Index

"adjustment for covariance" approach, continuous outcome variables 83
alternative methods, missing data analysis 234–5
alternative models autoregressive model 107–8
correlation with other alternative models 116–17
correlation to standard model 108–14
dichotomous outcome variables 138–9
experimental study 117–18
model of changes 105–7
overview 108
time-lag model 103–5
Amsterdam Growth and Health Longitudinal Study 117–18, 153–60
analysis of covariance 167–8
experimental studies 170–2, 176, 181–2
longitudinal 188–92, 195–6, 200–1
multivariate (MANCOVA) 184–5
ANOVA (analysis of variance) 24, 33–4
see also univariate analysis of variance
area under the curve (AUC) 182–3
“ceiling” effects, continuous outcome variables 166, 292–4
changes, modeling of see model of changes
Chi-square test 74
see also McNemar test
classification of subjects with different developmental trajectories 301–4
clinical trials see experimental studies
Cochran’s Q test 121, 123–4
cohort effects 8–10
“combination” approach 193–6
correlation of groups see group comparisons
compound symmetry assumption see sphericity assumption
conditional model see autoregressive model
covariates see confounding effects
exposure–outcome relationship 103
causality criteria 1–2
changes, modeling of see model of changes
Chi-square test 74
see also McNemar test
classification of subjects with different developmental trajectories 301–4
clinical trials see experimental studies
Cochran’s Q test 121, 123–4
cohort effects 8–10
“combination” approach 193–6
correlation of groups see group comparisons
compound symmetry assumption see sphericity assumption
conditional model see autoregressive model
confounding effects 7–13, 15, 102
continuous outcome variables
comments 42–3
comparing groups 35–7
example dataset 38–41
different contrasts 45–6
example dataset 46–8
experimental studies
with more than one follow-up measurement 179–201
with only one follow-up measurement 165–76
more than two measurements 20–3
example dataset 29–34
numerical example 27–9
shape of relationship between an outcome variable and time 26–7
univariate approach, a numerical example 37–8
different contrasts 45–6
example dataset 46–8
experimental studies
with more than one follow-up measurement 179–201
with only one follow-up measurement 165–76
more than two measurements 20–3
example dataset 29–34
numerical example 27–9
shape of relationship between an outcome variable and time 26–7
univariate approach, a numerical example 37–8
non-parametric equivalent of MANOVA for repeated measurements 48–50
example dataset 50
non-parametric equivalent of paired t-test 18–19
example dataset 19–20

Barthel index 294–6
categorical outcome variables
example 143–6
imputation methods 224–5
modeling of time 91–3
more than two measurements 142–3
relationships with other variables 146–53
software 281–2
two measurements 141–2
causal relationships 103
causality criteria 1–2
“ceiling” effects, continuous outcome variables 166, 292–4
changes, modeling of see model of changes
Chi-square test 74
see also McNemar test
classification of subjects with different developmental trajectories 301–4
clinical trials see experimental studies
Cochran’s Q test 121, 123–4
cohort effects 8–10
“combination” approach 193–6
correlation of groups see group comparisons
compound symmetry assumption see sphericity assumption
conditional model see autoregressive model
confounding effects 7–13, 15, 102
continuous outcome variables
comments 42–3
comparing groups 35–7
example dataset 38–41
different contrasts 45–6
example dataset 46–8
experimental studies
with more than one follow-up measurement 179–201
with only one follow-up measurement 165–76
more than two measurements 20–3
example dataset 29–34
numerical example 27–9
shape of relationship between an outcome variable and time 26–7
univariate approach, a numerical example 37–8
non-parametric equivalent of MANOVA for repeated measurements 48–50
example dataset 50
non-parametric equivalent of paired t-test 18–19
example dataset 19–20

