Structural Information Theory

The Simplicity of Visual Form

Structural information theory is a coherent theory about the way the human visual system organizes a raw visual stimulus into objects and object parts. To humans, a visual stimulus usually has one clear interpretation even though, in theory, any stimulus can be interpreted in numerous ways. To explain this, the theory focuses on the nature of perceptual interpretations rather than on underlying process mechanisms, and adopts the simplicity principle, which promotes efficiency of internal resources, rather than the likelihood principle, which promotes veridicality in the external world. This theoretically underpinned starting point gives rise to quantitative models and verifiable predictions for many visual phenomena, including amodal completion, subjective contours, transparency, brightness contrast, brightness assimilation, and neon illusions. It also explains phenomena such as induced temporal order, temporal context effects, and hierarchical dominance effects, and extends to evaluative pattern qualities such as distinctiveness, interestingness, and beauty.

Emanuel Leeuwenberg is Emeritus Associate Professor at the Donders Institute for Brain, Cognition and Behaviour at Radboud University Nijmegen, The Netherlands.

Peter A. Van Der Helm is Assistant Professor at the Donders Institute for Brain, Cognition and Behaviour at Radboud University Nijmegen, The Netherlands.
Structural Information Theory

The Simplicity of Visual Form

Emanuel Leeuwenberg
Peter A. van der Helm
Contents

Figures page vii
Tables xiv
Preface xv

Introduction 1

Part I Towards a theory of visual form

1 Borders of perception
1.1 The stimulus 9
1.2 Knowledge 16

2 Attributes of visual form 24
2.1 Features 24
2.2 Dimensions 27
2.3 Transformations 34
2.4 Gestalt properties 38

3 Process versus representation 45
3.1 Process criteria 45
3.2 Representation criteria 51

4 Models and principles 64
4.1 Two representation models 64
4.2 Two perception principles 74

5 Assumptions and foundations 83
5.1 Visual information processing 83
5.2 Mental and symbolic codes 86
5.3 Theoretical foundations 91

Part II Applications to visual form

6 Formal coding model 109
6.1 Structural information 109
6.2 Attributes of simplest codes 113
Contents

7 A perceptual coding manual
 7.1 Line drawings
 7.2 Surfaces
 7.3 Objects

8 Preference effects
 8.1 Occluding layers
 8.2 Translucent layers
 8.3 Rivalry

9 Time effects
 9.1 Induced temporal order
 9.2 Induced simultaneity

10 Hierarchy effects
 10.1 Superstructure dominance
 10.2 Mental rotation
 10.3 Orientation frames

Part III Extensions

11 Perception beyond SIT
 11.1 Metrical information
 11.2 Image versus mirror-image

12 SIT beyond perception
 12.1 Alphabetic letter series
 12.2 Evaluative pattern qualities

Overview

Conclusion

References

Author index

Subject index

The colour plates are situated between pages 208 and 209.
Figures

I.1 A Maxwell demon who, like perception, turns chaos into order

I.2 The difference between structural and metrical information
1.1 Eight object images which are hardly identifiable as different views of the same object
1.2 Stimulus objects involved in image versus mirror-image discrimination experiments
1.3 Image versus mirror-image discrimination is easier for simple objects than for complex objects
1.4 Different views of a prism can be imagined due to its view-independent representation
1.5 Judged likelihoods of configurations presuppose classification of these configurations
1.6 The perceptual representation of a partly occluded pattern is equivalent to that of the completed pattern
1.7 Conscious reasoning and perception may lead to different completions of occluded patterns
1.8 A Gestalt is determined not only by its parts but also by the relationships between these parts
1.9 Only primes showing perceptually plausible target parts may affect the target interpretation
1.10 Specific knowledge may favour a specific visually plausible interpretation of a pattern
1.11 A pattern may give rise to a few plausible interpretations and many implausible ones
2.1 Feature complexity and visual complexity are opposite functions of set size
2.2 The triangular inequality in terms of pattern differences does not hold in perception
2.3 Prototypes are either unambiguous patterns or simple patterns
viii Figures

