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Bayesian Filtering and Smoothing

Filtering and smoothing methods are used to produce an accurate estimate of the state
of a time-varying system based on multiple observational inputs (data). Interest in
these methods has exploded in recent years, with numerous applications emerging in
fields such as navigation, aerospace engineering, telecommunications, and medicine.

This compact, informal introduction for graduate students and advanced
undergraduates presents the current state-of-the-art filtering and smoothing methods
in a unified Bayesian framework. Readers learn what non-linear Kalman filters and
particle filters are, how they are related, and their relative advantages and
disadvantages. They also discover how state-of-the-art Bayesian parameter estimation
methods can be combined with state-of-the-art filtering and smoothing algorithms.

The book’s practical and algorithmic approach assumes only modest mathematical
prerequisites. Examples include MATLAB computations, and the numerous
end-of-chapter exercises include computational assignments. MATLAB/GNU Octave
source code is available for download at www.cambridge.org/sarkka, promoting
hands-on work with the methods.

SIMO SARKKA worked, from 2000 to 2010, with Nokia Ltd., Indagon Ltd., and the
Nalco Company in various industrial research projects related to telecommunications,
positioning systems, and industrial process control. Currently, he is a Senior
Researcher with the Department of Biomedical Engineering and Computational
Science at Aalto University, Finland, and Adjunct Professor with Tampere University
of Technology and Lappeenranta University of Technology. In 2011 he was a visiting
scholar with the Signal Processing and Communications Laboratory of the Department
of Engineering at the University of Cambridge. His research interests are in state and
parameter estimation in stochastic dynamic systems and, in particular, Bayesian
methods in signal processing, machine learning, and inverse problems with
applications to brain imaging, positioning systems, computer vision, and audio

signal processing. He is a Senior Member of the IEEE.
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Preface

The aim of this book is to give a concise introduction to non-linear Kalman
filtering and smoothing, particle filtering and smoothing, and to the re-
lated parameter estimation methods. Although the book is intended to be
an introduction, the mathematical ideas behind all the methods are care-
fully explained, and a mathematically inclined reader can get quite a deep
understanding of the methods by reading the book. The book is purposely
kept short for quick reading.

The book is mainly intended for advanced undergraduate and graduate
students in applied mathematics and computer science. However, the book
is suitable also for researchers and practitioners (engineers) who need a
concise introduction to the topic on a level that enables them to implement
or use the methods. The assumed background is linear algebra, vector cal-
culus, Bayesian inference, and MATLAB® programming skills.

As implied by the title, the mathematical treatment of the models and
algorithms in this book is Bayesian, which means that all the results are
treated as being approximations to certain probability distributions or their
parameters. Probability distributions are used both to represent uncertain-
ties in the models and for modeling the physical randomness. The theo-
ries of non-linear filtering, smoothing, and parameter estimation are for-
mulated in terms of Bayesian inference, and both the classical and recent
algorithms are derived using the same Bayesian notation and formalism.
This Bayesian approach to the topic is far from new. It was pioneered by
Stratonovich in the 1950s and 1960s — even before Kalman’s seminal arti-
cle in 1960. Thus the theory of non-linear filtering has been Bayesian from
the beginning (see Jazwinski, 1970).

Chapter 1 is a general introduction to the idea and applications of
Bayesian filtering and smoothing. The purpose of Chapter 2 is to briefly
review the basic concepts of Bayesian inference as well as the basic
numerical methods used in Bayesian computations. Chapter 3 starts with
a step-by-step introduction to recursive Bayesian estimation via solving a

ix
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X Preface

linear regression problem in a recursive manner. The transition to Bayesian
filtering and smoothing theory is explained by extending and generalizing
the problem. The first Kalman filter of the book is also encountered in this
chapter.

