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What are Bayesian filtering and smoothing?

The term optimal filtering traditionally refers to a class of methods that
can be used for estimating the state of a time-varying system which is indi-
rectly observed through noisy measurements. The term optimal in this con-
text refers to statistical optimality. Bayesian filtering refers to the Bayesian
way of formulating optimal filtering. In this book we use these terms inter-
changeably and always mean Bayesian filtering.

In optimal, Bayesian, and Bayesian optimal filtering the state of the sys-
tem refers to the collection of dynamic variables such as position, veloc-
ity, orientation, and angular velocity, which fully describe the system. The
noise in the measurements means that they are uncertain; even if we knew
the true system state the measurements would not be deterministic func-
tions of the state, but would have a distribution of possible values. The time
evolution of the state is modeled as a dynamic system which is perturbed
by a certain process noise. This noise is used for modeling the uncertainties
in the system dynamics. In most cases the system is not truly stochastic, but
stochasticity is used for representing the model uncertainties.

Bayesian smoothing (or optimal smoothing) is often considered to be
a class of methods within the field of Bayesian filtering. While Bayesian
filters in their basic form only compute estimates of the current state of
the system given the history of measurements, Bayesian smoothers can be
used to reconstruct states that happened before the current time. Although
the term smoothing is sometimes used in a more general sense for methods
which generate a smooth (as opposed to rough) representation of data, in
the context of Bayesian filtering the term (Bayesian) smoothing has this
more definite meaning.

1.1 Applications of Bayesian filtering and smoothing

Phenomena which can be modeled as time-varying systems of the above
type are very common in engineering applications. This kind of model
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2 What are Bayesian filtering and smoothing?

can be found, for example, in navigation, aerospace engineering, space en-
gineering, remote surveillance, telecommunications, physics, audio signal
processing, control engineering, finance, and many other fields. Examples
of such applications are the following.

e Global positioning system (GPS) (Kaplan, 1996) is a widely used satel-
lite navigation system, where the GPS receiver unit measures arrival
times of signals from several GPS satellites and computes its position
based on these measurements (see Figure 1.1). The GPS receiver typi-
cally uses an extended Kalman filter (EKF) or some other optimal filter-
ing algorithm! for computing the current position and velocity such that
the measurements and the assumed dynamics (laws of physics) are taken
into account. Also the ephemeris information, which is the satellite ref-
erence information transmitted from the satellites to the GPS receivers,
is typically generated using optimal filters.

Figure 1.1 In the GPS system, the measurements are time delays
of satellite signals and the optimal filter (e.g., extended Kalman
filter, EKF) computes the position and the accurate time.

e Target tracking (Bar-Shalom et al., 2001; Crassidis and Junkins, 2004;
Challa et al., 2011) refers to the methodology where a set of sensors
such as active or passive radars, radio frequency sensors, acoustic arrays,

1 Strictly speaking, the EKF is only an approximate optimal filtering algorithm, because it
uses a Taylor series based Gaussian approximation to the non-Gaussian optimal filtering
solution.
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1.1 Applications of Bayesian filtering and smoothing 3

infrared sensors, and other types of sensors are used for determining
the position and velocity of a remote target (see Figure 1.2). When this
tracking is done continuously in time, the dynamics of the target and
measurements from the different sensors are most naturally combined
using an optimal filter or smoother. The target in this (single) target
tracking case can be, for example, a robot, a satellite, a car or an airplane.

Figure 1.2 In target tracking, a sensor (e.g., radar) generates
measurements (e.g., angle and distance measurements) of the
target, and the purpose is to determine the target trajectory.

o Multiple target tracking (Bar-Shalom and Li, 1995; Blackman and
Popoli, 1999; Stone et al., 1999; Sarkki et al., 2007b) systems are used
for remote surveillance in the cases where there are multiple targets
moving at the same time in the same geographical area (see Figure 1.3).
This introduces the concept of data association (which measurement
was from which target?) and the problem of estimating the number of
targets. Multiple target tracking systems are typically used in remote
surveillance for military purposes, but their civil applications are, for
example, monitoring of car tunnels, automatic alarm systems, and
people tracking in buildings.

