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1 Magnetism, Magnetic Materials, 
and Nanoparticles

Adrian Ionescu, Justin Llandro, and Kurt R. A. Ziebeck

1.1 Introduction

Signiicant changes in the physical properties of materials occur as any of a sample’s 
dimensions are reduced from the bulk (>50 µm) to the nanometer scale. An underlying 
reason for this change is the increased inluence of the surface, for example, the relative 
contribution of the surface energy to the electrochemical potential.

The electrochemical potential for electrons (also termed the Fermi level) in a solid 
is a thermodynamic measure (containing the electrostatic contribution) of the energy 
required to add or remove an electron from the valence band to the vacuum level.

It has been reported that the changes begin when the surface to volume ratio of 
atoms in the particle approaches 0.5 [1]. If the size of the particle approaches the de 
Broglie wavelength of the electron (the ratio of the Planck constant, h, to the electron’s 
momentum, p), then quantum size effects can occur. The deviation from bulk behavior 
and, in particular, the magnetic characteristics, depend not only on the particle size 
but also on features such as the surface morphology, particle shape, dimensionality, 
and interactions, among others. For example, the shape of ferro/ ferrimagnetic particles 
inluences the preferred direction of their magnetization (magnetic anisotropy) and is 
therefore crucial for the development of magnetic recording. More recently, magnetic 
nanoparticles have been used in a range of medical applications, such as drug delivery 
and MRI contrast imaging, as discussed in Chapter  4, Section 4.2 and Chapter 7,  
respectively. Their occurrence in natural phenomena, such as sediments and biological 
organisms, as described in Chapter  8, further enhances their importance. Several 
comprehensive reviews about synthesis, functionalization, and magnetic properties 
of nanoparticles are available [1– 9]. In most cases, the nanoparticles contain transi-
tion metals, and the following discussion will be restricted to this group of materials, 
although nanoparticles containing rare- earth elements also exhibit a rich variety of mag-
netic phenomena [10, 11].
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1.2 Fundamental Concepts

1.2.1 Quantum Mechanical Concepts

The origins of magnetism arise from quantum mechanical effects. Therefore, a brief intro-
duction to concepts and notation of quantum mechanics is required. Based on the real-
ization in the early twentieth century that particles can behave like waves and vice versa, 
the theory of wave mechanics was proposed. Combined with the concept of quantization, 
from the observation that the emission spectra of atoms were composed of spectral lines 
of discrete energies, a quantum mechanical description of the atom was formulated.

To quantify the discrete energy levels of electrons orbiting around a positively 
charged nucleus, Erwin Schrödinger proposed a description of the electrons in the 
atomic orbitals as standing waves, represented by a state or wavefunction ψ. The time- 
independent Schrödinger equation states that

 H En
ψ ψ= , (1.1)

where H is the Hamiltonian of the system including the kinetic and potential energy 
contributions and En is the energy of the nth electron shell. In this description, the 
Hamiltonian is conceived as an operator, which acts on the wavefunction ψ; for the 
Schrödinger Hamiltonian, stationary states (such as electrons in stable atomic orbitals) 
are the “eigenstates” of the system. This means that if a wavefunction ψ is an eigenstate, 
the result of the operation of H on ψ is simply the same wavefunction ψ multiplied by 
a proportionality constant, which is En. The concept can be extended to time- dependent 
problems or to slight modiications of the potential energy contribution, which are seen 
as small perturbations to the stationary case above.

For describing quantum states, one can use the bra ψ ψ( ) − ( )ket  notation as 

introduced by Paul Dirac. For example, the bra, ψ ψ= ( )∫ , ,*

V

t dr r  could represent the
 

integral over the volume V of the complex- conjugated wavefunction ,*ψ r t( ), which is 
dependent on the position r in three- dimensional (3D) space and time t. Conversely, 

the ket ϕ ϕ= ( )∫ ,
V

t dr r, will be the volume integral over the wavefunction ϕ r, t( ). The
 

overlap expression ψ ϕ|  will give the probability amplitude of the state φ to collapse 
into ψ.

Measurable quantities or observables in a quantum mechanical system are represented 
by operators such as H, and the probabilistic result of a measurement of the observ-
able is known as the expectation value of the corresponding operator. The expect-
ation value of H, when the system is in the state ψ, is deined as ψ ψ| |H .