Cambridge University Press
Jos W. R. Twisk
Index
More information
post-hoc procedures 44
example dataset 44–5
relationships with other variables 51
comparison between GEE and mixed model analysis 81–5
example dataset 53–5
GEE analysis 57–68
longitudinal methods 55–7
mixed model analysis 69–81
"traditional" methods 51–3
sample size calculation 237–8
time modeling 86–93
two measurements 16–17
example dataset 17–18
univariate vs. multivariate approach 34–5
contrasts (within-subjects) 45–6
examples of different 46–8
"one-within" design 32–3
post-hoc procedures 48
correlation structures
choice of working 57–60, 61–3
for "count" outcome variable 154–8
for dichotomous outcome variables 128–33
different structures, results with 66–8
exchangeable, results of using 63–6
software extensions for mixed model analysis 84
"count" outcome variables 153
comparison between GEE and mixed model analysis 160–1
example datasets 153–4
GEE analysis 154–8
mixed model analysis 158–60
software packages 281–2
Cox proportional hazards regression for recurrent events 208–10
cross-over trials 14–15
cross-sectional imputation methods 222
cross-sectional (traditional) analysis 125–6
categorical outcome variables 146–7
continuous outcome variables 51–5
"count" outcome variables 153
dichotomous outcome variables 125–6
in experimental studies 210–11
summary statistics 182–3
data augmentation (DA) 226–7
data structures 4
development over time see time modeling
developmental trajectories, classification of 301–4
dichotomous outcome variables
comparing groups 121
example dataset 122
comparing groups 124–5
development over time 122–4
experimental studies 201
other approaches 208–10
simple analysis 202–3
sophisticated analysis 203–7
imputation methods 224–5
more than two measurements 121
relationships with other variables
alternative models 138–9
comparison between GEE and mixed model analysis 136–8
example dataset using GEE and mixed model analysis 128–36
sophisticated methods 126–8
"traditional" methods 125–6
sample size calculations 238, 239
two measurements 119–20
"difference" contrast 48
dispersion (scale) parameter, GEE analysis 64, 129, 156
drop-outs see missing data
epsilon (sphericity coefficient) 31–2
error sum of squares see sum of squares
estimation procedures
GEE and mixed model comparisons 82
maximum likelihood 80–1
penalized quasi-likelihood (PQL) 279–80
restricted maximum likelihood (REML) 73–4, 254–6
"eta squared", effect magnitude, MANOVA 33
dataset 2–4
exchangeable correlation structure 58
GEE analysis with 92, 99
results of linear GEE analysis using 63–6
results of Poisson GEE analyses 156–8
exchangeable covariance structure 282
example dataset 283–8
experimental studies 6–7, 13–15, 163–5
comments 210–11
continuous outcome variables
more than one follow-up measurement 179–200
only one follow-up measurement 165–76
dichotomous outcome variables 201–10
explained variance 13, 33, 41, 64–5
F-statistic 22–3
ANOVA example 23–6
MANOVA for repeated measurements 29–34
"fit" of a model 116–17
indicators 255–6, 262, 270–1
and log (restricted) likelihood value 74
"floor" effects, continuous outcome variables 166, 292–4
example dataset 294–8
follow-up measurements 163–5
studies with more than one 179–80
dichotomous outcome variables 201–10
MANOVA for repeated measurements 183–5
sample size calculations 238–9
simple analysis 180–2
follow-up measurements (cont.)
sophisticated analysis 187–200
summary statistics 182–3
studies with only one 165–70
example dataset 170–6
Friedman test statistic 48–50

GEE (generalized estimating equations) 57
alternative models 109–12
continuous outcome variables
comparison with mixed model analysis 81–5
different correlation structures 66–8
regression coefficients for covariates 60–1
results of GEE analysis 63–6
selection of correlation structure 61–3
software packages 243–9
correlation structure, choice of correct 57–60
results of GEE analyses using 129–33

