be integers, real numbers, or even complex numbers. We always
use d to denote the dimension of the array. The variables r, s, and t are reserved
as synonyms for r1, r2, and r3, respectively, to avoid subscripts in examples of
dimensions up to three.

The numbers ar usually come with a story – a reason they are interesting. Often
they count a class of objects parametrized by r . For example, it could be that ar

is the multinomial coefficient ar :=
( |r|
r1 · · · rd

)
, with |r| :=∑d

j=1 rj , in which

case ar counts sequences with r1 1’s, r2 2’s, and so forth up to rd occurrences
of the symbol d. Another frequent source of these arrays is in probability theory.
Here, the numbers ar ∈ [0, 1] are probabilities of events parametrized by r . For
example, ars might be the probability that a simple random walk of r steps ends
at the integer point s.

How might one understand an array of numbers? There might be a simple,
explicit formula. The multinomial coefficients, for example, are given by ratios
of factorials. As Stanley1 (1997) points out in the introduction, a formula of this
brevity seldom exists; when it does, we don’t need fancy techniques to describe
the array. Often, if a formula exists at all, it will not be in closed form but
will have a summation in it. As Stanley says, “There are actually formulas in
the literature (nameless here forevermore) for certain counting functions whose
evaluation requires listing all of the objects being counted! Such a ‘formula’ is
completely worthless.” (Example 1.1.4 page 2) Less egregious are the formulae
containing functions that are rare or complicated and whose properties are not

1 Much of the presentation in this first section is heavily influenced by Stanley – see the notes to this
chapter.
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4 Introduction

immediately familiar to us. It is not clear how much good it does to have this kind
of formula.

Another way of describing arrays of numbers is via recursions. The simplest
recursions are finite linear recursions, such as the recursion

ar,s = ar−1,s + ar,s−1

for the binomial coefficients. A recursion for ar in terms of values {as : s < r}
whose indices precede r in the coordinate-wise partial order may be pretty un-
wieldy, perhaps requiring evaluation of a complicated function of all as with s < r .
However, if the recursion is of bounded complexity, such as a linear recursion
ar =

∑
j∈F c jar− j for some finite set {c j : j ∈ F } of constants, then the recursion

gives a polynomial time algorithm for computing ar . Still, even in this case,
the estimation of ar is not at all straightforward. Thus, although we look for
recursions to help us understand number arrays, recursions rarely provide definitive
descriptions.

A third way of understanding an array of numbers is via an estimate. If one
uses Stirling’s formula

n! ∼ n
n

en

√
2πn,

one obtains an estimate for binomial coefficients

ar,s ∼
(
r + s
r

)r (
r + s
s

)s √
r + s
2πrs

(1.1.1)

and a similar estimate for multinomial coefficients. If number theoretic properties
of ar are required, then we are better off sticking with the formula (r + s)!/(r! s!),
but when the approximate size of ar is paramount, then the estimate (1.1.1) is
better.

A fourth way to understand an array of numbers is to give its generating
function. The generating function for the array {ar} is the series F (z) :=∑

r ar zr .
Here z is a d-dimensional vector of indeterminates (z1, . . . , zd ), and zr denotes
the monomial zr11 · · · zrdd . In our running example of multinomial coefficients, the
generating function

F (z) =
∑

r

( |r|
r1 · · · rd

)
z
r1
1 · · · zrdd

is written more compactly as 1/(1− r1 − · · · − rd ). Stanley calls the generat-
ing function “the most useful but the most difficult to understand” method for
describing a sequence or array.

One reason a generating function is useful is that the algebraic form of the
function is intimately related to recursions for ar and combinatorial decompo-
sitions for the objects enumerated by ar . Another reason is that estimates (and
exact formulae if they exist) may be extracted from a generating function. In other
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1.2 Generating Functions and Asymptotics 5

words, formulae, recursions, and estimates all ensue once a generating function is
known.

1.2 Generating Functions and Asymptotics

We employ the usual asymptotic notation, as follows. If f, g are real val-
ued functions, then the statement “f = O(g)” is shorthand for the statement
“lim supx→x0

|f (x)|/|g(x)| <∞.” It must be made clear at which value, x0, the
limit is taken; if f and g depend on parameters other than x, it must also be made
clear which is the variable being taken to the limit. Most commonly, x0 = +∞;
in the statement an = O(g(n)), the limit is always taken at infinity. The statement
“f = o(g)” is shorthand for f (x)/g(x) → 0, again with the limiting value of x
specified. Lastly, the statement “f ∼ g” means f/g→ 1 and is equivalent to
“f = (1+ o(1)) · g” or “f − g = o(g)”; again, the variable and its limiting value
must be specified. Two more useful notations are f = �(g), which just means
g = O(f ), and f = �(g), which means that both f = O(g) and g = O(f ) are
satisfied. An asymptotic expansion

f ∼
∞∑
j=0

gj

for a function f in terms of a sequence {gj : j ∈ N} satisfying gj+1 = o(gj ) is
said to hold if for every M ≥ 1, f −∑M−1

j=0 gj = O(gM ). This is equivalent to

f −∑M−1
j=0 gj = o(gM−1). Often we slightly extend the notion of an asymptotic

series by saying that f ∼∑∞
j=0 angn even when some an vanish, as long as

f −∑M−1
n=0 angn = O(gM ) and infinitely many of the {an} do not vanish.