Strictly speaking, solving the time- independent Schrödinger equation yields 
accurate and discrete energy levels solely for a two- body system, such as an elec-
tron orbiting a proton (the hydrogen model). For three or more body problems, 
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approximations have to be introduced into the potential energy term, relecting the 
interaction on each particle by the mean ield created by all the other particles (the 
crystal ield). A very widely used approximation is the Hartree– Fock method, which 
provides the wavefunction and energies for many body quantum systems.

1.2.2 Atomic Magnetic Moments

The magnetic properties of materials can be classiied in accordance with their response 
to an applied magnetic ield. This response will usually change as a function of add-
itional external inluences, such as pressure or temperature, and except for very low 
temperatures (< 4 K) it arises from the electronic degrees of freedom (the distribution of 
electrons into the available energy levels of the atom or the band structure of the solid). 
In the simplest case, this response may originate from a single isolated atom giving rise 
to paramagnetism. More complex behavior will arise from atoms coupling in a solid, 
which can exhibit cooperative phenomena, such as ferromagnetism [12]. A classical 
picture of the origin of the magnetic moment can be obtained from Ampère’s law, which 
states that an electric charge in circular motion will generate a magnetic ield. In the 
case of each electron orbiting an atom, there are two contributions to the total magnetic 
moment. One contribution comes from the motion of the electron around the atomic 
nucleus, the orbital angular momentum, ℏl, and the other from the electron’s intrinsic 
angular momentum or spin, ℏs. The orbital moment is

 
µ= =

e

me

B


2

l l,µ
 (1.2)

where e is the elementary charge, me is the mass of the electron, ħ is the reduced Planck 
constant, where h = 2πħ, and we introduce the Bohr magneton µB, deined as

 µB

e

e

m
= = × −

2
9 27 10 24. J/T. 

(1.3)

Equivalently, the Bohr magneton has a value of 5.79 × 10– 5 eV/ T. For comparison, a mag-
netic moment of 1 µB in a ield of 5 Tesla has an equivalent temperature T = E/ kB ~ 3.4 K 
(where E is the energy of the system and kB is the Boltzmann constant) and so the statistical 
mechanics of magnetic systems is dominated by thermal energies. The spin moment is

 µs s Bg= µ s, (1.4)

where gs is the electron spin g- factor (approximately 2.002319 [13]).
In a similar fashion to the spin- only situation above, we can deine the Landé g- factor 

gJ for the total angular momentum J:

 

g
J J S S L L

J J
g

J J S S L L

J J
J s=

+( ) − +( ) + +( )
+( ) +

+( ) + +( ) − +( )
+

1 1 1

2 1

1 1 1

2 11

1
1 1 1

2 1

( )

≈ +
+( ) + +( ) − +( )

+( ) .
J J S S L L

J J  

(1.5)
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The irst term in Eq. (1.5) represents the orbital contribution and the second term 
arises from the electron spin. If the total orbital angular momentum L = 0, the Landé 
g- factor is 2, and if the total spin angular momentum S = 0, gJ is 1. Hence the total 
atomic moment is µtotal = µorbital + µspin = µB(� + 2s).  For multi- electron atoms, moment 
formation occurs through illing the energy levels of the atom in a manner consistent 
with the Pauli exclusion principle.

The Pauli exclusion principle states that the total quantum mechanical wavefunction 
of two identical fermions (particles with non- integer spin, such as electrons) must be 
antisymmetric upon exchange of the two fermions. This implies that not all of the 
four quantum numbers can be the same for two electrons in an atom.

The four quantum numbers are as follows:

 1. the principal quantum number n (an integer representing the energy level or electron 
shell, alternatively labeled with upper case letters K, L, M, N, O, etc.);

 2. the orbital (or azimuthal) quantum number � (representing the subshell, with values 
ranging from 0 to n – 1, conventionally labeled with lower case letters s, p, d, f, g, 
etc.);

 3. the magnetic quantum number m� (representing a speciic orbital within the subshell, 
and thus the projection of the total orbital angular momentum L along the z- axis, 
with values ranging from –  � to +�); and

 4. the spin quantum number s (representing the projection of the total spin  
angular momentum S along the z- axis, with values ranging from  – s to +s). For 
example, the 3d electrons reside in the “d” (� = 2) subshell of the third (n = 3, or “M”)  
shell.