dichotomous outcome variables 128–33
comparison with mixed model analysis 136–8
techniques of intervention effects 203–7
time modeling 86–93
missing data 218–21
time modeling 86–93
group comparisons 95–9
generalized linear model (GLM) see MANOVA for
repeated measurements
GENMOD procedure, SAS software 244, 249–50
GLLAMM procedure, Stata software 148, 281–2, 294
Greenhouse–Geisser method, sphericity 31–2
group comparisons, development over time 95–9
categorical outcome variables 143
continuous outcome variables 35–41
dichotomous outcome variables 121
"proportion of change" 124–5
hazard ratio 209–10
"Helmert" contrast 48
"hot-deck" imputation method 222
Huber–White sandwich estimator 59
imputation methods, missing data
alternative approaches 234–5
comments 234
continuous outcome variables 221–4
dichotomous and categorical outcome variables 224–5
example dataset 225–34
independent correlation structure 57–8
results of GEE analyses using 129–33
results of Poisson GEE analyses 156–8
independent sample t-test 180–1
missing data analysis 216–17
interval effects see experimental studies
last value carried forward (LVCF) 222, 225–8
latent class growth analysis (LCGA) 303
latent class growth mixture modeling (LCGMM) 303
learning/test effects 11–12
likelihood ratio test 74–6, 88–9, 135, 160
linear GEE analysis see GEE, continuous outcome variables
linear mixed model analysis see mixed model analysis,
continuous outcome variables
log (restricted) likelihood value 74
logistic GEE analysis 128–33
comparison with mixed model analysis 136–8
count" outcome variables, software for 282
time modeling 86–93
intervention effects 203–7
software packages 249–53
intervention effects 203–7
software packages 249–53
logistic mixed model analysis
dichotomous outcome variables 133–6
comparison with logistic GEE analysis 136–8
missing data 231–4
software packages 267–80
time modeling 86–93
intervention effects 203–7
logistic regression analysis, dichotomous outcome
variables 126–8
"long-term exposure" to covariates 51, 54, 126
longitudinal analysis of covariance 188–92
longitudinal imputation methods 222
longitudinal logistic regression 126–8
longitudinal statistical methods 55–7
longitudinal studies 1
see also experimental studies
longitudinal tobit regression 293–7
LVCF (last value carried forward) 222
example illustrating 225–8
MANCOVA (multivariate analysis of covariance)
for repeated measurements 184–5
MANOVA (multivariate analysis of variance) for
repeated measurements 45–8
MANOVA (multivariate analysis of variance) for
repeated measurements 45–8
drawbacks 42–3
experimental studies 183–5
missing data 219–21, 225
"one-within" design 20–3
non-parametric equivalent (Friedman test) 48–50
"one-within, one-between" design 35–41
post-hoc procedures 44–5
shape of the relationship between outcome
variable and time 26–7
numerical example 27–9
results from "naïve" ANOVA analysis 33–4
umivariate approach within 23–6, 34–5
Markov model see autoregressive model
maximum likelihood estimation see restricted
maximum likelihood (REML)
McNemar test 120
limitations of 122
multivariate extension of 121
mean, regression to 166–70
effect of ignoring, example dataset 170–3
missing data 212–14
analysis of determinants for 216–18
analysis performed on datasets with 218–19
example dataset 219–21
conclusions 236
GEE analysis vs. mixed model analysis 235–6
generating datasets with 215
ignorable or informative 214–15
imputation methods
alternative approaches 234–5
comments 234
continuous outcome variables 221–4
dichotomous and categorical outcome variables 224–5
example dataset 225–34
mixed model analysis 69–70
alternative models 113–14
categorical outcome variables 148–53
continuous outcome variables 70–2
comments 80–1
comparison with GEE analysis 81–5
example datasets 73–80
missing data 226–30
software 253–67
"count" outcome variables 158–60
comparison with GEE analysis 160–1
dichotomous outcome variables
comparison with GEE analysis 136–8
experimental studies 203–7
missing data 231–4
relationship with several covariates 133–6
software 267–80
missing data 218–19, 220–1, 234
vs. GEE analysis 255–6
NLMIXED procedure, SAS 268–71
non-parametric tests 18–19, 48–50
observational studies 6, 7
example dataset 12–13
other confounding effects 11–12
period and cohort effects 8–10
odds ratios 126, 203–7
interpretation of 129, 147, 149–50
"one-within" design (MANOVA) 29–34
Friedman test 48–50
"one-within, one-between" design, group comparisons 35–7
results from example dataset 38–41
"univariate" approach, numerical example 37–8
outcome variables with upper or lower censoring 292–4
example 294–300
remarks 300–1
overdispersion 162
paired t-test 16–18
penalized quasi-likelihood (PQL), estimation procedure 272–4, 279–80
period (time of measurement) effects 8
Poisson regression analysis, "count" outcome variables 153–4
GEE analysis 154–8
vs. mixed model analysis 160–1
mixed model analysis 158–60
vs. longitudinal two-part model 299–300
post-hoc procedures, MANOVA 44–5, 48
posterior predictive distribution, missing data 224
"proportion of change"
categorical outcome variables 142–3
example 143–6
dichotomous outcome variables
example 122–5
group comparisons 121
more than two measurements 121
two measurements 120
proportional hazards regression for recurrent events 208–10
prospective cohort studies 6
quadratic development over time 89–91, 96
example datasets 294–7
"quasi-causal" relationships 103
quasi-likelihood estimation procedures 57, 272–4, 279–80
R software package
GEE analysis
continuous outcome variables 245–7
Index