The Bayesian filtering theory starts in Chapter 4 where we derive the
general Bayesian filtering equations and, as their special case, the cele-
brated Kalman filter. Non-linear extensions of the Kalman filter, the ex-
tended Kalman filter (EKF), the statistically linearized filter (SLF), and the
unscented Kalman filter (UKF) are presented in Chapter 5. Chapter 6 gen-
eralizes these filters into the framework of Gaussian filtering. The Gauss—
Hermite Kalman filter (GHKF) and cubature Kalman filter (CKF) are then
derived from the general framework. Sequential Monte Carlo (SMC) based
particle filters (PF) are explained in Chapter 7 by starting from the basic
SIR filter and ending with Rao—Blackwellized particle filters (RBPF).

Chapter 8 starts with a derivation of the general (fixed-interval)
Bayesian smoothing equations and then continues to a derivation of
the Rauch—Tung-Striebel (RTS) smoother as their special case. In that
chapter we also briefly discuss two-filter smoothing. The extended RTS
smoother (ERTSS), statistically linearized RTS smoother (SLRTSS),
and the unscented RTS smoother (URTSS) are presented in Chapter 9.
The general Gaussian smoothing framework is presented in Chapter 10,
and the Gauss—Hermite RTS smoother (GHRTSS) and the cubature RTS
smoother (CRTSS) are derived as its special cases. We also discuss
Gaussian fixed-point and fixed-lag smoothing in the same chapter. In
Chapter 11 we start by showing how the basic SIR particle filter can be
used to approximate the smoothing solutions with a small modification.
We then introduce the numerically better backward-simulation particle
smoother and the reweighting (or marginal) particle smoother. Finally, we
discuss the implementation of Rao—Blackwellized particle smoothers.

Chapter 12 is an introduction to parameter estimation in state space
models concentrating on optimization and expectation—maximization
(EM) based computation of maximum likelihood (ML) and maximum
a posteriori (MAP) estimates, as well as to Markov chain Monte Carlo
(MCMC) methods. We start by presenting the general methods and then
show how Kalman filters and RTS smoothers, non-linear Gaussian filters
and RTS smoothers, and finally particle filters and smoothers, can be
used to compute or approximate the quantities needed in implementation
of parameter estimation methods. This leads to, for example, classical
EM algorithms for state space models, as well as to particle EM and
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particle MCMC methods. We also discuss how Rao—Blackwellization can
sometimes be used to help parameter estimation.

Chapter 13 is an epilogue where we give some general advice on the
selection of different methods for different purposes. We also discuss and
give references to various technical points and related topics that are im-
portant, but did not fit into this book.

Each of the chapters ends with a range of exercises, which give the
reader hands-on experience in implementing the methods and in selecting
the appropriate method for a given purpose. The MATLAB® source code
needed in the exercises as well as various other material can be found on
the book’s web page at www.cambridge.org/sarkka.

This book is an outgrowth of lecture notes of courses that I gave during
the years 2009-2012 at Helsinki University of Technology, Aalto Univer-
sity, and Tampere University of Technology, Finland. Most of the text was
written while I was working at the Department of Biomedical Engineering
and Computational Science (BECS) of Aalto University (formerly Helsinki
University of Technology), but some of the text was written during my visit
to the Department of Engineering at the University of Cambridge, UK. I
am grateful to the former Centre of Excellence in Computational Complex
Systems Research of the Academy of Finland, BECS, and Aalto University
School of Science for providing me with the research funding which made
this book possible.

I would like to thank Jouko Lampinen and Aki Vehtari from BECS for
giving me the opportunity to do the research and for co-operation which led
to this book. Arno Solin, Robert Piché, Juha Sarmavuori, Thomas Schon,
Pete Bunch, and Isambi S. Mbalawata deserve thanks for careful checking
of the book and for giving a lot of useful suggestions for improving the text.
I am also grateful to Jouni Hartikainen, Ville Viidndnen, Heikki Haario,
and Simon Godsill for research co-operation that led to improvement of
my understanding of the topic as well as to the development of some of the
methods which now are explained in this book. I would also like to thank
Diana Gillooly from Cambridge University Press and series editor Susan
Holmes for suggesting the publication of my lecture notes in book form.
Finally, I am grateful to my wife Susanne for her support and patience
during the writing of this book.