For electrons orbiting an atom, the Pauli exclusion principle requires that two 
electrons occupying the same atomic orbital must have antiparallel spins.

Except for heavy atoms, the total orbital and spin angular momenta are related by 
Russell– Saunders coupling [12], governed by ℏL = ℏΣl and ℏS = ℏΣs. The resultant 
L and S then combine to give the total angular momentum J = L + S as in Figure 1.1. 
The z- components of J, mJ, may take any value from |L-  S| to |L + S|, each (2J + 1)- fold 
degenerate, thus producing a multiplet in which the separation of the levels is determined 
by the spin- orbit coupling λL S⋅ , where λ is the spin- orbit coupling constant. The values 
of S, L, and J for the lowest energy state are given by Hund’s rules, which are applied 
in the following sequence:
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 1. S takes the maximum value permitted by the Pauli exclusion principle. Each 
subshell is given one “spin- up” electron before pairing it with a “spin- down” 
electron, starting from the lowest energy subshell (smallest m� value).

 2. L takes the maximum value consistent with this value of S.
 3. For a half illed shell J = |L -  S| and for a shell more than half full J = |L + S|.

Hund’s rules for electrons in d- orbitals (for which �=2 and m� can take the values  
–2, –1, 0, 1, and 2) in doubly ionized Mn2+, Fe2+, Co2+, Ni2+, and Cu2+ (i.e. 3d5, 3d6, 3d7, 
3d8, and 3d9) lead to the following angular momentum and magnetic moments shown 
in Table 1.1.

It can be seen that the experimental effective Bohr magneton numbers (pexp) are closer 
to the spin- only values (pS). However, the situation becomes more complex when the 
atoms come together to form a solid. Since the 3d electrons are the outermost (valence) 
electrons, they can participate in the bonding. In ionic solids these electrons are perturbed 
by the inhomogeneous electric ield Ec produced by neighboring ions (termed the crystal 
ield or sometimes the ligand ield), which breaks the coupling between L and S so 
that the states are no longer speciied by J. Under the inluence of the crystal ield, the  

Figure 1.1 The relationship between angular momenta S, L and J and the magnetic moment µ as 
well as their projections Jz and µz along the z- axis.
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(2L + 1) degenerate orbital states in the free atom will be split. If this degeneracy is 
entirely lifted, then in a non- centrosymmetric ield, the orbital angular momenta are 
no longer constant and may average to zero. This is conventionally called quenching 
of the orbital angular momentum (L  =  0). However, in reality, the differences from 
the spin- only formula for the magnetic moment still arise from omitting the orbital 
angular momentum and spin- orbit coupling; hence, we can only really speak of partial 
quenching (L ≈ 0). A more detailed description is given in [14, 15].

If the neighboring ions are treated as point charges, which assumes no overlap or 
hybridization of their electron orbitals, then the crystal ield (or ligand ield) potential 
Vc satisies Laplace’s equation, ∇ = −∇ =2 0V Ec c . Since the electric ield E Vc c= −∇ ,  
this implies that the gradient of the crystal ield Ec is constant. Hence, the solutions 

are the Legendre polynomials, and the potential V r A r Yc

l m

l
m l

l
m

l

l l, , ,θ ϕ θ ϕ( ) = ( )∑∑  can be 

expanded in spherical harmonics Yl
ml θ ϕ,( ). The energy- level scheme and the occupation 

are governed by the symmetry of the crystal ield, and the relative scales of the energies 
are given in Table 1.2. Note that the Coulomb interaction between the electrons and the 
atomic nucleus yields energy level spacings of the order of eVs, much larger than avail-
able thermal energies, which allows the total magnetic moment to be thermally stable. 
For an octahedral ield, the ive m� states are split into two groups: a doubly degenerate 
eg multiplet and a triply degenerate t2g multiplet, which are separated by the crystal ield 
energy ∆, with the latter multiplet being lower in energy, as shown in Figure 1.2. Their 
occupation depends on the relative importance of the energy ∆ and spin- orbit energy 
λ(L·S). If ∆ >> λ(L·S), Hund’s rules do not apply, and for Fe2+, the six d- electrons pair 
up and occupy the t2g states producing S = 0. This represents the low- spin or strong- 
ield coniguration. For ∆ << λ(L·S), the six electrons occupy the t2g and eg states in 
accordance with Hund’s rules, giving rise to the high- spin or weak- ield situation.

