Contents

Preface xi

1 Introduction to carbon-based nanostructures 1
 1.1 Carbon structures and hybridizations 1
 1.2 Carbon nanostructures 4
 1.3 Guide to the book 8
 1.4 Further reading 10

2 Electronic properties of carbon-based nanostructures 11
 2.1 Introduction 11
 2.2 Electronic properties of graphene 12
 2.2.1 Tight-binding description of graphene 12
 2.2.2 Effective description close to the Dirac point and massless Dirac fermions 17
 2.2.3 Electronic properties of graphene beyond the linear approximation 22
 2.3 Electronic properties of few-layer graphene 26
 2.4 Electronic properties of graphene nanoribbons 31
 2.4.1 Electronic properties of armchair nanoribbons (aGNRs) 34
 2.4.2 Electronic properties of zigzag nanoribbons (zGNRs) 38
 2.5 Electronic properties of carbon nanotubes 41
 2.5.1 Structural parameters of CNTs 41
 2.5.2 Electronic structure of CNTs within the zone-folding approximation 43
 2.5.3 Curvature effects: beyond the zone-folding model 48
 2.5.4 Small-diameter nanotubes: beyond the tight-binding approach 50
 2.5.5 Nanotubes in bundles 51
 2.5.6 Multiwall nanotubes 53
 2.6 Spin–orbit coupling in graphene 55
 2.7 Magnetic field effects in low-dimensional graphene-related materials 57
 2.7.1 Short historical perspective 57
 2.7.2 Peierls substitution 58
2.7.3 Parallel field, Aharonov–Bohm gap opening and orbital degeneracy splitting 58
2.7.4 Perpendicular field and Landau levels 62
2.7.5 Landau levels in graphene 65
2.8 Defects and disorder in graphene-based nanostructures 67
2.8.1 Structural point defects in graphene 68
2.8.2 Grain boundaries and extended defects in graphene 71
2.8.3 Structural defects at graphene edges 76
2.8.4 Defects in carbon nanotubes 82
2.9 Further reading and problems 85

3 Quantum transport: general concepts 91
3.1 Introduction 91
3.1.1 Relevant time and length scales 91
3.1.2 Coherent versus sequential transport 92
3.2 Landauer–Büttiker theory 94
3.2.1 Heuristic derivation of Landauer’s formula 97
3.3 Boltzmann semiclassical transport 98
3.3.1 The relaxation time approximation and the Boltzmann conductivity 99
3.4 Kubo formula for the electronic conductivity 101
3.4.1 Illustrations for ballistic and diffusive regimes 105
3.4.2 Kubo versus Landauer 107
3.4.3 Validity limit of Ohm’s law in the quantum regime 108
3.4.4 The Kubo formalism in real space 108
3.4.5 Scaling theory of localization 111
3.5 Quantum transport beyond the fully coherent or decoherent limits 115
3.6 Further reading and problems 116

4 Klein tunneling and ballistic transport in graphene and related materials 118
4.1 The Klein tunneling mechanism 118
4.1.1 Klein tunneling through monolayer graphene with a single (impurity) potential barrier 119
4.1.2 Klein tunneling through bilayer graphene with a single (impurity) potential barrier 124
4.2 Ballistic transport in carbon nanotubes and graphene 126
4.2.1 Ballistic motion and conductance quantization 127
4.2.2 Mode decomposition in real space 128
4.2.3 Fabry–Pérot conductance oscillations 132
4.2.4 Contact effects: SWNT-based heterojunctions and the role of contacts between metals and carbon-based devices 135
4.3 Ballistic motion through a graphene constriction: the 2D limit and the minimum conductivity 140
4.4 Further reading and problems 141

5 Quantum transport in disordered graphene-based materials 143

5.1 Elastic mean free path 143
5.1.1 Temperature dependence of the mean free path 146
5.1.2 Inelastic mean free path in the high-bias regime 148
5.1.3 Quantum interference effects and localization phenomena in disordered graphene-based materials 150
5.1.4 Edge disorder and transport gaps in graphene nanoribbons 152

5.2 Transport properties in disordered two-dimensional graphene 154
5.2.1 Two-dimensional disordered graphene: experimental and theoretical overview 154
5.2.2 Metallic versus insulating state and minimum conductivity 158
5.2.3 Boltzmann transport in two-dimensional graphene 158
5.2.4 Kubo transport: graphene with Anderson disorder 166
5.2.5 Kubo transport: graphene with Gaussian impurities 169
5.2.6 Weak localization phenomena in disordered graphene 173
5.2.7 Strong localization in disordered graphene 181

5.3 Quantum Hall effect in graphene 182
5.3.1 Hall quantization in graphene 183
5.3.2 The mystery of the zero-energy Landau level splitting 184
5.3.3 Universal longitudinal conductivity at the Dirac point 185

5.4 Graphene with monovacancies 187
5.4.1 Electronic structure of graphene with monovacancies 190
5.4.2 Transport features of graphene with monovacancies 191

