Modal Logic for Philosophers

Second Edition

This book on modal logic is especially designed for philosophy students. It provides an accessible yet technically sound treatment of modal logic and its philosophical applications. Every effort is made to simplify the presentation by using diagrams instead of more complex mathematical apparatus. These and other innovations provide philosophers with easy access to a rich variety of topics in modal logic, including a full coverage of quantified modal logic, non-rigid designators, definite descriptions, and the de-re de-dicto distinction. Discussion of philosophical issues concerning the development of modal logic is woven into the text. The book uses natural deduction systems, which are widely regarded as the easiest to teach and use. It also includes a diagram technique that extends the method of truth trees to modal logic. This provides a foundation for a novel method for showing completeness that is easy to extend to quantifiers.

This second edition contains a new chapter on logics of conditionals and an expanded bibliography, and is updated throughout. A number of technical results have also been clarified and streamlined.

James W. Garson is Professor of Philosophy at the University of Houston. His research interests include logic, especially modal logic, the philosophy of mind, neural networks, formal semantics, natural language processing, and philosophical issues concerning the impact of information technology. He has held grants from the National Endowment for the Humanities, the National Science Foundation, and the Apple Education Foundation to study the use of computers in education and to develop software for training students in logic and computer science. He is the author of numerous articles in logic, semantics, linguistics, the philosophy of cognitive science, and computerized education. His review article on quantified modal logic in the Handbook of Philosophical Logic is a standard reference in the area. His new book, What Logics Mean: From Proof Theory to Model-Theoretic Semantics, is forthcoming from Cambridge University Press.
for Nuel Belnap, who is responsible for anything he likes about this book
Modal Logic for Philosophers

Second Edition

JAMES W. GARSON

University of Houston
Contents

Preface to the Second Edition xi
Preface xiii

Introduction: What Is Modal Logic? 1
1 The System K: A Foundation for Modal Logic 3
 1.1 The Language of Propositional Modal Logic 3
 1.2 Natural Deduction Rules for Propositional Logic: PL 5
 1.3 Derivable Rules of PL 9
 1.4 Natural Deduction Rules for System K 17
 1.5 A Derivable Rule for \(\Box \) 20
 1.6 Horizontal Notation for Natural Deduction Rules 27
 1.7 Necessitation and Distribution 30
 1.8 General Necessitation 32
 1.9 Summary of the Rules of K 35

2 Extensions of K 38
 2.1 Modal or Alethic Logic 38
 2.2 Duals 44
 2.3 Deontic Logic 45
 2.4 The Good Samaritan Paradox 46
 2.5 Conflicts of Obligation and the Axiom (D) 48
 2.6 Iteration of Obligation 49
 2.7 Tense Logic 50
 2.8 Locative Logic 52
 2.9 Logics of Belief 53
 2.10 Provability Logic 55

3 Basic Concepts of Intensional Semantics 57
 3.1 Worlds and Intensions 57
Contents

3.2 Truth Conditions and Diagrams for \rightarrow and \bot 59
3.3 Derived Truth Conditions and Diagrams for PL 61
3.4 Truth Conditions for \Box 63
3.5 Truth Conditions for \Diamond 66
3.6 Satisfiability, Counterexamples, and Validity 67
3.7 The Concepts of Soundness and Completeness 69
3.8 A Note on Intensions 70

4 Trees for K 72
4.1 Checking for K-Validity with Trees 72
4.2 Showing K-Invalidity with Trees 81
4.3 Summary of Tree Rules for K 91

5 The Accessibility Relation 93
5.1 Conditions Appropriate for Tense Logic 93
5.2 Semantics for Tense Logics 99
5.3 Semantics for Modal (Alethic) Logics 104
5.4 Semantics for Deontic Logics 108
5.5 Semantics for Locative Logic 111
5.6 Summary of Axioms and Their Conditions on Frames 112