e [nertial navigation (Titterton and Weston, 1997; Grewal et al., 2001)
uses inertial sensors such as accelerometers and gyroscopes for comput-
ing the position and velocity of a device such as a car, an airplane, or
a missile. When the inaccuracies in sensor measurements are taken into
account the natural way of computing the estimates is by using an op-
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Figure 1.3 In multiple target tracking the data association
problem has to be solved, because it is impossible to know
without any additional information which target produced which
measurement.

timal filter or smoother. Also, in sensor calibration, which is typically
done in a time-varying environment, optimal filters and smoothers can
be applied.

o Integrated inertial navigation (Grewal et al., 2001; Bar-Shalom et al.,
2001) combines the good sides of unbiased but inaccurate sensors, such
as altimeters and landmark trackers, and biased but locally accurate in-
ertial sensors. A combination of these different sources of information
is most naturally performed using an optimal filter such as the extended
Kalman filter. This kind of approach was used, for example, in the guid-
ance system of the Apollo 11 lunar module (Eagle), which landed on the
moon in 1969.

o GPS/INS navigation (Grewal et al., 2001; Bar-Shalom et al., 2001) is a
form of integrated inertial navigation where the inertial navigation sys-
tem (INS) is combined with a GPS receiver unit. In a GPS/INS naviga-
tion system the short term fluctuations of the GPS can be compensated
by the inertial sensors and the inertial sensor biases can be compensated
by the GPS receiver. An additional advantage of this approach is that
it is possible to temporarily switch to pure inertial navigation when the
GPS receiver is unable to compute its position (i.e., has no fix) for some
reason. This happens, for example, indoors, in tunnels and in other cases
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1.1 Applications of Bayesian filtering and smoothing 5

when there is no direct line-of-sight between the GPS receiver and the
satellites.

e Brain imaging methods such as electroencephalography (EEG), mag-
netoencephalography (MEG), parallel functional magnetic resonance
imaging (fMRI) and diffuse optical tomography (DOT) (see Figure 1.4)
are based on reconstruction of the source field in the brain from noisy
sensor data by using minimum norm estimates (MNE) and its variants
(Hauk, 2004; Tarantola, 2004; Kaipio and Somersalo, 2005; Lin et al.,
2006). The minimum norm solution can also be interpreted in the
Bayesian sense as a problem of estimating the field with certain prior
structure from Gaussian observations. With that interpretation the
estimation problem becomes equivalent to a statistical inversion or
generalized Gaussian process regression problem (Tarantola, 2004;
Kaipio and Somersalo, 2005; Rasmussen and Williams, 2006; Sarkka,
2011). Including dynamical priors then leads to a linear or non-linear
spatio-temporal estimation problem, which can be solved with Kalman
filters and smoothers (see Hiltunen et al., 2011; Sarkki et al., 2012b).
The same can be done in inversion based approaches to parallel fMRI
such as inverse imaging (Inl, Lin et al., 2006).

Figure 1.4 Brain imaging methods such as EEG and MEG are
based on estimating the state of the brain from sensor readings. In
dynamic case the related inversion problem can be solved with an
optimal filter or smoother.
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6 What are Bayesian filtering and smoothing?

o Spread of infectious diseases (Keeling and Rohani, 2007) can often
be modeled as differential equations for the number of susceptible,
infected, and recovered/dead individuals. When uncertainties are
introduced into the dynamic equations, and when the measurements are
not perfect, the estimation of the spread of the disease can be formulated
as an optimal filtering problem (see, e.g., Sdrkké and Sottinen, 2008).

e Biological processes (Murray, 1993) such as population growth,
predator—prey models, and several other dynamic processes in biology
can also be modeled as (stochastic) differential equations. Estimation
of the states of these processes from inaccurate measurements can be
formulated as an optimal filtering and smoothing problem.

o Telecommunications is also a field where optimal filters are tradition-
ally used. For example, optimal receivers, signal detectors, and phase
locked loops can be interpreted to contain optimal filters (Van Trees,
1968, 1971; Proakis, 2001) as components. Also the celebrated Viterbi
algorithm (Viterbi, 1967) can be seen as a method for computing the
maximum a posteriori (MAP) Bayesian smoothing solution for the un-
derlying hidden Markov model (HMM).