A function f is said to be rapidly decreasing if f (n) = O(n−K ) for every
K > 0, exponentially decaying if f (n) = O(e−γ n) for some γ > 0, and super-
exponentially decaying if f (n) = O(e−γ n) for every γ > 0.

Example 1.2.1 Let f ∈ C∞(R) be a smooth real function defined on a neigh-
borhood of zero. Thus it has a Taylor expansion whose nth coefficient is
cn := f (n)(0)/n!. If f is not analytic, then this expansion may not converge to f
(e.g., if f (x) = e−1/x2

then cn ≡ 0) and may even diverge for all nonzero x, but
we always have Taylor’s remainder theorem:

f (x) =
M−1∑
n=0

cnx
n + cMξM

for some ξ ∈ [0,M]. This proves that

f ∼
∑
n

cnx
n

is always an asymptotic expansion for f near zero. �
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6 Introduction

All these notations hold in the multivariate case as well, except that if the
limit value of z is infinity, then a statement such as f (z) = O(g(z)) must also
specify how z approaches the limit. Our chief concern is with the asymptotics of
ar as r →∞ in a given direction. More specifically, by a direction, we mean an
element of (d − 1)-dimensional projective space whose class contains a d-tuple
of positive real numbers. Often we parametrize positive projective vectors by
the corresponding unit vector r̂ := r/|r|. It turns out that a typical asymptotic
formula for ar is ar ∼ C|r|α z−r , where |r| is the sum of the coordinates of r , and
the d-tuple z and the multiplicative constant C depend on r only through r̂ . In
hindsight, formulae such as these make it natural to consider r projectively and
take r to infinity in prescribed directions. In its original context, the above quote
from Stanley referred chiefly to univariate arrays, i.e., the case d = 1. As is seen
in Chapter 3, it is indeed true that the generating function f (z) for a univariate
sequence {an : n ∈ N} leads, almost automatically, to asymptotic estimates for an
as n→∞. [Another notational aside: we use f (z) and an instead of F (z) and ar
in one variable to coincide with notation in the univariate literature.]

To estimate an when f is known, begin with Cauchy’s integral formula:

an = 1

2πi

∫
z−n−1f (z) dz . (1.2.1)

The integral is a complex contour integral on a contour encircling the origin, and
one may apply complex analytic methods to estimate the integral. The necessary
knowledge of residues and contour shifting may be found in an introductory com-
plex variables text such as Conway (1978) or Berenstein and Gay (1991), although
one obtains a better idea of univariate saddle point integration from Henrici (1988)
or Henrici (1991).

The situation for multivariate arrays is nothing like the situation for univariate
arrays. In 1974, when Bender published his review article (Bender, 1974) on
asymptotic enumeration, the asymptotics of multivariate generating functions was
largely a gap in the literature. Bender’s concluding section urges research in this
area:

Practically nothing is known about asymptotics for recursions in two variables even
when a generating function is available. Techniques for obtaining asymptotics from
bivariate generating functions would be quite useful. (page 512)

In the 1980s and 1990s, a small body of results was developed by Bender, Rich-
mond, Gao, and others, giving the first partial answers to questions of asymptotics
of generating functions in the multivariate setting. The first article to concentrate on
extracting asymptotics from multivariate generating functions was Bender (1973),
already published at the time of Bender’s survey, but the seminal work is Bender
and Richmond (1983). The hypothesis is that F has a singularity of the form
A/(zd − g(x))q on the graph of a smooth function g, for some real exponent q,
where x denotes (z1, . . . , zd−1). They show, under appropriate further hypotheses
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1.3 New Multivariate Methods 7

on F , that the probability measure μn one obtains by renormalizing {ar : rd = n}
to sum to 1 converges to a multivariate normal when appropriately rescaled. Their
method, which we call the GF-sequence method, is to break the d-dimensional
array {ar} into a sequence of (d − 1)-dimensional slices and consider the sequence
of (d − 1)-variate generating functions

fn(x) =
∑

r:rd=n
ar zr .

They show that, asymptotically as n→∞,

fn(x) ∼ Cng(x)h(x)n (1.2.2)

and that sequences of generating functions obeying (1.2.2) satisfy a central limit
theorem and a local central limit theorem.

