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quantum inverse-scattering method and the analysis of the related Yang–Baxter
equation and integrable quantum Heisenberg models. It also discusses systems
within condensed matter physics, the complete solution of the sine–Gordon model
and modern trends in the thermodynamic Bethe ansatz.

Each chapter concludes with problems and solutions to help consolidate the
reader’s understanding of the theory and its applications. Basic knowledge of
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mechanics and mathematical and theoretical physics.

L A D I S L AV Š A M A J is a Research Professor within the Institute of Physics at
the Slovak Academy of Sciences and teaches statistical mechanics of integrable
many-body systems at the Institute of Physics and the Comenius University in
Bratislava. His research specializes in classical and quantum, two-dimensional and
higher-dimensional Coulomb fluids. He has contributed to the field of equilibrium
statistical mechanics by solving exactly the two-dimensional Coulomb gas that is
charge-symmetric and with a charge asymmetry.

Z O LT Á N B A J N O K is a Research Professor at the MTA Lendület Holographic
Quantum Field Theory Group of the Wigner Research Centre for Physics in
Budapest, where he specializes in integrable models with a focus on finite size
effects. He contributed to the analysis of the exact spectrum of the boundary
sine-Gordon theory, and successfully applied the developed two-dimensional inte-
grable techniques to calculate the scaling dimensions of gauge invariant operators
in four-dimensional quantum field theories.

www.cambridge.org/9781107030435
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-03043-5 — Introduction to the Statistical Physics of Integrable Many-body Systems
Ladislav Šamaj , Zoltán Bajnok
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

This book forms part of an informal series of books, all of which originated as
review articles published in Acta Physica Slovaca. The journal can be freely

accessed at www.physics.sk/aps.

Vladimir Bužek, editor of the journal

www.cambridge.org/9781107030435
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-03043-5 — Introduction to the Statistical Physics of Integrable Many-body Systems
Ladislav Šamaj , Zoltán Bajnok
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

INTRODUCTION TO THE
STATISTICAL PHYSICS OF
INTEGRABLE MANY-BODY

SYSTEMS

LADISLAV ŠAMAJ
Institute of Physics, Slovak Academy of Sciences,

Bratislava, Slovakia

ZOLTÁN BAJNOK
Hungarian Academy of Sciences, Eötvös University,

Budapest, Hungary

www.cambridge.org/9781107030435
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-03043-5 — Introduction to the Statistical Physics of Integrable Many-body Systems
Ladislav Šamaj , Zoltán Bajnok
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

103 Penang Road, #05–06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, 
a department of the University of Cambridge.

We share the University’s mission to contribute to society through the pursuit of 
education, learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107030435

© L. Šamaj and Z. Bajnok, 2013

This publication is in copyright. Subject to statutory exception and to the provisions
of relevant collective licensing agreements, no reproduction of any part may take 

place without the written permission of Cambridge University Press & Assessment.

First published 2013

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication data

Šamaj, Ladislav, 1959–
Introduction to the statistical physics of integrable many-body

systems / Ladislav Šamaj, Zoltán Bajnok.
pages cm

ISBN 978-1-107-03043-5 (hardback)
1. Quantum theory – Statistical methods. 2. Many-body problem. I. Bajnok, Zoltán. II. Title.

QC174.17.P7S26 2013
530.12015195–dc23

2012051080

ISBN   978-1-107-03043-5   Hardback

Cambridge University Press & Assessment has no responsibility for the persistence
or accuracy of URLs for external or third-party internet websites referred to in this 

publication and does not guarantee that any content on such websites is, or will 
remain, accurate or appropriate. 

www.cambridge.org/9781107030435
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-03043-5 — Introduction to the Statistical Physics of Integrable Many-body Systems
Ladislav Šamaj , Zoltán Bajnok
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Contents

Preface page xi

PART I SPINLESS BOSE AND FERMI GASES 1

1 Particles with nearest-neighbor interactions: Bethe ansatz and

the ground state 5
1.1 General formalism 5
1.2 Point interactions 8
1.3 Bosons with δ-potential: Bethe ansatz equations 12
1.4 Bound states for attractive bosons 18
1.5 Repulsive bosons 20
1.6 Particles with finite hard-core interactions 28
Exercises 29

2 Bethe ansatz: Zero-temperature thermodynamics and excitations 33
2.1 Response of the ground state 34
2.2 Zero-temperature thermodynamics 35
2.3 Low-lying excitations 37
Exercises 41