2.4 Distinctive structures are more salient but common structures are primary 32
2.5 In motion patterns, common structures tend to be suppressed gradually 33
2.6 Stepwise construction of a pattern by way of rigid transformations of parts 34
2.7 Partly overlapping regularities in a pattern cannot be combined into one representation 40
2.8 Three options for representing segments and regularities 40
2.9 Pattern interpretations depend on the actual strengths of Gestalt cues in patterns 42
3.1 A case in which minimal complexity per stage prevails over maximal cluster per stage 46
3.2 A case in which maximal cluster per stage prevails over minimal complexity per stage 46
3.3 Examples of patterns from the restricted application domain of the global precedence hypothesis 49
3.4 Examples of patterns to which the global precedence hypothesis does not apply 50
3.5 Clustering of randomly positioned subpatterns on the basis of their orientations 51
3.6 Hierarchy in pattern codes specifies relations between superstructures and subordinate structures 52
3.7 Hierarchy in object codes specifies relations between superstructures and subordinate structures 54
3.8 The superstructure in an object code does not always coincide with the largest object component 54
3.9 The superstructure of parallel oriented 2-D substructures is the largest pattern component 55
3.10 The superstructure of parallel oriented 3-D substructures is the largest object component 56
3.11 The hierarchically highest distinctive code component determines the clustering of subpatterns 57
3.12 Structural hierarchy prevails over metrical hierarchy 59
3.13 Structural hierarchy guarantees object invariance under rotation of superstructures 60
3.14 Spatial contiguity tends to exclude metrical hierarchical codes 61
3.15 Objects describable only by metrical hierarchy tend to be odd and not spatially contiguous 62
4.1 RBC attributes for the cross-sections and axes of geon objects 65
4.2 In case of two equally long axes, RBC prefers the axis with the most regular cross-section

4.3 An RBC code combining positive and negative geons is not always visually plausible

4.4 Compared to RBC codes, SIT codes differentiate more between different objects

4.5 Stimuli, described by RBC as dual shapes, for which SIT discerns dual and single shapes

4.6 RBC codes and SIT codes yield different predictions regarding similarity of shapes

4.7 A code not only describes a concrete pattern but also classifies it

4.8 A simpler object code describes a smaller class of objects

4.9 Linearity is a more valid non-accidental property than symmetry and parallelism

4.10 A design showing pros and contras of the avoidance of coincidence principle
7.6 Symmetry codes based on contour scanning should reflect surface symmetry 130
7.7 A single surface, even one with equal contour segments, may be interpreted as multiple surfaces 131
7.8 Quantification of various coincidental spatial relationships between two surfaces 132
7.9 Quantification of the strength of transparency interpretations relative to mosaic interpretations 132
7.10 The number of elements needed to amodally complete a pattern contributes to complexity 133
7.11 Quantification of the strength of occlusion interpretations relative to mosaic interpretations 133
7.12 Quantification of the strength of 3-D interpretations relative to 2-D interpretations 135
7.13 The two stylized corkscrews that are employed to describe 3-D turns 135
7.14 Illustration of the usage of corkscrews to hierarchically describe 3-D objects 137
7.15 Hierarchical descriptions of 3-D objects with mass filling-in 139
7.16 Hierarchical descriptions of 3-D objects with both mass filling-in and mass cut-off 141
7.17 For line patterns, 3-D interpretations may be simpler than 2-D interpretations 143
7.18 Alternating filling-in and cut-off operations on object planes may fixate complex objects 144
8.1 In amodal pattern completion, local completions are not against the global simplicity principle 148
8.2 Even if completion yields simple shapes, the mosaic interpretation may still be simpler 149
8.3 Mosaic and occlusion predictions by local cues and by unified and dissociated codes 152
8.4 Mosaic and occlusion interpretations predicted correctly by codes but not by local cues 153
8.5 Occlusion versus non-occlusion interpretations of subjective contour stimuli 153
8.6 Quantification of the strength of segmentations of line drawings 157
8.7 Coding details for various segmentations of line drawings 158
8.8 Transparency and non-transparency interpretations of surfaces with differently coloured parts 160
Figures