If the overlap of the 3d wavefunctions between neighboring atoms is signiicant, 
then the electrons that carry the magnetic moments are delocalized (itinerant) and 
form continuous bands [16]. The magnetic electrons now participate in the conduction 
and their itinerancy can be characterized by the band width W, that is, the electrons 
spend a time t ~ ħ/ W in the atom. Thus, the experimental moment values depend on the 
time constant of the technique used to determine them. The results given in Table 1.3 
were obtained from magnetization, neutron diffraction, and X- ray magnetic circular 
dichroism (XMCD) measurements and represent time- averaged values. It is clear that 

Table 1.1 Electronic conigurations and effective Bohr magneton numbers pJ (total) and pS (spin- only) 

for some doubly ionized elements.

S L J gJ p g J JJ J= +( )1 p g S SS S= +( )1 pexp

Mn2+ 5/ 2 0 5/ 2 2 5.92 5.92 5.9

Fe2+ 2 2 4 1.50 6.7 4.9 5.4

Co2+ 3/ 2 3 9/ 2 1.33 6.63 3.87 4.8

Ni2+ 1 3 4 1.25 5.59 2.83 3.2

Cu2+ 1/ 2 2 5/ 2 1.20 3.55 1.73 1.9
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moments arise predominantly from the spin and are non- integer, a feature explained 
by band theory. For example, the value for Ni is less than the fundamental unit of  
1 µB. Electronic structure calculations have been carried out using different computa-
tional approaches and approximations for the exchange interaction describing coupling 
between spins (see Section 1.2.4.3 (Exchange Interactions)).

1.2.3 Macroscopic Considerations

In a solid, the periodic arrangement of atoms into a crystal (or lattice) can be described 
by the repetition of a unit cell containing a certain number of atoms (or chemical for-
mula units) and characterized by a set of lattice parameters a, b, and c (for a cubic 
unit cell a = b = c). It is often more convenient to use the concept of reciprocal (or 
momentum) space, which correlates the unit real- space lattice vectors x, y, z by Fourier 
transformation into their reciprocal space counterparts x' y' z', ,  [17]:

Figure 1.2 The energy levels and associated orbitals of a d electron in an octahedral ield split 
into a doubly degenerate eg multiplet (dx

2
- y

2, d3z
2

- r
2) and a triply degenerate t2g multiplet  

(dxy, dyz, dzx) separated by the crystal ield energy ∆.

Table 1.2 Energy contributions as wavenumbers (spatial frequency of a wave in cycles per unit distance) associated 

with 3d ions, where 1 cm– 1 = 1.23984×10−4 eV. The Coulomb energy provides the ground state, the degeneracy of 

which can be lifted by the crystal ield, the spin- orbit interaction or the Zeeman interaction in the presence of an 

applied magnetic ield B = µ0H in vacuum [17].

Coulomb energy Crystal ield Spin- orbit Zeeman

Vc(r, θ, φ) λ(L·S) - gJµBmJB

10– 40 × 103 cm– 1 10– 20 × 103 cm– 1 100– 800 cm– 1 1 cm– 1

Table 1.3 Theoretical and observed magnetic moments given in µB [18]. The measured X- ray values are compiled 

from various references given in the reference section.

µS(calc) µL(calc) µS(obs)neutron µL(obs)neutron µS(obs)X- ray µL(obs)X- ray

Fe 2.21 0.06 2.13 0.08 2.246 0.051

Co 1.57 0.14 1.52 0.14 1.639 0.078

Ni 0.61 0.07 0.57 0.05 0.647 0.051
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 x'
y z

x y z
y'

z x

y z x
z'

x y

z x y
=

×
⋅ ×( ) =

×
⋅ ×( ) =

×
⋅ ×( )2 2 2π π π, , . (1.6)

The reciprocal space unit cell is called the Brillouin zone; for a simple cubic unit cell 
with a real- space lattice parameter a, the Brillouin zone is also simple cubic, with a 
reciprocal lattice parameter 2π/ a.