3 Bethe ansatz: Finite-temperature thermodynamics 45
3.1 The concept of holes 45
3.2 Thermodynamic equilibrium 47
Exercises 50

4 Particles with inverse-square interactions 56
4.1 The two-body scattering problem 57
4.2 The ground-state wavefunction of a product form 58

v

www.cambridge.org/9781107030435
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-03043-5 — Introduction to the Statistical Physics of Integrable Many-body Systems
Ladislav Šamaj , Zoltán Bajnok
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

vi Contents

4.3 Excited states for the trigonometric case 62
Exercises 64

PART II QUANTUM INVERSE-SCATTERING METHOD 69

5 QISM: Yang–Baxter equation 73
5.1 Generalized Bethe ansatz 73
5.2 Derivation of the Yang–Baxter equation 75
5.3 Lax operators, monodromy and transfer matrices 80
5.4 Two-state solutions of the YBE 82
5.5 Braid-group solution 85
5.6 Quantum groups 88
Exercises 96

6 QISM: Transfer matrix and its diagonalization 98
6.1 Vertex models on the square lattice 98
6.2 Connection with quantum models on a chain 101
6.3 Diagonalization of the trigonometric transfer matrix 103
Exercises 108

7 QISM: Treatment of boundary conditions 110
7.1 Formulation of boundary conditions 110
7.2 Boundary conditions and the inhomogeneous transfer matrix 112
7.3 Diagonalization of the inhomogeneous transfer matrix 113

8 Nested Bethe ansatz for spin-1
2

fermions with δ-interactions 116
8.1 The scattering problem 116
8.2 Nested Bethe equations for spin-1

2 fermions 119
8.3 Ground state and low-lying excitations 120
Exercises 127

9 Thermodynamics of spin-1
2

fermions with δ-interactions 130
9.1 Repulsive regime c > 0 130
9.2 Attractive regime c < 0 136
Exercises 137

PART III QUANTUM SPIN CHAINS 141

10 Quantum Ising chain in a transverse field 145
10.1 Jordan–Wigner transformation 146
10.2 Diagonalization of the quadratic form 148

www.cambridge.org/9781107030435
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-03043-5 — Introduction to the Statistical Physics of Integrable Many-body Systems
Ladislav Šamaj , Zoltán Bajnok
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Contents vii

10.3 Ground-state properties and thermodynamics 150
10.4 Thermodynamics of the classical 2D Ising model 151
Exercises 155

11 XXZ Heisenberg chain: Bethe ansatz and the ground state 158
11.1 Symmetries of the Hamiltonian 158
11.2 Schrödinger equation 159
11.3 Coordinate Bethe ansatz 161
11.4 Orbach parameterization 164
11.5 The ground state 168
11.6 The absolute ground state for � < 1 170
Exercises 171

12 XXZ Heisenberg chain: Ground state in the presence of a

magnetic field 175
12.1 Fundamental integral equation for the »-density 176
12.2 Formula for the magnetic field 180
12.3 Ground-state energy near half-filling 183
Exercises 184

13 XXZ Heisenberg chain: Excited states 187
13.1 Strings 187
13.2 Response of the ground state to a perturbation 193
13.3 Low-lying excitations 195
Exercises 196

14 XXX Heisenberg chain: Thermodynamics with strings 199
14.1 Thermodynamic Bethe ansatz 199
14.2 High-temperature expansion 205
14.3 Low-temperature expansion 205
Exercises 209

15 XXZ Heisenberg chain: Thermodynamics without strings 214
15.1 Quantum transfer matrix 214
15.2 Bethe ansatz equations 216
15.3 Nonlinear integral equations for eigenvalues 219
15.4 Representations of the free energy 223
Exercises 226

16 XYZ Heisenberg chain 230
16.1 Diagonalization of the transfer matrix for the eight-vertex model 230
16.2 Restricted models and the × parameter 236
16.3 XYZ chain: Bethe ansatz equations 239

www.cambridge.org/9781107030435
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-03043-5 — Introduction to the Statistical Physics of Integrable Many-body Systems
Ladislav Šamaj , Zoltán Bajnok
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

viii Contents

16.4 XYZ chain: Ground-state energy 241
16.5 XYZ chain: Critical ground-state properties 243
Exercises 245

17 Integrable isotropic chains with arbitrary spin 248
17.1 Construction of the spin-s scattering matrix 248
17.2 Algebraic Bethe ansatz 251
17.3 Thermodynamics with strings 256
17.4 Ground state, low-lying excitations and low-temperature

properties 257
Exercises 260

PART IV STRONGLY CORRELATED ELECTRONS 263

18 Hubbard model 267
18.1 Hamiltonian and its symmetries 267
18.2 Nested Bethe ansatz 270
18.3 Ground-state properties of the repulsive Hubbard model 274
18.4 Ground-state properties of the attractive Hubbard model 285
18.5 Thermodynamics with strings 286
Exercises 291