Simo Sdarkkd
Vantaa, Finland
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Symbols and abbreviations

General notation

a,b,c,x,t,a, Scalars
af,s,x,y,a,f Vectors
A F,S XY Matrices
A F, S8, X,Y  Sets
ATF S XY Spaces
Notational conventions
AT Transpose of matrix
A1 Inverse of matrix
AT Inverse of transpose of matrix
[A]; ith column of matrix A
[A]; Element at ith row and jth column of matrix A
la| Absolute value of scalar a
|A| Determinant of matrix A
dx /dt Time derivative of X (¢)
% Partial derivative of g; with respect to x;
(ai,...,a,) Column vector with elements aq, . ..,d,
(a1 --- ayp) Row vector with elements aq, ..., a,
(a --- a,,)T Column vector with elements aq, ..., a,
% Gradient (column vector) of scalar function g
% Jacobian matrix of vector valued function x — g(x)
Covl[x] Covariance Cov[x] = E[(x — E[x]) (x — E[x])"] of

diag(ay,...,a,)

VP
E[x]
E[x [ y]

the random variable x
Diagonal matrix with diagonal values ay, ..., a,

T
Matrix such that P = /P /P
Expectation of x

Conditional expectation of X giveny

Xiii
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[ f(x) dx Lebesgue integral of f(x) over the space R"
p(x) Probability density of continuous random variable x or
probability of discrete random variable x
p(x|y) Conditional probability density or conditional probabil-
ity of x given y
p(x) x g(x) p(x) is proportional to g(x), that is, there exists a con-
stant ¢ such that p(x) = ¢ ¢(x) for all values of x
trA Trace of matrix A
Var[x] Variance Var[x] = E[(x — E[x])?] of the scalar random
variable x
x>y X is much greater than y
Xik ith component of vector X
X ~ p(x) Random variable x has the probability density or prob-
ability distribution p(x)
x & y x is defined to be equal to 'y
X XYy X is approximately equal to y
X >y X is assumed to be approximately equal to y
X0:k Set or sequence containing the vectors {Xg, ..., Xk}
X Time derivative of X (¢)
Symbols
o Parameter of the unscented transform or pendulum angle
o; Acceptance probability in an MCMC method
O Target acceptance rate in an adaptive MCMC
B Parameter of the unscented transform
3(+) Dirac delta function
0x Difference of x from the mean §x = x —m

At Sampling period
Aty Length of the time interval Aty = tg41 — t&

&k Measurement error at the time step k

&k Vector of measurement errors at the time step k
0 Vector of parameters

0 Vector of parameters at the time step k

6™ Vector of parameters at iteration 7 of the EM-algorithm
0" Vector of parameters at iteration i of the MCMC-algorithm
0* Candidate point in the MCMC-algorithm

éMAP

Maximum a posteriori (MAP) estimate of parameter

K Parameter of the unscented transform
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A Parameter of the unscented transform

A Parameter of the unscented transform

A Parameter of the unscented transform

Lk Predicted mean of measurement y; in a Kalman/Gaussian
filter at the time step k

LL Mean in the linear approximation of a non-linear transform

MM Mean in the Gaussian moment matching approximation

nQ Mean in the quadratic approximation

Is Mean in the statistical linearization approximation

Ly Mean in the unscented approximation

7 (+) Importance distribution

o? Variance

o? Variance of noise component i

D) Auxiliary matrix needed in the EM-algorithm

¥, Proposal distribution covariance in the Metropolis algorithm

i (0) Energy function at the time step k

d(-) A function returning the lower triangular part of its argument

® An auxiliary matrix needed in the EM-algorithm

& Unit Gaussian random variable

£ ith scalar unit sigma point

& Vector of unit Gaussian random variables

£O ith unit sigma point vector

£ Unit sigma point in the multivariate Gauss—Hermite cubature

a Action in decision theory, or a part of a mean vector

a, Optimal action

a(t) Acceleration

A Dynamic model matrix in a linear time-invariant model, the
lower triangular Cholesky factor of a covariance matrix, the
upper left block of a covariance matrix, a coefficient in sta-
tistical linearization, or an arbitrary matrix