These results always produce Gaussian (central limit) behavior. The applicabil-
ity of the entire GF-sequence method is limited to the single, although important,
case where the coefficients ar are nonnegative and possess a Gaussian limit.
The work of Bender and Richmond (1983) has been greatly expanded upon,
but always in a similar framework. For example, it has been extended to matrix
recursions (Bender, Richmond, and Williamson, 1983), and the applicability has
been extended from algebraic to algebraico-logarithmic singularities of the form
F ∼ (zd − g(x))q logα(1/(zd − g(x))) (Gao and Richmond, 1992). The difficult
step is always deducing asymptotics from the hypotheses fn ∼ Cn g · hn. Thus
some publications in this stream refer to such an assumption in their titles (Bender
and Richmond, 1999), and the term “quasi-power” has been coined for such a
sequence {fn}.

1.3 New Multivariate Methods

The research presented in this book grew out of several problems encountered
by the first author concerning bivariate and trivariate arrays of probabilities. One
might have thought, based on the situation for univariate generating functions,
that results would exist, well known and neatly packaged, that gave asymptotic
estimates for the probabilities in question. At that time, the most recent and com-
plete reference on asymptotic enumeration was Odlyzko’s 1995 survey (Odlyzko,
1995). Only six of its more than 100 pages are devoted to multivariate asymp-
totics, mainly to the GF-sequence results of Bender et al. Odlyzko’s section on
multivariate methods closes with a call for further work in this area. Evidently,
in the multivariate case, a general asymptotic formula or method was not known,
even for the simplest imaginable class, namely rational functions. This stands in
stark contrast to the univariate theory of rational functions, which is trivial (see
Chapter 3). The relative difficulty of the problem in higher dimensions is perhaps
unexpected. The connections to other areas of mathematics such as Morse theory
are, however, quite intriguing, and these, more than anything else, have caused us

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-03157-9 - Analytic Combinatorics in Several Variables
Robin Pemantle and Mark C. Wilson
Excerpt
More information

http://www.cambridge.org/9781107031579
http://www.cambridge.org
http://www.cambridge.org


8 Introduction

to pursue this line of research long after the urgency of the original motivating
problems had faded.

Odlyzko (1995) describes why he believes multivariate coefficient estimation
to be difficult. First, the singularities are no longer isolated, but form (d − 1)-
dimensional hypersurfaces. Thus, he points out, “Even rational multivariate func-
tions are not easy to deal with.” Second, the multivariate analogue of the one-
dimensional residue theorem is the considerably more difficult theory of Leray
(1959). This theory was later fleshed out by Aı̆zenberg and Yuzhakov (1983), who
spent a few pages in their Section 23 on generating functions and combinatorial
sums. Further progress in using multivariate residues to evaluate coefficients of
generating functions was made by Bertozzi and McKenna (1993), although at the
time of Odlyzko’s survey, none of the works based on multivariate residues such
as Lichtin (1991) and Bertozzi and McKenna (1993) had resulted in any kind of
systematic application of these methods to enumeration.

The focus of this book is a recent vein of research, begun in Pemantle and
Wilson (2002) and continued in Pemantle and Wilson (2004); Lladser (2003);
Wilson (2005); Lladser (2006); Raichev and Wilson (2008); Pemantle and Wilson
(2008); DeVries (2010); Pemantle and Wilson (2010), and Raichev and Wilson
(2012b), as well as several others (Baryshnikov and Pemantle, 2011; DeVries, van
der Hoeven, and Pemantle, 2012). This research extends ideas that are present to
some degree in Lichtin (1991) and Bertozzi and McKenna (1993), using complex
methods that are genuinely multivariate to evaluate coefficients via the multivariate
Cauchy formula

ar =
(

1

2πi

)d ∫
T

z−r−1F (z) d z . (1.3.1)

By avoiding symmetry-breaking decompositions such as F =∑
fn(z1, . . . ,

zd−1)znd , one hopes the methods will be more universally applicable and the for-
mulae more canonical. In particular, the results of Bender et al. and the results
of Bertozzi and McKenna (1993) are seen to be two instances of a more general
result estimating the Cauchy integral via topological reductions of the cycle of inte-
gration. These topological reductions, although not fully automatic, are algorith-
mically decidable in large classes of cases. An ultimate goal, stated in Pemantle
and Wilson (2002) and Pemantle and Wilson (2004), is to develop software to
automate all of the computation.