19 Kondo effect 296
19.1 Hamiltonian of the s-d exchange Kondo model 296
19.2 Electron–impurity and electron–electron scattering

matrices 298
19.3 Inhomogeneous QISM 301
19.4 Ground state 305
19.5 Thermodynamics with strings 312
19.6 TBA for non-interacting electron gas 315
19.7 Thermodynamics of the impurity 317
19.8 Non-degenerate Anderson model 322
Exercises 324

20 Luttinger many-fermion model 333
20.1 The model and its incorrect solution by Luttinger 334
20.2 Non-interacting spinless fermions 337
20.3 Interacting spinless fermions 347
20.4 Luttinger fermions with spin 358
Exercises 359

www.cambridge.org/9781107030435
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-03043-5 — Introduction to the Statistical Physics of Integrable Many-body Systems
Ladislav Šamaj , Zoltán Bajnok
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Contents ix

21 Integrable BCS superconductors 362
21.1 Mean-field diagonalization of the pairing Hamiltonian 362
21.2 DBCS model and its solution 365
21.3 Inhomogeneous twisted XXZ model 367
21.4 Quasi-classical limit 368
21.5 Continuum limit of Richardson’s equations 371
Exercises 375

PART V SINE–GORDON MODEL 379

22 Classical sine–Gordon theory 383
22.1 Continuum limit of a mechanical system 383
22.2 Related models 385
22.3 Finite-energy solutions 386
22.4 Scattering solutions, time shifts 390
22.5 Integrability, conserved charges 394
Exercises 395

23 Conformal quantization 399
23.1 Massless free boson on the cylinder 400
23.2 Massless free boson on the complex plane 402
23.3 Perturbation of the massless free boson: sine–Gordon theory 409
Exercises 413

24 Lagrangian quantization 415
24.1 Semi-classical considerations, phase shifts 415
24.2 Quantization based on the Klein–Gordon theory 417
24.3 Scattering matrix, reduction formulas 422
24.4 Analytic structure of the scattering matrix 425
Exercises 428

25 Bootstrap quantization 430
25.1 Asymptotic states, scattering matrix 430
25.2 S-matrix properties 431
25.3 Solving the simplest models by bootstrap 433
25.4 The sine–Gordon S-matrix 435
Exercises 440

26 UV–IR relation 442
26.1 Ground-state energy density from perturbed CFT 442
26.2 Ground-state energy from TBA 444
Exercises 452

www.cambridge.org/9781107030435
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-03043-5 — Introduction to the Statistical Physics of Integrable Many-body Systems
Ladislav Šamaj , Zoltán Bajnok
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

x Contents

27 Exact finite-volume description from XXZ 454
27.1 Excited states from the lattice 455
27.2 Integral equation for the spectrum 457
27.3 Large-volume expansion 459
27.4 Small-volume expansion 461
Exercises 463

28 Two-dimensional Coulomb gas 464
28.1 Basic facts about the 2D Coulomb gas 464
28.2 Renormalized Mayer expansion 467
28.3 Mapping onto the sine–Gordon model 474
28.4 Thermodynamics of the 2D Coulomb gas 477
Exercises 479

Appendix A Spin and spin operators on a chain 481
A.1 Spin of a particle 481
A.2 Spin operators on a chain 483

Appendix B Elliptic functions 486
B.1 The Weierstrass functions 487
B.2 The theta functions 489
B.3 The Jacobi elliptic functions 492

References 496
Index 502

www.cambridge.org/9781107030435
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-03043-5 — Introduction to the Statistical Physics of Integrable Many-body Systems
Ladislav Šamaj , Zoltán Bajnok
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Preface

In classical mechanics, a dynamical system of interacting bodies with 2N -dimen-
sional phase space is said to be integrable if there exist N conserved functions
(charges) whose Poisson brackets vanish. For an integrable system in quantum
field theory (QFT) there exists an infinite set of commuting conserved charges. The
existence of the conserved charges allows us to solve the physical system exactly
and in this way to describe the modeled phenomena without any approximation.
Although the integrability is restricted to low dimensions, the exact solution often
provides general information about the physical phenomena. At present, we know
precisely how to generate systematically integrable models and how to solve them,
explicitly or implicitly in the form of integral equations.