e Audio signal processing applications such as audio restoration (Godsill
and Rayner, 1998) and audio signal enhancement (Fong et al., 2002)
often use TVAR (time-varying autoregressive) models as the underlying
audio signal models. These kinds of model can be efficiently estimated
using optimal filters and smoothers.

e Stochastic optimal control (Maybeck, 1982a; Stengel, 1994) considers
control of time-varying stochastic systems. Stochastic controllers can
typically be found in, for example, airplanes, cars, and rockets. Optimal,
in addition to the statistical optimality, means that the control signal is
constructed to minimize a performance cost, such as the expected time
to reach a predefined state, the amount of fuel consumed, or the average
distance from a desired position trajectory. When the state of the system
is observed through a set of sensors, as it usually is, optimal filters are
needed for reconstructing the state from them.

o Learning systems or adaptive systems can often be mathematically for-
mulated in terms of optimal filters and smoothers (Haykin, 2001) and
they have a close relationship with Bayesian non-parametric modeling,
machine learning, and neural network modeling (Bishop, 2006). Meth-
ods similar to the data association methods in multiple target tracking are
also applicable to on-line adaptive classification (Andrieu et al., 2002).
The connection between Gaussian process regression (Rasmussen and
Williams, 2006) and optimal filtering has also been recently discussed
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1.2 Origins of Bayesian filtering and smoothing 7

in Sarkka et al. (2007a), Hartikainen and Séarkkid (2010) and Séarkka and
Hartikainen (2012).

e Physical systems which are time-varying and measured through non-
ideal sensors can sometimes be formulated as stochastic state space
models, and the time evolution of the system can be estimated using
optimal filters (Kaipio and Somersalo, 2005). These kinds of problem
are often called inverse problems (Tarantola, 2004), and optimal filters
and smoothers can be seen as the Bayesian solutions to time-varying
inverse problems.

1.2 Origins of Bayesian filtering and smoothing

The roots of Bayesian analysis of time-dependent behavior are in the field
of optimal linear filtering. The idea of constructing mathematically opti-
mal recursive estimators was first presented for linear systems due to their
mathematical simplicity, and the most natural optimality criterion in both
the mathematical and modeling points of view was the least squares op-
timality. For linear systems the optimal Bayesian solution (with minimum
mean squared error, MMSE, loss) coincides with the least squares solution,
that is, the optimal least squares solution is exactly the posterior mean.

The history of optimal filtering starts from the Wiener filter (Wiener,
1950), which is a frequency domain solution to the problem of least squares
optimal filtering of stationary Gaussian signals. The Wiener filter is still
important in communication applications (Proakis, 2001), digital signal
processing (Hayes, 1996) and image processing (Gonzalez and Woods,
2008). The disadvantage of the Wiener filter is that it can only be applied
to stationary signals.

The success of optimal linear filtering in engineering applications is
mostly due to the seminal article of Kalman (1960b), which describes the
recursive solution to the optimal discrete-time (sampled) linear filtering
problem. One reason for the success is that the Kalman filter can be un-
derstood and applied with very much lighter mathematical machinery than
the Wiener filter. Also, despite its mathematical simplicity and generality,
the Kalman filter (or actually the Kalman—Bucy filter; Kalman and Bucy,
1961) contains the Wiener filter as its limiting special case.

In the early stages of its history, the Kalman filter was soon discovered
to belong to the class of Bayesian filters (Ho and Lee, 1964; Lee, 1964;
Jazwinski, 1966, 1970). The corresponding Bayesian smoothers (Rauch,
1963; Rauch et al., 1965; Leondes et al., 1970) were also developed soon
after the invention of the Kalman filter. An interesting historical detail is
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hidden: — — — > X1 Xg Xp41 — — >
observed: Yi—1 Yk Ye+1

Figure 1.5 In optimal filtering and smoothing problems a
sequence of hidden states Xy is indirectly observed through noisy
measurements Y.

that while Kalman and Bucy were formulating the linear theory in the
United States, Stratonovich was doing the pioneering work on the prob-
abilistic (Bayesian) approach in Russia (Stratonovich, 1968; Jazwinski,
1970).