We can by no means say that the majority of multivariate generating functions
fall prey to these new techniques. The class of functions to which the methods
described in this book may be applied is larger than the class of rational func-
tions, but similar in spirit: the function must have singularities, and the dominant
singularity must be a pole. This translates to the requirement that the function
be meromorphic in a neighborhood of a certain polydisk (see the remark fol-
lowing Pemantle and Wilson [2008, Theorem 3.16] for exact hypotheses), which
means that it has a representation, at least locally, as a quotient of analytic func-
tions. Nevertheless, as illustrated in Pemantle and Wilson (2008) and in the present
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1.3 New Multivariate Methods 9

book, meromorphic functions cover a good number of combinatorially interesting
examples.

Throughout these notes, we reserve the variable names

F = G

H
=

∑
r

ar zr

for the meromorphic function F expressed (locally) as the quotient of analytic
functions G and H . We assume this representation to be in lowest terms. What
this means about the common zeros ofG andH will be clearer once stratifications
have been discussed. The variety {z : H (z) = 0} at which the denominator H
vanishes is called the singular variety and is denoted byV. We now describe the
method briefly (more details are provided in Chapter 8).

(i) Use the multidimensional Cauchy integral (1.3.1) to express ar as an integral
over a d-dimensional torus T in Cd .

(ii) Observe that T may be replaced by any cycle homologous to [T ] inHd (M),
whereM is the domain of holomorphy of the integrand.

(iii) Deform the cycle to lower the modulus of the integrand as much as possible;
use Morse theoretic methods to characterize the minimax cycle in terms of
critical points.

(iv) Use algebraic methods to find the critical points; these are points of V that
depend on the direction r̂ of the asymptotics and are saddle points for the
magnitude of the integrand.

(v) Use topological methods to locate one or more contributing critical points zj
and replace the integral over T by an integral over quasi-local cycles C(zj )
near each zj .

(vi) Evaluate the integral over each C(zj ) by a combination of residue and saddle
point techniques.

When successful, this approach leads to an asymptotic representation of the
coefficients ar of the following sort. The set of directions r is partitioned into
finitely many cones K . On the interior of each cone, there is a continuously
varying set contrib(r) ⊆ V that depends on r only through the projective vector
r̂ and formulae {�z : z ∈ contrib} that involve r and z(r̂). Uniformly, as r varies
over compact projective subsets of such a cone,

ar ∼ 1

(2πi)d

∫
[T ]

zr−1F (z) d z

= 1

(2πi)d
∑

z∈contrib
z−r−1F (z) d z

∼
∑

z∈contrib
�z(r) . (1.3.2)
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10 Introduction

The first line of this is steps (i) and (ii). In the second line, the set contrib is
a subset of the set critical of critical points in step (iii). The set critical is
easy to compute (see step [iv]), whereas determining membership in the subset
contrib can be challenging (see step [v]). The explicit formulae �z(r) in the
last line are computed in step (vi), sometimes relatively easily (Chapter 9) and
sometimes with more difficulty (Chapter 10 and especially Chapter 11).

1.4 Outline of the Remaining Chapters

The book is divided into three parts, the third of which is the heart of the sub-
ject: deriving asymptotics in the multivariate setting once a generating function
is known. Nevertheless, some discussion is required of how generating functions
are obtained, what meaning can be read into them, what are the chief motivating
examples and applications, and what did we know how to do before the recent
spate of research described in Part III. Another reason to include these topics is to
make the book into a somewhat self-contained reference. A third is that in obtain-
ing asymptotics, one must sometimes return to the derivation for a new form of the
generating function, turning an intractable generating function into a tractable one
by changing variables, re-indexing, aggregating, and so forth. Consequently, the
first three chapters comprising Part I form a crash course in analytic combinatorics.
Chapter 2 explains generating functions and their uses, introducing formal power
series, their relation to combinatorial enumeration, and the combinatorial inter-
pretation of rational, algebraic, and transcendental operations on power series.
Chapter 3 is a review of univariate asymptotics. Much of this material serves
as mathematical background for the multivariate case. Although some excellent
sources are available in the univariate case, for example, Wilf (2006), van Lint and
Wilson (2001), and Flajolet and Sedgewick (2009), none of these is concerned
with providing the brief yet reasonably complete summary of analytic techniques
that we provide here. It seems almost certain that someone trying to understand the
main subject of these notes will profit from a review of the essentials of univariate
asymptotics.

Carrying out the multivariate analyses described in Part III requires a fair
amount of mathematical background. Most of this is at the level of graduate
coursework, ideally already known by practicing mathematicians but in reality
forgotten, never learned, or not learned in sufficient depth. The required back-
ground is composed of small to medium-sized chunks taken from many areas:
undergraduate complex analysis, calculus on manifolds, saddle point integration
(both univariate and multivariate), algebraic topology, computational algebra, and
Morse theory. Many of these background topics would be a full semester’s course
to learn from scratch, which of course is too much material to include here, but we
also want to avoid the scenario in which a reference library is required each time a
reader picks up this book. Accordingly, we have included substantial background
material.
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