Integrable models cover many domains of quantum mechanics and statistical
physics:

" Non-relativistic one-dimensional (1D) continuum Fermi and Bose quantum
gases with specific types of singular and short-range interactions.

" 1D lattice and continuum quantum models of condensed-matter physics, like
the Heisenberg model of interacting quantum spins, the Hubbard model of hop-
ping electrons with one-site interactions between electrons of opposite spins, the
Kondo model describing the interaction of a conduction band with a localized
spin impurity, microscopic models of superconductors, etc.

" Relativistic models of QFT in a (1+1)-dimensional spacetime like the sine–
Gordon model and its fermionic analog, the Thirring model, and so on.

" Two-dimensional (2D) lattice and continuum classical models in thermal equi-
librium like the lattice Ising model of interacting nearest-neighbor ±1 spins,
the six- and eight-vertex models, the continuum Coulomb gas of ±1 charges
interacting by a logarithmic potential, etc.

The solution of the equilibrium statistical mechanics of an integrable classical
model formulated on a 2D lattice consists of the diagonalization of a row-to-row

xi

www.cambridge.org/9781107030435
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-03043-5 — Introduction to the Statistical Physics of Integrable Many-body Systems
Ladislav Šamaj , Zoltán Bajnok
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

xii Preface

transfer matrix whose largest eigenvalue determines the thermodynamic limit of
the free energy. From this point of view, the problem resembles technically that of
finding the energy spectrum of a quantum-mechanical model in spatial dimension
reduced by one.

Integrable systems can be either homogeneous, i.e. formulated in a finite domain
with periodic boundary conditions or taken as infinite (the thermodynamic limit),
or inhomogeneous, e.g. in the presence of a hard-wall boundary impenetrable to
particles. In this book, we restrict ourselves to homogeneous systems.

The complete solution of an integrable 1D quantum-mechanical model proceeds
in several steps:

" As a first step, one reduces the problem of calculating the spectrum of a Hamil-
tonian to solving a set of coupled algebraic equations. In this way the original
problem of exponential complexity is transformed to one of polynomial com-
plexity. The coupled equations are known, for historical reasons, as the Bethe
ansatz equations and have an adjective which depends on the type of the system
under consideration or on the applied method. The adjectives are “coordinate”
for spinless particles treated in the direct space format, “nested” for particles
with internal degrees of freedom like spin, “algebraic” for an inverse-scattering
formulation, etc. and they can be combined, too.

" The next step is to find the solution of the Bethe equations which corresponds to
the ground state, i.e. the eigenstate of the Hamiltonian with the lowest energy,
and the zero-temperature thermodynamics. A substantial simplification arises in
the thermodynamic limit within a continuum procedure.

" The third step consists of the construction of low-lying excitations upon the
ground state and in finding the asymptotic expression for their energy in the
thermodynamic limit.

" The fourth step is the derivation of the thermodynamics (the free energy) for the
system at temperature T > 0 (the “thermodynamic Bethe ansatz”).

" The final step is the evaluation of correlation functions of interacting bodies at
arbitrary distance. This topic goes beyond the scope of the present book.

In the following paragraphs, we shall briefly summarize some milestones in the
history of the statistical physics of integrable many-body systems.

The most important integrable system was certainly the quantum-mechanical
model of magnetism proposed by Heisenberg [1]. The Heisenberg Hamiltonian of
N interacting particles with spin 1

2 on a 1D chain reads

H = 2
1

2

N
"

n=1

"

Jxσ
x
nσ

x
n+1 + Jyσ

y
nσ

y

n+1 + Jzσ
z
nσ

z
n+1

�

, (1)
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Preface xiii

where σ
³
n (³ = x, y, z) are the Pauli spin operators on site n = 1, 2, . . . , N (see

Appendix A for definitions), satisfying periodic boundary conditions σ
³
N+1 = σ

³
1 ,

and {Jx , Jy, Jz} are real coupling constants. In the most general case (Jx �= Jy) �=

