Contents

Preface \hspace{1cm} page xiii
Acknowledgements \hspace{1cm} xiv

1 \hspace{1cm} Introduction
1.1 Introduction \hspace{1cm} 1
1.2 General approach \hspace{1cm} 2
1.3 Prior knowledge \hspace{1cm} 2
1.4 Example \hspace{1cm} 2
1.5 Software \hspace{1cm} 4
1.6 Data structure \hspace{1cm} 4
1.7 Statistical notation \hspace{1cm} 4
1.8 What's new in the second edition? \hspace{1cm} 5

2 \hspace{1cm} Study design
2.1 Introduction \hspace{1cm} 6
2.2 Observational longitudinal studies \hspace{1cm} 6
 2.2.1 Period and cohort effects \hspace{1cm} 7
 2.2.2 Other confounding effects \hspace{1cm} 11
 2.2.3 Example \hspace{1cm} 12
2.3 Experimental (longitudinal) studies \hspace{1cm} 13

3 \hspace{1cm} Continuous outcome variables
3.1 Two measurements \hspace{1cm} 16
 3.1.1 Example \hspace{1cm} 17
3.2 Non-parametric equivalent of the paired t-test \hspace{1cm} 18
 3.2.1 Example \hspace{1cm} 19
3.3 More than two measurements \hspace{1cm} 20
 3.3.1 The "univariate" approach: a numerical example \hspace{1cm} 23
 3.3.2 The shape of the relationship between an outcome variable and time \hspace{1cm} 26

Contents

3.3.3 A numerical example 27
3.3.4 Example 29
3.4 The “univariate” or the “multivariate” approach? 34
3.5 Comparing groups 35
3.5.1 The “univariate” approach: a numerical example 37
3.5.2 Example 38
3.6 Comments 42
3.7 Post-hoc procedures 44
3.7.1 Example 44
3.8 Different contrasts 45
3.8.1 Example 46
3.9 Non-parametric equivalent of MANOVA for repeated measurements 48
3.9.1 Example 50

4 Continuous outcome variables – relationships with other variables 51
4.1 Introduction 51
4.2 “Traditional” methods 51
4.3 Example 53
4.4 Longitudinal methods 55
4.5 Generalized estimating equations 57
4.5.1 Introduction 57
4.5.2 Working correlation structures 57
4.5.3 Interpretation of the regression coefficients derived from GEE analysis 60
4.5.4 Example 61
4.5.4.1 Introduction 61
4.5.4.2 Results of a GEE analysis 63
4.5.4.3 Different correlation structures 66
4.6 Mixed model analysis 69
4.6.1 Introduction 69
4.6.2 Mixed models for longitudinal studies 70
4.6.3 Example 73
4.6.4 Comments 80
4.7 Comparison between GEE analysis and mixed model analysis 81
4.7.1 The “adjustment for covariance” approach 83
4.7.2 Extensions of mixed model analysis 84
4.7.3 Comments 84

5 The modeling of time 86
5.1 The development over time 86
5.2 Comparing groups 95
5.3 The adjustment for time 99
Contents

6 Other possibilities for modeling longitudinal data
6.1 Introduction 103
6.2 Alternative models 103
6.2.1 Time-lag model 103
6.2.2 Model of changes 105
6.2.3 Autoregressive model 107
6.2.4 Overview 108
6.2.5 Example 108
6.2.5.1 Introduction 108
6.2.5.2 Data structure for alternative models 109
6.2.5.3 GEE analysis 109
6.2.5.4 Mixed model analysis 113
6.3 Comments 116
6.4 Another example 117

7 Dichotomous outcome variables 119
7.1 Simple methods 119
7.1.1 Two measurements 119
7.1.2 More than two measurements 121
7.1.3 Comparing groups 121
7.1.4 Example 122
7.1.4.1 Introduction 122
7.1.4.2 Development over time 122
7.1.4.3 Comparing groups 124
7.2 Relationships with other variables 125
7.2.1 “Traditional” methods 125
7.2.2 Example 126
7.2.3 Sophisticated methods 126
7.2.4 Example 128
7.2.4.1 Generalized estimating equations 128
7.2.4.2 Mixed model analysis 133
7.2.5 Comparison between GEE analysis and mixed model analysis 136
7.2.6 Alternative models 138
7.2.7 Comments 139

8 Categorical and “count” outcome variables 141
8.1 Categorical outcome variables 141
8.1.1 Two measurements 141
8.1.2 More than two measurements 142
8.1.3 Comparing groups 143
8.1.4 Example 143
10.5 Imputation methods
 10.5.1 Continuous outcome variables
 10.5.1.1 Cross-sectional imputation methods
 10.5.1.2 Longitudinal imputation methods
 10.5.1.3 Comment
 10.5.1.4 Multiple imputation
 10.5.2 Dichotomous and categorical outcome variables
 10.5.3 Example
 10.5.3.1 Continuous outcome variables
 10.5.3.2 Should multiple imputation be used in combination with a
 mixed model analysis?
 10.5.3.3 Additional analyses
 10.5.3.4 Dichotomous outcome variables
 10.5.4 Comments
 10.5.4.1 Alternative approaches
 10.6 GEE analysis versus mixed model analysis regarding the analysis on datasets
 with missing data
 10.7 Conclusions

11 Sample size calculations
 11.1 Introduction
 11.2 Example

12 Software for longitudinal data analysis
 12.1 Introduction
 12.2 GEE analysis with continuous outcome variables
 12.2.1 Stata
 12.2.2 SAS
 12.2.3 R
 12.2.4 SPSS
 12.2.5 Overview
 12.3 GEE analysis with dichotomous outcome variables
 12.3.1 Stata
 12.3.2 SAS
 12.3.3 R
 12.3.4 SPSS
 12.3.5 Overview
 12.4 Mixed model analysis with continuous outcome variables
 12.4.1 Stata
 12.4.2 SAS
 12.4.3 R
12.4.4 SPSS 260
12.4.5 MLwiN 264
12.4.6 Overview 266

12.5 Mixed model analysis with dichotomous outcome variables 267
 12.5.1 Introduction 267
 12.5.2 Stata 268
 12.5.3 SAS 268
 12.5.4 R 271
 12.5.5 SPSS 274
 12.5.6 MLwiN 278
 12.5.7 Overview 280

12.6 Categorical and “count” outcome variables 281

12.7 The “adjustment for covariance approach” 282
 12.7.1 Example 283

13 One step further 292
 13.1 Introduction 292
 13.2 Outcome variables with upper or lower censoring 292
 13.2.1 Introduction 292
 13.2.2 Example 294
 13.2.3 Remarks 300
 13.3 Classification of subjects with different developmental trajectories 301

References 305
Index 316