The close proximity of the atoms in the lattice results in signiicant overlap (hybrid-
ization) of atomic orbitals of the outermost electrons, which will form continuous energy 
bands. The motion of the conduction electrons through the periodic energy landscape 
can be described using an ideal Fermi gas model, that is, a collection of non- interacting 
fermions. This motion can be described as a Bloch wave (momentum in a crystal). The 
Bloch wave has the form

 ψ( ) ( ) ,r r k r= ⋅u ei  (1.7)

where u(r) is a function with the same periodicity as the crystal and k is the crystal 
wavevector related to the crystal momentum p = ℏk. The components of k = (kx, ky, kz) 
may be related to the real-space lattice vectors by a reciprocal-space transformation as 
shown in Eq. 1.6. Electrons described by Bloch waves behave almost as free particles 
in vacuum, just with a modiied or effective mass m*, as long as they reside in para-

bolic bands, that is, the dispersion relation is E
m

( )
*

k
k

=
( ) 2

2
.

For a collection of magnetic moments, for example, in a crystal, the macroscopic mag-

netization M is the net magnetic dipole moment per unit volume, deined as M =∑
i

µ,  

where µi is the time averaged atomic magnetic moment located on lattice site i. The 
sum is carried out over all lattice sites in the crystal. The magnetic induction (magnetic 
lux density) B is deined in terms of the torque Τ exerted on a dipole by a magnetic 
ield: Τ = µ × B. The units are [N/ Am], which can also be written as [Vs/ m2], where the 
volt- second is the Weber (Wb) and so the units become Tesla [T] . The lux density and 
magnetization are related to the magnetic ield H [A/ m] through the equation B = µo(H 

+ M), where µ0 is the vacuum permeability with a value of µ πo

oc

Vs

Am
= = × 





−1
4 10

2
7


.  

For a macroscopic sample, the magnetization is often linearly proportional to the  
applied ield strength with the constant of proportionality being the magnetic suscep-
tibility χ, M  =  χH. If the directional dependence becomes important, for example, 
in a single crystal, the full symmetry of the magnetic susceptibility tensor has to 
be considered: M = χB. Without any additional assumptions, the tensor χ is a 3 × 3 
symmetric matrix with nine independent components. In general, the susceptibility 
is a tensor quantity and represents the temporal and spatial variation in M, that is,  
χ = χ(k, ω), where the angular frequency ω and magnitude of the wavevector k are 
given by the reciprocal relations ω = 2π/ t and k = 2π/ r. As will be discussed in Section 
1.4.6, the susceptibility can be related to the neutron scattering function, and hence 
determined by neutron diffraction.
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1.2.4 Calculation of Atomic Susceptibilities

The change in the energy of electrons located in an atom in a uniform magnetic ield B 
is given by

 

∆E g
g

E E

e

m
B

B f f

i f

B f i

f i

f

= ⋅ + +
⋅ +

−

+

≠
∑µ ψ ψ

µ ψ ψ

ψ

B L S

B L S

| |
| |

 
  2

2
2

8
|| |

n

n n fx y∑ +( )ˆ ˆ ,2 2 ψ  

(1.8)

where Ef is the inal state (ψf) energy, Ei is the initial state (ψi) energy, e and m are the 
charge and mass of the electron, respectively, and ˆ , ˆx yn n  are position operators deining 
its spatial coordinates. From this equation, the magnetization and susceptibility can be 
calculated.

1.2.4.1 Diamagnetism

Based on an atomic application of Lenz’s law, which states that a current loop induced 
by a changing magnetic ield produces a magnetic moment, which opposes the applied 
ield, a diamagnetic susceptibility is always negative. All materials show a diamagnetic 
response but the weakness of the effect means that it is only measurable in the absence 
of any other magnetic behavior.