Jz , this model is known as the XYZ model. The special cases (Jx = Jy) �= Jz

and Jx = Jy = Jz = J correspond to the XXZ and XXX models, respectively.
The eigenvectors and the eigenvalues of the completely isotropic XXX Hamilto-
nian were found in the pioneering work [2] by Bethe in 1931. In the ferromagnetic
case J > 0, the Bethe ansatz equations provide an exact answer for the (trivial)
ground-state properties and low-lying string-type excitations (an n-string is a group
of n roots in the complex momentum plane distributed symmetrically and equidis-
tantly around the real axis). In the antiferromagnetic case J < 0, the non-trivial
ground state was constructed by Hultén [3]. He derived from the asymptotic limit
N ³ > of Bethe’s equations a linear integral equation for a particle distribution
function in momentum space, the solution of which provides an explicit expression
for the ground-state energy per site. More than 20 years later des Cloizeaux and
Pearson [4] constructed excitations upon the antiferromagnetic ground state and
found the asymptotic expression for their energy. The generalization of Bethe’s
method to the XXZ model, made by Yang and Yang [5, 6], was straightforward
and brought the topic to a higher mathematical level. The exact solution of the
XYZ model by Baxter in 1971 [7, 8, 9, 10] was a breakthrough. Baxter discovered
a link between the quantum 1D XXZ and XYZ models and the equilibrium sta-
tistical mechanics of classical 2D six-vertex and eight-vertex models, respectively.
He observed that the eigenstates of the transfer matrix of the six-vertex model are
independent of one of the model parameters. Consequently, there exists an infinite
family of commuting transfer matrices which originates from the so-called “Yang–
Baxter equation” (or “star–triangle relation”) fulfilled by the Boltzmann weights
of the six-vertex model. The same observation holds also in the case of the eight-
vertex model, for which Baxter obtained a system of Bethe-like transcendental
equations. With the aid of these equations he was able to calculate the ground-state
energy of the XYZ model and its critical properties which are non-universal in a
weak sense: although the critical indices depend on the model’s parameters, their
ratios do not. The asymptotic energy of low-lying excitations of the XYZ model
was obtained by Johnson, Krinsky and McCoy [11].

The fundamental property of integrable particle systems, possessing an infinite
number of conservation laws, is the factorization property of multiparticle scatter-
ing into a sequence of two-particle scatterings. Two-particle scattering is elastic,
i.e. not only the total momentum but also both individual particle momenta are
conserved. In this context, the Yang–Baxter equation is the consistency condition
for elements of the two-particle scattering matrix which ensures the invariance
of three-particle (and, consequently, multiparticle) scattering with respect to the
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order in which two-particle scatterings are accomplished. The concept of the trans-
fer matrix and the Yang–Baxter equation as the consistency condition played a
central role in a program called the “Quantum Inverse-Scattering Method”, estab-
lished in late 1970s by Faddeev, Sklyanin, Takhtajan and their coworkers [12, 13].
The method is based on a relationship between integrable many-body models and
integrable evolution equations [14, 15]. An important feature of the method, the
algebraic construction of eigenstates of the transfer matrix [16, 17], gave an alter-
native name for it: the “algebraic Bethe ansatz”. The systematic search for the
solutions of the Yang–Baxter equation [18] resulted in the appearance of “Quantum
Groups” [19, 20].

Another important group of integrable 1D models are non-relativistic contin-
uum Fermi and Bose (the relationship between the spin and statistics is usually
ignored) quantum gases with specific types of pairwise interactions. The crucial
model was that of spinless (identical) bosons with attractive or repulsive ·-function
interactions, initiated in 1963 by Lieb and Liniger [21, 22]. While the attractive
bosons exhibit a collapse in the thermodynamic limit, the thermodynamic limit of
the repulsive boson system is well behaved and the Bethe ansatz equations provide
the ground-state (zero-temperature) properties as well as the energy of low-lying
excitations. In 1969 Yang and Yang [23] derived from the Bethe equations the
thermodynamic properties of repulsive ·-bosons at finite temperatures; this was
the first exact treatment of thermodynamics for an interacting many-body system.
The crucial observation was that also the holes, i.e. the unoccupied energy levels,
contribute to the entropy of the system. Since the spectrum of excitations ener-
gies is relatively simple (the momenta are real, so there are only strings of length
n = 1), the thermodynamics is determined by a coupled pair of integral equations
for the distribution functions of the excitation energy and of the equilibrium particle
(hole) densities in momentum space. The other spinless particle systems with inte-
grable interactions, like the hard-core and inverse-square interactions, were treated
analogously [24, 25].