Ay Dynamic model matrix (i.e., transition matrix) of the jump
from step k to step k + 1

b The lower part of a mean vector, the offset term in statistical
linearization, or an arbitrary vector

B Lower right block of a covariance matrix, an auxiliary matrix
needed in the EM-algorithm, or an arbitrary matrix

B Gain matrix in a fixed-point or fixed-lag Gaussian smoother

c Scalar constant

C() Cost or loss function
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C The upper right block of a covariance matrix, an auxiliary ma-
trix needed in the EM-algorithm, or an arbitrary matrix
Cr Cross-covariance matrix in a non-linear Kalman filter
CL Cross-covariance in the linear approximation of a non-linear
transform
Cum Cross-covariance in the Gaussian moment matching approxi-
mation of a non-linear transform
Co Cross-covariance in the quadratic approximation
Cs Cross-covariance in the statistical linearization approximation
Cy Cross-covariance in the unscented approximation
d Positive integer, usually dimensionality of the parameters
d; Order of a monomial
dr Differential of time variable ¢
dx Differential of vector x
D Derivative of the Cholesky factor, an auxiliary matrix needed
in the EM-algorithm, or an arbitrary matrix
Dy Cross-covariance matrix in a non-linear RTS smoother or an
auxiliary matrix used in derivations
€; Unit vector in the direction of the coordinate axis i
f() Dynamic transition function in a state space model
Fx() Jacobian matrix of the function x — f (x)
F Feedback matrix of a continuous-time linear state space model
F,E’x) () Hessian matrix of x — f;(X)
F[] An auxiliary functional needed in the derivation of the EM-
algorithm
g Gravitation acceleration
g() An arbitrary function
gi() An arbitrary function
g(-) An arbitrary function
g !() Inverse function of g(-)
g(-) Augmented function with elements (x, g(+))
G Gain matrix in an RTS smoother
Gx(-)  Jacobian matrix of the function x — g(x)
G} () Hessian matrix of x — g;(x)
H,(-)  pthorder Hermite polynomial
H Measurement model matrix in a linear Gaussian model, or a
Hessian matrix
Hy Measurement model matrix at the time step k in a linear Gaus-

sian model
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Hx () Jacobian matrix of the function x — h(x)

HY) ) Hessian matrix of x — £;(x)

h() Measurement model function in a state space model

i Integer valued index variable

I Identity matrix

1;(6,0™)  An integral term needed in the EM-algorithm

J() Jacobian matrix

k Time step number

Ky Gain matrix of a Kalman/Gaussian filter

L Noise coefficient (i.e., dispersion) matrix of a continuous-
time linear state space model

L() Likelihood function

m Dimensionality of a measurement, mean of the univariate
Gaussian distribution, or the mass

m Mean of a Gaussian distribution

m Mean of an augmented random variable

my Mean of a Kalman/Gaussian filter at the time step k

m,(ci) Mean of the Kalman filter in the particle i of RBPF at the
time step k

mg:)T History of means of the Kalman filter in the particle i of
RBPF

my Augmented mean at the time step k or an auxiliary vari-
able used in derivations

m; Predicted mean of a Kalman/Gaussian filter at the time
step k just before the measurement y

m,:(i) Predicted mean of the Kalman filter in the particle i of
RBPF at the time step k

m, Augmented predicted mean at the time step k

m; Mean computed by a Gaussian fixed-interval (RTS)
smoother for the time step k

m:)’:(}) History of means of the RTS smoother in the particle i of
RBPS

mg|, Conditional mean of x; given y;.,

n Positive integer, usually the dimensionality of the state

n’ Augmented state dimensionality in a non-linear transform

n” Augmented state dimensionality in a non-linear transform

N Positive integer, usually the number of Monte Carlo sam-
ples

N() Gaussian distribution (i.e., normal distribution)