8.9 Easy and poor perceptual separability of intertwined submelodies 161
8.10 Illusory neon interpretations versus non-neon interpretations 163
8.11 Quantification of the strength of illusory neon interpretations 165
8.12 Contrast and assimilation effects 167
8.13 Simple parts lead to contrast effects and simple wholes lead to assimilation effects 167
8.14 Contrast and assimilation effects explained in terms of transparent layer compositions 168
8.15 Quantification of the strength of assimilation interpretations relative to contrast interpretations 170
8.16 Set of primes and test pairs used in a primed-matching experiment 173
8.17 Extended set of primes and test pairs used in a primed-matching experiment 174
8.18 Effects of occlusion primes suggest the concurrent presence of non-dominant completions 175
8.19 Effects of occlusion primes suggest the perceptual generation of multiple completions 176
8.20 Stimuli designed to test the perceptual presence of suppressed pattern interpretations 177
8.21 Bias corrected data suggest the concurrent presence of alternative pattern interpretations 178
9.1 The serial order of the two snapshots as a function of their semantic interpretations 182
9.2 Unambiguous and semi-ambiguous patterns may induce subjective temporal orders 184
9.3 Prediction of temporal order effects 186
9.4 Pattern presentation order may lead to code asymmetry 191
9.5 Code asymmetry as indicator of visual integration time 192
9.6 Partly symmetrical stimuli used to test the integrability of successively presented parts 194
10.1 Unity and duality of shapes depend on superstructures rather than on subordinate structures 199
10.2 Stimuli used in a primed-matching experiment to test superstructure dominance 201
10.3 Prime effects supporting superstructure dominance 202
10.4 Visualization of mental rotations about the X, Y, and Z axes 204
xii Figures

10.5 A display for the task to assess whether a specific rotation turns one shape into the other 205
10.6 Object cues for rotations that turn a shape into its mirror version 206
10.7 Object images, used in a mental rotation experiment, with their RBC and SIT codes 208
10.8 Various test combinations of an object and its mirror version 209
10.9 Test results as a function of the object cues mirror symmetry and point symmetry 211
10.10 Test results as a function of the code components mirror symmetry and point symmetry 214
10.11 Judged orientation of parts is affected by the orientation of the superstructure 217
10.12 Global frame orientations affect local pattern interpretations 219
11.1 Metrical complexity determines preference in case of structural ambiguity 227
11.2 Metrical complexity of transitions between surface parts affects the interpretation of surfaces 227
11.3 Subpatterns with lower metrical complexity tend to be seen as foreground 228
11.4 Factors relevant for assessing the metrical complexity of patterns 230
11.5 Simple line patterns used in a judged complexity study 231
11.6 Structural complexity is perceptually more important than metrical complexity 234
11.7 In 3-D, images and mirror images are equal but objects and their mirror versions are different 235
11.8 Natural and stylized versions of right-turning and left-turning corkscrews 236
11.9 Representations of hill and valley shapes by a handedness-sensitive system 238
11.10 A handedness-sensitive system supplies a cue for pattern handedness 240
11.11 Handedness-sensitive coding of right-turning and left-turning screws in canonical orientations 241
11.12 Handedness assessment of compositions of screws by a handedness-sensitive system 242
11.13 Representations of hill and valley shapes by a symmetry-sensitive system 245
<table>
<thead>
<tr>
<th>Figures</th>
<th>xiii</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.14</td>
<td>Symmetry-sensitive coding of right-turning and left-turning screws in canonical orientations</td>
</tr>
<tr>
<td>12.1</td>
<td>Configurations of four distracters and one target each, with quantified target distinctiveness</td>
</tr>
<tr>
<td>12.2</td>
<td>Clustering distracters and targets by shared features supplies indices for target distinctiveness</td>
</tr>
<tr>
<td>12.3</td>
<td>Interestingness is a function of both complexity and redundancy</td>
</tr>
<tr>
<td>12.4</td>
<td>Stimuli ranging from regular to irregular configurations used in a study on interestingness</td>
</tr>
<tr>
<td>12.5</td>
<td>Beauty correlates with hidden order</td>
</tr>
<tr>
<td>12.6</td>
<td>Beauty values for rectangles with hidden order</td>
</tr>
<tr>
<td>12.7</td>
<td>The independence of feather shape and colour pattern explains the beauty of peacock feathers</td>
</tr>
<tr>
<td>12.8</td>
<td>A weaker relationship between shape and colour enhances beauty</td>
</tr>
<tr>
<td>12.9</td>
<td>Quantification of the beauty of interlace patterns</td>
</tr>
<tr>
<td>12.10</td>
<td>In chess, the least plausible move of two checkmate moves is the most aesthetical one</td>
</tr>
<tr>
<td>12.11</td>
<td>Serial patterns without abrupt shape and colour transitions have higher beauty values</td>
</tr>
<tr>
<td>12.12</td>
<td>In melodies, an unexpected tone contributes to beauty if its unexpectedness is resolved later on</td>
</tr>
<tr>
<td>C.1</td>
<td>Plato’s metaphor of visual perception as a prisoner held captive in a cave since birth</td>
</tr>
</tbody>
</table>
Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>Ranked metrical loads and ranked judged complexities of simple line patterns</td>
<td>232</td>
</tr>
<tr>
<td>12.1</td>
<td>Predictions and test results for extrapolation of alphabetic letter series</td>
<td>256</td>
</tr>
</tbody>
</table>