The generalization of the Bethe ansatz method to systems of particles with inter-
nal degrees of freedom turned out to be complicated because in the scattering the
internal states of the particles can be changed. The problem of spin- 1

2 fermions
with ·-interactions was solved in 1967 by Yang [26] and Gaudin [27] by using
the “nested Bethe ansatz” and the Yang–Baxter equation as the consistency condi-
tion. The excited states of this model form strings of various lengths n = 1, 2, . . ..
The final result for the thermodynamics [28, 29, 30] is thus expressible in terms
of the solution of an infinite set of coupled nonlinear integral equations, one for
each string length n, known as the “thermodynamic Bethe ansatz” (TBA). These
equations can be analyzed analytically only in special limits, e.g. in the zero and
infinite limits of temperatures or interaction strengths. The same structure of the
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TBA was observed in the case of the Heisenberg model [31, 32]. The strings can
be avoided in a method developed by Destri and de Vega [33, 34] which leads to a
single nonlinear integral equation.

The technique of the nested Bethe ansatz was applied to models of strongly
correlated electrons in condensed-matter physics. The lattice version of the spin- 1

2
fermion system with ·-interactions, the Hubbard model, was solved by Lieb and
Wu in 1968 [35]. The exact solution showed the absence of a conducting–insulating
Mott transition in one dimension. Anomalous scattering of a localized spin impu-
rity with the conduction band at low temperatures leads to interesting phenomena
known as the Kondo effects. The corresponding s-d exchange and Anderson mod-
els were solved by Andrei [36] and Wiegmann [37]. The 1D Luttinger model of
interacting fermions [38] gave rise to bosonization techniques of Fermi operators
[39]. Integrable models of BCS superconductors have been developing since the
1970s [40].

The Bethe ansatz technology was successfully applied also to integrable mod-
els of QFT in a (1+1)-dimensional spacetime, like the boson sine–Gordon model
and its fermionic equivalent, the Thirring model [41], to obtain their exact scat-
tering matrices and the mass spectrum [42, 43], the vacuum energy as a function
of renormalized parameters of the theory [44], the relation between the coupling
constant and the physical mass-scale [45], etc. Alyosha Zamolodchikov made a
dominant contribution to this field.

As concerns the equilibrium statistical mechanics of classical systems, the first
milestone occurred in 1944 when Onsager solved the 2D Ising model [46]. His
exact solution showed the universality of critical phenomena and the fact that the
critical indices in two dimensions are not mean-field like. Further lattice models of
special interest were the vertex models, in which the state variables are localized on
the edges connecting nearest-neighbor sites. Three cases of the six-vertex model –
antiferroelectric F [47], ferroelectric KDP [48] and ice [49] – were solved by Lieb.
The general case of the six-vertex model was solved by Sutherland [50]. The exact
solution of the eight-vertex model by Baxter [7, 9] has already been mentioned in
the context of the XYZ Heisenberg chain.

The statistical models presented above are defined on a regular discrete lattice
structure. There exists another family of classical statistical models, the so-called
fluids, formulated in continuum space. Concepts and methods used in the two
fields are usually very different and the overlap between the physical communi-
ties is relatively small. While there exist many exactly solvable 2D lattice models,
non-trivial fluid systems were solvable only in one dimension. A contribution of
L.Š. and his coworkers consists of solving exactly the thermodynamics of the first
continuum classical fluid in dimension higher than one: the 2D Coulomb gas of
±1 point-like charges interacting via the logarithmic potential [51, 52]. The exact
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solution of a 2D classical Coulomb gas with charge asymmetry +1, 2 1
2 is also

available [53].
There exist few monographs about the present subject. Those which we con-

sider as the most relevant and therefore belong to our libraries are presented in
chronological order in this paragraph. The famous book by Baxter [54] mainly
concerns classical integrable models of equilibrium statistical mechanics. Gaudin
summarizes his experience with the Bethe ansatz and the ground-state analysis in
the technically rather difficult book [55]. Mattis’s encyclopedia of exactly solved
models in one dimension [56] contains over 80 reprinted papers with a short sum-
mary of each topic. The book by Korepin and Essler [57] contains reprinted articles
in the field of condensed-matter physics. The Yang–Baxter equation, the general
structure of its solutions and quantum groups are at the center of interest of the
book [58]. Takahashi’s book [59] is an encyclopedia of results about the thermody-
namics of integrable many-body systems. Sutherland [60] and Kuramoto and Kato
[61] concentrate on 1D models with interactions of inverse-square type. The 1D
Hubbard model is reviewed in detail in the recent book [62].