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9781107030657
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
978-1-107-03065-7 - Bayesian Filtering and Smoothing

Simo Sarkka

Frontmatter
More information
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p Order of a Hermite polynomial
P Variance of the univariate Gaussian distribution
P Covariance of the Gaussian distribution
P Covariance of an augmented random variable
Py Covariance of a Kalman/Gaussian filter at the time step k
P,g) Covariance of the Kalman filter in the particle i of RBPF
at the time step k
Pél)T History of covariances of the Kalman filter in the particle
i of RBPF
Py Augmented covariance at the time step k or an auxiliary
variable used in derivations
P, Predicted covariance of a Kalman/Gaussian filter at the
time step k just before the measurement y
I~’k’ Augmented predicted covariance at the time step k
P ® Predicted covariance of the Kalman filter in the particle i
of RBPF at the time step k
P; Covariance computed by a Gaussian fixed-interval (RTS)
smoother for the time step k
ng(Ti) History of covariances of the RTS smoother in the particle
i of RBPS
| Conditional covariance of X given y;.,
q°¢ Spectral density of a white noise process
qi Spectral density of component i of a white noise process
q() Proposal distribution in the MCMC algorithm, or an arbi-
trary distribution in the derivation of the EM-algorithm
q™ Distribution approximation on the nth step of the EM-
algorithm
q Gaussian random vector
qx Gaussian process noise
(0] Variance of scalar process noise
Q(#,0™)  An auxiliary function needed in the EM-algorithm
Q Covariance of the process noise in a time-invariant model
Qx Covariance of the process noise at the jump from step k to
k+1
Tk Scalar Gaussian measurement noise
I Vector of Gaussian measurement noises
R Variance of scalar measurement noise
R Covariance matrix of the measurement in a time-invariant

model

© in this web service Cambridge University Press

www.cambridge.org



http://www.cambridge.org/9781107030657
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
978-1-107-03065-7 - Bayesian Filtering and Smoothing

Simo Sarkka

Frontmatter
More information
Symbols and abbreviations Xix

Ry Covariance matrix of the measurement at the time step k

R Space of real numbers

R” n-dimensional space of real numbers

R™™  Space of real n x m matrices

S Number of backward-simulation draws

Sk Innovation covariance of a Kalman/Gaussian filter at step k

SL Covariance in the linear approximation of a non-linear trans-
form

Sm Covariance in the Gaussian moment matching approximation
of a non-linear transform

So Covariance in the quadratic approximation of a non-linear
transform

Ss Covariance in the statistical linearization approximation of a
non-linear transform

Su Covariance in the unscented approximation of a non-linear
transform

t Time variable ¢ € [0, 00)

tr Time of the step k (usually time of the measurement yy)

T Index of the last time step, the final time of a time interval

Tr Sufficient statistics

U Uniform random variable

uy Latent (non-linear) variable in a Rao-Blackwellized particle
filter or smoother

u,(ci) Latent variable value in particle i

uff}c History of latent variable values in particle i

U(-)  Utility function

u() Uniform distribution

v,(f) Unnormalized weight in an SIR particle filter based likelihood
evaluation

Vi Innovation vector of a Kalman/Gaussian filter at step k

w® Normalized weight of the particle i in importance sampling

w® Weight of the particle i in importance sampling

w*@?  Unnormalized weight of the particle i in importance sampling

w,(ci) Normalized weight of the particle i on step k of a particle filter

w,((ill Normalized weight of a particle smoother

w; Weight i in a regression model

Wi Vector of weights at the time step k in a regression model

w(¢)  Gaussian white noise process

w Weight in the cubature or unscented approximation
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W; ith weight in sigma-point approximation or in Gauss—
Hermite quadrature

Wl-(m) Mean weight of the unscented transform

Wi(my Mean weight of the unscented transform

Wi(c) Covariance weight of the unscented transform

Wi(cy Covariance weight of the unscented transform

Wi,...i, Weight in multivariate Gauss—Hermite cubature

X Scalar random variable or state, sometimes regressor vari-
able, or a generic scalar variable