For atoms with closed shells, such as He, Ne, and Ar, there is no net spin or orbital 
angular moment following Hund’s rules. Hence, there is no permanent magnetic moment 
located on the atom, and for the ground state ψ0, the expectation values of the orbital and 

spin angular momentum operators ( )ψ ψ0 0 1| |L = +L L  and ( )ψ ψ0 0 1| |S = +S S  

are both zero. The applied magnetic ield produces a lux density B, which in turn 
causes a screening current to low and so the magnetization M is obtained from 

M B
V

E B

B

o( ) = −
∂ ( )

∂
1

 and the susceptibility from χ µ
µ

=
∂ ( )

∂
= −

∂ ( )
∂o

o oM B

B V

E B

B

2

2
. The 

Larmor diamagnetic susceptibility is negative and has the form

 
χ µ µ ψ ψLarmor

i

i

N

V

E B

B

N

V

e

m
r= −

∂ ( )
∂

= − ∑0

2
0

2 0

2

0
2

06
ˆ ,

∆
 

(1.9)

where N is the number of atoms or ions and V the volume. Magnetic susceptibil-
ities are often quoted as molar susceptibilities, based on the magnetization per 
mole rather than per volume. The conversion is made by multiplying the volume 

susceptibility by the factor 
N

N V
A

/( ) , where NA  =  6.02214086  × 1023 is Avogadro’s 

constant. The expectation value ψ ψ0
2

0
i

ir∑  is the square of the most probable 

radius of the outermost electron shell and can only be properly evaluated by a full 
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quantum- mechanical treatment. However, we can make estimates of the electron 
shell radius by various means. From semi- classical models of the hydrogen atom, 
the most probable distance between the proton and the electron can be deined as the 
Bohr radius a0 = 0.529 Å. For ions of substances like the alkali halides (e.g. F, Br, 
and Cl) or the solid forms of the noble gases, the mean square ionic radius can be

 

deined as r
Z

r
i

i
2

0
2

0

1
= ∑ψ ψ , where Z is the atomic number (the total number of

 
electrons in the atom or ion), and <(r/ a0)2> is of order unity. However, for metals, as 
the electrons are delocalized, a commonly used measure is the free electron radius rs, 
which is the radius of a sphere the volume of which is equal to the volume per con-
duction electron. If the sample of interest has atomic mass A and mass density ρm, 
the number of moles per cubic metre is ρm/ A (if ρm is given in grams per m3). There 
are NA atoms per mole and if each atom contributes Zi conduction electrons, there are 
(NAZiρm)/ A conduction electrons per unit volume (in m3). As each conduction elec-
tron occupies a sphere of volume (4πrs

3)/ 3, rs is therefore given by

 
4

3

3

4

3
1

3π

ρ π ρ

r A

N Z
r

A

N Z
s

A i m

s

A i m

= ⇒ =






. 
(1.10)

Examples of diamagnets are (solid) noble gases, simple ionic crystals, such as 
alkali halides, graphite, many good metallic conductors (superconductors are perfect 
diamagnets as they offer no resistance to the formation of current loops), and a number 
of substrate materials, for example, GaAs. To a irst approximation, the contributions of 
the various ions add for the halides.

Note that, in general, the magnetic susceptibility of conduction electrons is composed 
of several contributions that are dificult to separate experimentally. For metallic solids, 
there are two different ‘sources of diamagnetism’, namely the illed electronic shells of 
the ions (these give rise to the Larmor diamagnetism, as discussed above) and the dia-
magnetic contribution of the free conduction electrons (which give rise to Landau dia-
magnetism). The angular momentum in a plane perpendicular to the applied magnetic 
ield is quantized, giving rise to a set of discrete energy levels. The statistical thermal 
occupation of these Landau levels gives rise to the Landau susceptibility:

 χ ρ µLandau F BE
m

m
= − ( ) 





2

3
2

2

*
, (1.11)

where ρ(EF) is the density of states (DOS) at the Fermi energy EF and the last term 
accounts for the fact that the Bohr magneton is deined for free electrons, rather than 
those in a band. The Fermi energy is the energy difference between the highest and 
lowest occupied single particle states at 0 K, and for a metal, it is the energy diffe-
rence between the Fermi level and the bottom of the conduction band. Except for very 
low temperatures and high magnetic ields, at which the de Haas– van Alphen effect 
(oscillations of the magnetic moment in a metal with magnetic ield) may be observed, 
χLandau is essentially temperature independent.
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