A natural question arises: Why did we write another book about integrable sys-
tems? In our opinion, narrow specialization and the separation of communities is
a feature of contemporary physics. Since we remember how many articles we had
to find and to read in order to understand the subject in its many relevant aspects,
we decided to write an extensive and at the same time self-contained course. We
hope that, perhaps, this might help somebody to save time and to find new results
in their own field. The main motivations for our (text)book are the following:

" The existing published books are usually oriented towards a restricted area of
models and to specific methods. The present course encompasses all the impor-
tant kinds of integrable models, including (1 + 1)-dimensional QFT and the
classical 2D Coulomb gas, which, to our knowledge, have not been summarized
in a book. Relatively complicated models, like the XYZ Heisenberg and general
integrable spin-s quantum chains, are treated in detail as well.

" The mathematical level of some of the books is very high and requires a
preliminary study of specific topics from the literature. The present course
is self-contained, made mathematically as simple as possible. Derivations are
complete, without any need to turn to original works. Only an elementary knowl-
edge of quantum mechanics and equilibrium statistical physics is required. This
makes the text accessible to graduate students in theoretical and mathematical
physics.

" The methods and techniques presented in published books are usually tradi-
tional. We intend to include also modern trends in the TBA which are not
included in standard textbooks. For example, the method of Destri and de Vega,
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which avoids the usage of string roots of the Bethe equations in the derivation
of thermodynamics at non-zero temperatures, is explained in detail. Another
example is the TBA in QFT, as formulated by Alyosha Zamolodchikov in his
derivation of the explicit relation between the Lagrangian parameter and the
soliton mass for the sine–Gordon model.

" The course is not intended as an encyclopedia of the results obtained in the field
of integrable systems. For each particular model, we give a detailed derivation of
the Bethe ansatz equations, the specification of the ground state, the construction
of the TBA and a discussion of the physical consequences which follow from the
exact results.

The book is intended as a specialized textbook. Although the theory of integrable
models is not a standard topic of basic undergraduate university courses, it is of
importance for theoretically oriented graduate students. After a complete reading
of the book, students should be able to understand original works in leading jour-
nals. Besides graduate students, the book is intended for specialists in integrable
systems who would like to understand the application of the general quantum
inverse-scattering method to other branches of physics, especially to QFT and the
statistical mechanics of fluids, and potentially use special techniques in their own
field. The textbook is also suitable for non-specialists, mathematical or theoretical
physicists in many branches of physics, who would like to learn how to generate
and solve an integrable many-body system.

The character and the aims of the book reflect our own experience in theoretical
physics.

L.Š. is a leading researcher at the Institute of Physics of the Slovak Academy
of Sciences in Bratislava, Slovakia. He is a specialist in the equilibrium statisti-
cal mechanics of lattice models and continuum fluids. Starting in 1991, he has
occasionally taught graduate students at the Institute of Physics and at Comenius
University in Bratislava in the field of statistical mechanics of integrable many-
body systems. During his long-term stay (1993–1998) at the Courant Institute of
Mathematical Sciences, New York University, he collaborated with Jerome K. Per-
cus in the construction of exact density functionals for lattice models [63]. One of
the topics of his special interest became classical and quantum, two-dimensional
and higher-dimensional Coulomb fluids. This was just at the time of great dis-
coveries in QFT in a (1+1)-dimensional spacetime. Being able to adopt the TBA
techniques from the integrable sine–Gordon model, he contributed to equilibrium
statistical mechanics by solving exactly the 2D Coulomb gas that was charge
symmetric [51, 52] and with a charge asymmetry [53]. This was the first con-
tinuous fluid in dimension higher than one with exactly solvable thermodynamics.
In 2001–2002, he was awarded a NATO fellowship in Laboratoire de Physique
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Théorique, Université de Paris Sud in Orsay, to collaborate with Bernard Jancovici
on Coulomb systems, mainly universal finite-size corrections [64] and the exact
sum rules for the charge and density correlation functions [65]. This collaboration
lasted up to 2010 and involved, e.g. the high-temperature aspects of the Casimir
effect [66] and the fluctuations of the electromagnetic field at the interface between
different electric media [67]. At present, he is collaborating with Emmanuel Trizac
from Laboratoire de Physique Théorique et Modèles Statistique, Orsay, in the
strong-coupling (low-temperature) description of classical Coulomb fluids based
on Wigner crystallization [68].