As discussed in the book of West and Harrison (1997), in the 1960s,
Kalman filter like recursive estimators were also used in the Bayesian com-
munity and it is not clear whether the theory of Kalman filtering or the
theory of dynamic linear models (DLM) came first. Although these theo-
ries were originally derived from slightly different starting points, they are
equivalent. Because of the Kalman filter’s useful connection to the the-
ory and history of stochastic optimal control, this book approaches the
Bayesian filtering problem from the Kalman filtering point of view.

Although the original derivation of the Kalman filter was based on the
least squares approach, the same equations can be derived from pure prob-
abilistic Bayesian analysis. The Bayesian analysis of Kalman filtering is
well covered in the classical book of Jazwinski (1970) and more recently in
the book of Bar-Shalom et al. (2001). Kalman filtering, mostly because of
its least squares interpretation, has widely been used in stochastic optimal
control. A practical reason for this is that the inventor of the Kalman filter,
Rudolph E. Kalman, has also made several contributions (Kalman, 1960a)
to the theory of linear quadratic Gaussian (LQG) regulators, which are
fundamental tools of stochastic optimal control (Stengel, 1994; Maybeck,
1982a).

1.3 Optimal filtering and smoothing as Bayesian inference

In mathematical terms, optimal filtering and smoothing are considered to
be statistical inversion problems, where the unknown quantity is a vec-
tor valued time series {Xg, X1, X2, ...} which is observed through a set of
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Figure 1.6 An example of time series, which models a
discrete-time resonator. The actual resonator state (signal) is
hidden and only observed through the noisy measurements.

noisy measurements {y;,y», ...} as illustrated in Figure 1.5. An example
of this kind of time series is shown in Figure 1.6. The process shown is a
noisy resonator with a known angular velocity. The state x; = (xg xe)'
is two dimensional and consists of the position of the resonator x; and
its time derivative X;. The measurements yy are scalar observations of the
resonator position (signal) and they are corrupted by measurement noise.

The purpose of the statistical inversion at hand is to estimate the hid-
den states Xg.7 = {Xo, ..., X7} from the observed measurements y;.7 =
{y1,...,yr}, which means that in the Bayesian sense we want to compute
the joint posterior distribution of all the states given all the measurements.
In principle, this can be done by a straightforward application of Bayes’
rule

p(yi.7 | Xo.1) p(Xo:7)
p(yur)

p(Xo:r | yuT) = , (1.1)

where

e p(Xo.7), is the prior distribution defined by the dynamic model,
e p(y1.7 | Xo.7) is the likelihood model for the measurements,
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10 What are Bayesian filtering and smoothing?

e p(yi.7) is the normalization constant defined as

p(yur) = /P(Y1:T | Xo0.7) p(Xo:7) dXo.7. (1.2)

Unfortunately, this full posterior formulation has the serious disadvantage
that each time we obtain a new measurement, the full posterior distribution
would have to be recomputed. This is particularly a problem in dynamic
estimation (which is exactly the problem we are solving here!), where mea-
surements are typically obtained one at a time and we would want to com-
pute the best possible estimate after each measurement. When the number
of time steps increases, the dimensionality of the full posterior distribu-
tion also increases, which means that the computational complexity of a
single time step increases. Thus eventually the computations will become
intractable, no matter how much computational power is available. With-
out additional information or restrictive approximations, there is no way of
getting over this problem in the full posterior computation.

However, the above problem only arises when we want to compute the
full posterior distribution of the states at each time step. If we are willing to
relax this a bit and be satisfied with selected marginal distributions of the
states, the computations become an order of magnitude lighter. To achieve
this, we also need to restrict the class of dynamic models to probabilis-
tic Markov sequences, which is not as restrictive as it may at first seem.
The model for the states and measurements will be assumed to be of the
following type.

¢ An initial distribution specifies the prior probability distribution p(Xg)
of the hidden state x¢ at the initial time step k = 0.

e A dynamic model describes the system dynamics and its uncertainties
as a Markov sequence, defined in terms of the transition probability dis-
tribution p(Xg | Xx—1).

o A measurement model describes how the measurement y; depends
on the current state X;. This dependence is modeled by specifying the
conditional probability distribution of the measurement given the state,
which is denoted as p(yx | Xk).

Thus a general probabilistic state space model is usually written in the
following form:

Xo ~ P(Xo),
X ~ p(Xk | Xk—1),
Yi ~ p(Yi | Xk). (1.3)
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