X Random variable or state

x@ ith Monte Carlo draw from the distribution of x

X State at the time step k

X Augmented state at the time step k

X0k Set containing the state vectors {Xg,...,Xx}

xg: X The history of the states in the particle i

ig’ )T State trajectory simulated by a backward-simulation particle
smoother

X Matrix of regressors

Xk Matrix of regressors up to the time step k

X0 Sigma point of x

X0 Augmented sigma point of X

X,f) Sigma point of the state xx

)Ek(') Augmented sigma point of the state xj

X lg') Predicted sigma point of the state xx

x 0 Sigma point of the predicted state X
X 0 Augmented sigma point of the predicted state xj

y Random variable or measurement

Yk Measurement at the time step k

Vik Set containing the measurement vectors {yi, ..., Yk}

Y Sigma point of y

Yo Augmented sigma point of y

JA),S) ith predicted sigma point of the measurement yy at step k
V4 Normalization constant

Zx Normalization constant at the time step k

oo Infinity
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ADF Assumed density filter
AM Adaptive Metropolis (algorithm)
AMCMC Adaptive Markov chain Monte Carlo
AR Autoregressive (model)
ARMA Autoregressive moving average (model)
ASIR Auxiliary sequential importance resampling
BS-PS Backward-simulation particle smoother
CDKF Central differences Kalman filter
CKF Cubature Kalman filter
CLT Central limit theorem
CPF Cubature particle filter
CRLB Cramér-Rao lower bound
DLM Dynamic linear model
DOT Diffuse optical tomography
DSP Digital signal processing
EC Expectation correction
EEG Electroencephalography
EKF Extended Kalman filter
EM Expectation—maximization
EP Expectation propagation
ERTSS Extended Rauch-Tung—Striebel smoother
FHKF Fourier—Hermite Kalman filter
FHRTSS  Fourier—-Hermite Rauch—Tung—Striebel smoother
fMRI Functional magnetic resonance imaging
GHKF Gauss—Hermite Kalman filter
GHPF Gauss—Hermite particle filter
GHRTSS Gauss—Hermite Rauch—Tung—Striebel smoother
GPB Generalized pseudo-Bayesian
GPS Global positioning system
HMC Hamiltonian (or hybrid) Monte Carlo
HMM Hidden Markov model
MM Interacting multiple model (algorithm)
INS Inertial navigation system
IS Importance sampling
Inl Inverse imaging
KF Kalman filter
LMS Least mean squares
LQG Linear quadratic Gaussian (regulator)
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LS Least squares
MA Moving average (model)
MAP Maximum a posteriori
MC Monte Carlo

MCMC  Markov chain Monte Carlo
MEG Magnetoencephalography

MH Metropolis—Hastings

MKF Mixture Kalman filter

ML Maximum likelihood

MLP Multi-layer perceptron
MMSE Minimum mean squared error
MNE Minimum norm estimate
MSE Mean squared error

PF Particle filter

PMCMC  Particle Markov chain Monte Carlo
PMMH  Particle marginal Metropolis—Hastings
PS Particle smoother

QKF Quadrature Kalman filter

RAM Robust adaptive Metropolis (algorithm)
RBPF Rao-Blackwellized particle filter
RBPS Rao-Blackwellized particle smoother

RMSE Root mean squared error

RTS Rauch-Tung—Striebel

RTSS Rauch-Tung—Striebel smoother

SDE Stochastic differential equation

SIR Sequential importance resampling

SIR-PS Sequential importance resampling particle smoother
SIS Sequential importance sampling

SLDS Switching linear dynamic system

SLF Statistically linearized filter

SLRTSS Statistically linearized Rauch—Tung—Striebel smoother
SMC Sequential Monte Carlo

TVAR Time-varying autoregressive (model)

UKF Unscented Kalman filter

UPF Unscented particle filter

URTSS Unscented Rauch—-Tung—Striebel smoother

UT Unscented transform
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