Z.B. is a research professor in the Theoretical Physics Research Group of the
Hungarian Academy of Sciences. Since his graduation he has been working on
integrable models. He started his career by solving 2D conformal field theories with
extended symmetries. Then his interest turned to the analysis of their integrable
perturbations. He acquired knowledge of the bootstrap method designed to solve
2D integrable quantum field theories exactly. Using these techniques, with his col-
laborators they determined the exact spectrum of the boundary sine–Gordon theory
[69]. In collaboration with Alyosha Zamolodchikov, they used the boundary TBA
to investigate the sinh–Gordon theory on a finite interval and relate it to boundary
Liouville theory [70]. He also developed methods to determine the form factors of
operators localized both on integrable boundaries and defects [71, 72]. Recently,
he has analyzed the finite-size spectrum of integrable quantum field theories. He
developed a systematic expansion for the finite-size correction of the energy levels
in various circumstances [73]. Exploiting the anti-de Sitter/conformal field theory
correspondence he successfully applied the developed 2D integrable techniques to
calculate the scaling dimensions of gauge-invariant operators in four-dimensional
quantum field theories [74].

The material of this book is divided into five parts, with a short summary at the
beginning of each part.

" In the first part, we deal with non-relativistic 1D continuum Fermi and Bose
quantum gases of identical spinless particles.

" The second part is devoted to the description of the quantum inverse-scattering
method and to the analysis of the related Yang–Baxter equation. We present the
complete solution of spin- 1

2 fermions with ·-interactions.

" The third part concerns integrable XXX, XXZ and XYZ Heisenberg models,
with spin- 1

2 , and also isotropic models with general spin s. The thermodynamics
is derived by using traditional methods based on the string hypothesis as well
as by a simpler method of Destri and Vega which leads to a single nonlinear
integral equation.

www.cambridge.org/9781107030435
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-03043-5 — Introduction to the Statistical Physics of Integrable Many-body Systems
Ladislav Šamaj , Zoltán Bajnok
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Preface xix

" The fourth part is devoted to systems of condensed-matter physics. We review
the exact solutions of the Hubbard model. The exact solutions of the non-
degenerate s-d exchange (Kondo) and Anderson models, describing the inter-
action of a single impurity with a conduction band, are worked out as well. The
method of fermion bosonization is documented on the Luttinger many-fermion
model. The integrable models of superconductors are presented.

" The fifth part concerns the complete solution of a relativistic (1+1)-dimensional
integrable QFT, namely the sine–Gordon model. This model is first treated semi-
classically, then its full quantum description is given. The relationship between
the (1+1)-dimensional sine–Gordon model and the 2D classical Coulomb gas is
explained and the exact thermodynamics of the latter model is derived.

" Appendix A describes an explicit construction of spin operators on a chain. The
subject of Appendix B is the description of doubly periodic elliptic functions
which are generalizations of the trigonometric functions in the complex plane.

Each part is divided into several chapters. Some exercises are presented at the
end of each chapter. These exercises are intended either to avoid relatively simple
algebraic calculations or to complement basic ideas in the main text. More com-
plicated exercises are solved in detail; the solutions of simple exercises are only
indicated.

L.Š. wrote the first four parts which concern integrable models of condensed-
matter physics and equilibrium statistical mechanics. His writing is based on a
series of lectures about integrable systems for graduate students given at the Insti-
tute of Physics and Comenius University in Bratislava and on a series of lectures
at the Institute of Physics of the Czech Academy of Sciences in Prague. The fifth
part, written by Z.B., is based on his lecture course delivered at Eötvös University
in the fall semester of 2010. His aim was to present techniques and methods used
to solve integrable QFT. The sine–Gordon model is a good pedagogical example in
this respect as it is relatively simple, but contains all the essential ingredients one
has to learn in order to solve more complicated integrable models.

This book is devoted to the memory of Alyosha Zamolodchikov. Z.B. had the
honor of collaborating with this great magician in integrable QFT [70].

L.Š. is grateful to his teachers: Jerome K. Percus from the Courant Institute of
Mathematical Sciences, New York University, and Bernard Jancovici from LPT,
Université de Paris Sud, Orsay.

We thank László Palla and Gábor Takács for useful comments.
The support of L.Š. received from Grant VEGA No. 2/0049/12 and CE-SAS

QUTE is acknowledged. Z.B. was supported by a Bolyai Scholarship, OTKA
K81461 and partially by a “Lendület” Grant.
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