xiv
Preface

This book does not provide a comprehensive survey of perception research. Rather, it deals with a specific, some might say idiosyncratic, approach to perception, and to visual form in particular. This approach is called structural information theory (SIT). Basically, SIT is a theory about structures irrespective of whether these structures are perceptual. Historically, however, SIT has been developed within the domain of visual perception research. A fundamental phenomenon in this domain is that, to humans, a visual stimulus usually has one clear interpretation even though any stimulus can, in principle, be interpreted in numerous ways. SIT addresses this phenomenon and aims at producing quantified and falsifiable predictions concerning the human interpretation of visual stimuli.

SIT was initiated, in the 1960s, by Emanuel Leeuwenberg and has been elaborated further by Hans Buffart, Peter van der Helm, and Rob van Lier. It began as a quantitative coding model of visual pattern classification that, in interaction with empirical research, developed into a general theory of perceptual organization. The home of SIT has always been the Radboud University Nijmegen, where it has been tested in collaboration with Harry van Tuijl, Frans Boselie, Rene Collard, Lucas Mens, Hans Mellink, Jantien van der Vegt, Cees van Leeuwen, Jackie Scharroo, Tessa de Wit, Arno Koning, Árpád Csathó, Gert van der Vloed, Matthias Treder, and Vinod Unni. Contributions and applications from elsewhere include those by Frank Restle, Hans-Georg Geissler, Ursula Schuster, Friedhart Klix, Ulrich Scheidereiter, Martina Puffe, Giovanni Adorni, Luigi Burigana, Albina Lucca, Remco Scha, Mehdi Dastani, Rens Bod, and Kasper Souren.

Our goal with this book is to provide an overview of SIT in a way that is accessible to a broad audience. We presuppose no special knowledge in the reader, neither of perception nor of SIT. In the Introduction, we discuss the unique status of perception and the roots of SIT. Then, we discuss SIT, in twelve chapters grouped in three parts. Part I shows how SIT’s starting assumptions emerge from attempts to explain visual
Preface

form phenomena. At the end of this section, an overview is presented of SIT’s assumptions and theoretical foundations. Part II begins with a coding manual presenting practical heuristics that can be used to describe various stimulus types. The subsequent chapters report applications of SIT to visual form perception. Part III attends to aspects of visual form beyond the scope of SIT and to applications of SIT beyond the field of visual form. We end the book with an overview and a conclusion. Complementary to this empirically oriented book is a book by Van der Helm (2013) which is focused on SIT assumptions and foundations.

Emanuel Leeuwenberg and Peter A. van der Helm