5.5 Polycrystalline graphene 195
5.5.1 Motivation and structural models 195
5.5.2 Electronic properties of polycrystalline graphene 199
5.5.3 Mean free path, conductivity and charge mobility 201

5.6 Amorphous graphene 202
5.6.1 Structural models 202
5.6.2 Electronic properties of amorphous graphene 203
5.6.3 Mean free path, conductivity and localization 204

5.7 Phonon transport in graphene-related materials 206
5.7.1 Computational phonon propagation methodology 206
5.7.2 Disordered carbon nanotubes with isotope impurities 208
5.7.3 Disordered graphene nanoribbons with edge disorder 209

5.8 Graphene quantum dots 211
5.8.1 Generalities on Coulomb blockade 212
5.8.2 Confining charges in graphene devices 214

5.9 Further reading and problems 217
Contents

6 Quantum transport beyond DC

6.1 Introduction: why AC fields? 219
6.2 Adiabatic approximation 220
6.3 Floquet theory 221
6.3.1 Average current and density of states 222
6.3.2 Homogeneous driving and the Tien–Gordon model 224
6.3.3 Time-evolution operator 224
6.4 Overview of AC transport in carbon-based devices 225
6.5 AC transport and laser-induced effects on the electronic properties of graphene 227
6.6 Further reading and problems 230

7 Ab initio and multiscale quantum transport in graphene-based materials

7.1 Introduction 232
7.2 Chemically doped nanotubes 233
7.2.1 Tight-binding Hamiltonian of the pristine carbon nanotube 233
7.2.2 Boron-doped metallic carbon nanotubes 233
7.2.3 Nitrogen-doped metallic carbon nanotubes 236
7.3 Two-dimensional disordered graphene with adatoms defects 242
7.3.1 Monatomic oxygen defects 242
7.3.2 Atomic hydrogen defects 246
7.3.3 Scattering times 248
7.4 Structural point defects embedded in graphene 249
7.5 Ab initio quantum transport in 1D carbon nanostructures 251
7.5.1 Introduction 251
7.5.2 Carbon nanotubes 253
7.5.3 Defective carbon nanotubes 255
7.5.4 Doped carbon nanotubes 259
7.5.5 Functionalized carbon nanotubes 261
7.5.6 Carbon nanotubes decorated with metal clusters 269
7.5.7 Graphene nanoribbons 278
7.5.8 Graphene nanoribbons with point defects 280
7.5.9 Graphene nanoribbons with edge reconstruction 281
7.5.10 Graphene nanoribbons with edge disorder 282
7.5.11 Doped graphene nanoribbons 288
7.5.12 GNR-based networks 293
7.6 Conclusion 298

8 Applications

8.1 Introduction 300
8.2 Flexible electronics 301
8.3 High-frequency electronics 302
8.4 Optoelectronics–photonics–plasmonics 304
 8.4.1 Opacity of graphene and fine structure constant 304
 8.4.2 Harnessing graphene with light: a new dimension of possibilities 305
8.5 Digital logic gates 306
8.6 Digital nonvolatile graphene memories 307
8.7 Graphene nanoresonators 308
8.8 Spintronics 309
8.9 Further reading 313

Appendix A Electronic structure calculations: the density functional theory (DFT) 314
 A.1 Introduction 314
 A.2 Overview of the approximations 314
 A.2.1 The Schrödinger equation 314
 A.2.2 The Born–Oppenheimer approximation 315
 A.2.3 The Hartree approximation 316
 A.2.4 The Hartree–Fock approximation 317
 A.3 Density functional theory 318
 A.3.1 The Thomas–Fermi model 318
 A.3.2 The Hohenberg–Kohn theorem 319
 A.3.3 The Kohn–Sham equations 320
 A.3.4 The exchange–correlation functionals 322
 A.4 Practical calculations 324
 A.4.1 Crystal lattice and reciprocal space 324
 A.4.2 The plane wave representation 325
 A.4.3 k-point grids and band structures 326
 A.4.4 The pseudopotential approximation 326
 A.4.5 Available DFT codes 330

Appendix B Electronic structure calculations: the many-body perturbation theory (MBPT) 332
 B.1 Introduction 332
 B.2 Many-body perturbation theory (MBPT) 333
 B.2.1 Hedin’s equations 333
 B.2.2 GW approximation 334
 B.3 Practical implementation of G_0W_0 335
 B.3.1 Perturbative approach 335
 B.3.2 Plasmon pole 336

Appendix C Green’s functions and ab initio quantum transport in the Landauer–Büttiker formalism 338
 C.1 Phase-coherent quantum transport and the Green’s function formalism 338
 C.2 Self-energy corrections and recursive Green’s functions techniques 344
C.3 Dyson’s equation and an application to treatment of disordered systems 347
C.4 Computing transport properties within \textit{ab initio} simulations 351

Appendix D Recursion methods for computing the DOS and wavepacket dynamics 358

D.1 Lanczos method for the density of states 358
D.1.1 Termination of the continued fraction 361
D.2 Wavepacket propagation method 363
D.3 Lanczos method for computing off-diagonal Green’s functions 367

References 370
Index 405