R software package (cont.)
 dichotomous outcome variables package 251
 mixed model analysis
 continuous outcome variables 238–9
 dichotomous outcome variables 271–4
 random coefficient analysis see mixed model analysis
 randomized controlled trials (RCTs) 14–15
 see also experimental studies
 recurrent events, Cox proportional hazards
 regression 208–10
 regression to the mean phenomenon 166–70
 effect of ignoring 170–3
 relative change 168–70
 relative risk 202
 and hazard ratios 209–10
 and odds ratios 203
 REML (restricted maximum likelihood) 73–4
 compared to maximum likelihood estimation 80–1
 in software packages 254–6, 259, 266–7
 "repeated" contrast 48
 reproducibility of measurements 12–13
 research questions as basis for analysis 2
 "residual change" analysis 168
 restricted maximum likelihood (REML) estimation see REML
 robustness, GEE analysis 39, 66
 sample size calculations 237–40
 example 240–2
 SAS software package
 GEE analysis
 continuous outcome variables 244
 dichotomous outcome variables 249–50
 mixed model analysis
 continuous outcome variables 254–6
 dichotomous outcome variables 268–71
 scale parameter, GEE analysis 64, 129, 156
 semirobust standard error 66
 signed rank sum test (Wilcoxon) 18–20
 simple analytical methods, dichotomous outcome variables
 comparing groups 121
 example dataset 122–5
 experimental studies 202–3
 more than two measurements 121
 two measurements 119–20
 "simple" contrast 46–8
 single imputation methods 221–3
 software packages 4, 243
 "adjustment for covariance" approach 282–3
 example 283–91
 categorical and "count" outcome variables 281–2
 GEE analysis with continuous outcome variables
 R 245–7
 SAS 244
 SPSS 247–8
 Stata 243–4
 summary 249
 GEE analysis with dichotomous outcome variables
 R 251
 SAS 249–50
 SPSS 252–3
 Stata 249
 summary 253
 mixed model analysis with continuous outcome variables
 MLwiN 264–6
 R 258–9
 SAS 254–6
 SPSS 260–4
 Stata 253–4
 summary 266–7
 mixed model analysis with dichotomous outcome variables 267–8
 MLwiN 278–80
 R 271–4
 SAS 268–71
 SPSS 274–8
 Stata 268
 summary 280
 Solomon four group design 14
 sophisticated analytical methods 126–8, 148, 187–200, 203–7
 sphericity assumption 22–3
 example dataset 29–34
 Greenhouse–Geisser adjustment 31–2
 SPIRIT study 297–300
 SPSS software package
 GEE analysis
 continuous outcome variables 247–8
 dichotomous outcome variables 252–3
 mixed model analysis
 continuous outcome variables 260–4
 dichotomous outcome variables 274–8
 Stata software package
 GEE analysis
 continuous outcome variables 243–4
 dichotomous outcome variables 249
 mixed model analysis
 continuous outcome variables 253–4
 dichotomous outcome variables 268
 (stationary) m-dependent correlation structure 58
 statistical notation 4
 statistical prior knowledge 2
 structural equation modeling 301–2
 Stuart–Maxwell test 141–2
 example dataset 143–4
 sum of squares 24–6
 individual 28, 34, 70–1
 "univariate" approach numerical example 37–8
 summary statistics 182–3
 survival approaches 208–10
 t-tests
 independent samples 180–1
 missing data analysis 216–17
 paired 16–18
 non-parametric equivalent of 18–20

© in this web service Cambridge University Press www.cambridge.org
Index

test/learning effects 11–12
time of measurement (period) effects 8
multiple longitudinal design 9–10
time-lag model 103–5, 138–9
comparison with autoregressive model 116–17
GEE analysis 109–12
mixed model analysis 113–14
time modeling
adjustment for time 99–102
comparing groups 95–9
development over time 86–93
more than two measurements 20–34
shape of relationship 26–7
therapy effect at different time points 196–200
two measurements 16–20
tobit regression analysis 293–7
“traditional” methods 51–3, 125–6, 146
transformation “factors” 27–9
trials see experimental studies
two measurements
adjustment for covariance between
83
categorical outcome variables 141–2
continuous outcome variables 16–17
definition of change 165–6
example dataset 17–18
Wilcoxon signed rank sum test 18–20
dichotomous outcome variables 119–20
see also MANOVA for repeated measurements
two-part regression models 293–301
univariate analysis of variance
numerical examples
“one-within, one-between” design 37–41
simple longitudinal dataset 23–6
sphericity assumption 22–3
vs. multivariate approach 34–5
unpaired t-test see independent sample t-test
unstructured correlation structure 59, 156–8
results from using 283–91
Wald statistic 126, 134, 265
Wilcoxon signed rank sum test 18–20
working correlation structures see correlation structures
zero-inflated Poisson regression 293