Contents

Contributors xi
Preface xv
Acknowledgments xix

1 Pure Premium Modeling Using Generalized Linear Models 1
Ernesto Schirmacher
1.1 Introduction 1
1.2 Data Characteristics 3
1.3 Exploratory Data Analysis 6
1.4 Frequency Modeling 12
1.5 Severity Modeling 23
1.6 Pure Premium 30
1.7 Validation 34
1.8 Conclusions 37
References 38

2 Applying Generalized Linear Models to Insurance Data: Frequency/Severity versus Pure Premium Modeling 39
Dan Tevet
2.1 Introduction 39
2.2 Comparing Model Forms 40
2.3 The Dataset and Model Forms 44
2.4 Results 47
Appendix 2.A Proof of Equivalence between Pure Premium Model Forms 55
Conclusion 57
Appendix 2.B The Gini Index 57
References 58
Contents

3 Generalized Linear Models as Predictive Claim Models 60
 Greg Taylor and James Sullivan
 3.1 Review of Loss Reserving 60
 3.2 Additional Notation 63
 3.3 GLM Background 64
 3.4 Advantages of GLMs 66
 3.5 Diagnostics 68
 3.6 Example 73
 3.7 Conclusion 97
 References 98

4 Frameworks for General Insurance Ratemaking: Beyond the Generalized Linear Model 100
 Peng Shi and James Guszcza
 4.1 Introduction 100
 4.2 Data 102
 4.3 Univariate Ratemaking Framework 104
 4.4 Multivariate Ratemaking Frameworks 113
 4.5 Model Comparisons 122
 4.6 Conclusion 123
 References 124

5 Using Multilevel Modeling for Group Health Insurance Ratemaking: A Case Study from the Egyptian Market 126
 Mona S. A. Hammad and Galal A. H. Harby
 5.1 Motivation and Background 126
 5.2 Data 130
 5.3 Methods and Models 141
 5.4 Results 144
 5.5 Conclusions 146
 Acknowledgments 147
 Appendix 147
 References 157

6 Clustering in General Insurance Pricing 159
 Ji Yao
 6.1 Introduction 159
 6.2 Overview of Clustering 160
 6.3 Dataset for Case Study 161
 6.4 Clustering Methods 163
 6.5 Exposure-Adjusted Hybrid (EAH) Clustering Method 168
Contents ix

6.6 Results of Case Study 171
6.7 Other Considerations 177
6.8 Conclusions 178
References 179

7 Application of Two Unsupervised Learning Techniques to Questionable Claims: PRIDIT and Random Forest 180
Louise A. Francis
7.1 Introduction 180
7.2 Unsupervised Learning 181
7.3 Simulated Automobile PIP Questionable Claims Data and the Fraud Issue 182
7.4 The Questionable Claims Dependent Variable Problem 185
7.5 The PRIDIT Method 185
7.6 Processing the Questionable Claims Data for PRIDIT Analysis 187
7.7 Computing RIDITS and PRIDITS 187
7.8 PRIDIT Results for Simulated PIP Questionable Claims Data 188
7.9 How Good Is the PRIDIT Score? 189
7.10 Trees and Random Forests 192
7.11 Unsupervised Learning with Random Forest 194
7.12 Software for Random Forest Computation 195
7.13 Some Findings from the Brockett et al. Study 201
7.14 Random Forest Visualization via Multidimensional Scaling 202
7.15 Kohonen Neural Networks 204
7.16 Summary 205
References 206

8 The Predictive Distribution of Loss Reserve Estimates over a Finite Time Horizon 208
Glenn Meyers
8.1 Introduction 208
8.2 The CAS Loss Reserve Database 210
8.3 The Correlated Chain Ladder Model 212
8.4 The Predictive Distribution of Future Estimates 213
8.5 The Implications for Capital Management 216
8.6 Summary and Conclusions 223
References 223
Contents

9 Finite Mixture Model and Workers’ Compensation Large-Loss Regression Analysis 224
 Luyang Fu and Xianfang Liu
 9.1 Introduction 224
 9.2 DGLM and FMM 230
 9.3 Data 232
 9.4 Traditional Distribution Analysis 234
 9.5 Univariate and Correlation Analyses 239
 9.6 Regression Analysis 246
 9.7 Conclusions 257
 References 258

10 A Framework for Managing Claim Escalation Using Predictive Modeling 261
 Mohamad A. Hindawi and Claudine H. Modlin
 10.1 Introduction 261
 10.2 Loss Development Models 262
 10.3 Additional Data for Triage Models 267
 10.4 Factor Selection 271
 10.5 Modeling Method 274
 10.6 Conclusions 277
 10.7 Further Research Opportunities 277
 Appendix: Penalized Regression 280
 References 289

11 Predictive Modeling for Usage-Based Auto Insurance 290
 Udi Makov and Jim Weiss
 11.1 Introduction to Usage-Based Auto Insurance 290
 11.2 Poisson Model for Usage-Based Auto Insurance 294
 11.3 Classification Trees 301
 11.4 Implementing UBI Models with a Traditional Rating Plan 305
 11.5 Summary and Areas for Future Research 306
 Acknowledgments 307
 References 308

Index 309