6 Trees for Extensions of K 114
6.1 Trees for Reflexive Frames: M-Trees 114
6.2 Trees for Transitive Frames: 4-Trees 119
6.3 Trees for Symmetrical Frames: B-Trees 121
6.4 Trees for Euclidean Frames: 5-Trees 127
6.5 Trees for Serial Frames: D-Trees 131
6.6 Trees for Unique Frames: CD-Trees 133

7 Converting Trees to Proofs 134
7.1 Converting Trees to Proofs in K 134
7.2 Converting Trees that Contain Defined Notation into Proofs 145
7.3 Converting M-Trees into Proofs 147
7.4 Converting D-Trees into Proofs 149
7.5 Converting 4-Trees into Proofs 150
7.6 Converting B-Trees into Proofs 152
7.7 Converting 5-Trees into Proofs 158
7.8 Using Conversion Strategies to Find Difficult Proofs 162
7.9 Converting CD-Trees into Proofs in CD and DCD 162
7.10 A Formal Proof that Trees Can Be Converted into Proofs 164

8 Adequacy of Propositional Modal Logics 170
8.1 Soundness of K 170
8.2 Soundness of Systems Stronger than K 178
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3</td>
<td>The Tree Model Theorem</td>
<td>180</td>
</tr>
<tr>
<td>8.4</td>
<td>Completeness of Many Modal Logics</td>
<td>186</td>
</tr>
<tr>
<td>8.5</td>
<td>Decision Procedures</td>
<td>187</td>
</tr>
<tr>
<td>8.6</td>
<td>Automatic Proofs</td>
<td>189</td>
</tr>
<tr>
<td>8.7</td>
<td>Adequacy of Trees</td>
<td>189</td>
</tr>
<tr>
<td>8.8</td>
<td>Properties of Frames that Correspond to No Axioms</td>
<td>190</td>
</tr>
<tr>
<td>9</td>
<td>Completeness Using Canonical Models</td>
<td>193</td>
</tr>
<tr>
<td>9.1</td>
<td>The Lindenbaum Lemma</td>
<td>193</td>
</tr>
<tr>
<td>9.2</td>
<td>The Canonical Model</td>
<td>196</td>
</tr>
<tr>
<td>9.3</td>
<td>The Completeness of Modal Logics Based on K</td>
<td>199</td>
</tr>
<tr>
<td>9.4</td>
<td>The Equivalence of PL+(GN) and K</td>
<td>208</td>
</tr>
<tr>
<td>10</td>
<td>Axioms and Their Corresponding Conditions on R</td>
<td>209</td>
</tr>
<tr>
<td>10.1</td>
<td>The General Axiom (G)</td>
<td>209</td>
</tr>
<tr>
<td>10.2</td>
<td>Adequacy of Systems Based on (G)</td>
<td>213</td>
</tr>
<tr>
<td>11</td>
<td>Relationships between the Modal Logics</td>
<td>219</td>
</tr>
<tr>
<td>11.1</td>
<td>Showing Systems Are Equivalent</td>
<td>219</td>
</tr>
<tr>
<td>11.2</td>
<td>Showing One System Is Weaker than Another</td>
<td>222</td>
</tr>
<tr>
<td>12</td>
<td>Systems for Quantified Modal Logic</td>
<td>226</td>
</tr>
<tr>
<td>12.1</td>
<td>Languages for Quantified Modal Logic</td>
<td>226</td>
</tr>
<tr>
<td>12.2</td>
<td>A Classical System for Quantifiers</td>
<td>229</td>
</tr>
<tr>
<td>12.3</td>
<td>Identity in Modal Logic</td>
<td>232</td>
</tr>
<tr>
<td>12.4</td>
<td>The Problem of Nondenoting Terms in Classical Logic</td>
<td>237</td>
</tr>
<tr>
<td>12.5</td>
<td>FL: A System of Free Logic</td>
<td>240</td>
</tr>
<tr>
<td>12.6</td>
<td>FS: A Basic Quantified Modal Logic</td>
<td>243</td>
</tr>
<tr>
<td>12.7</td>
<td>The Barcan Formulas</td>
<td>246</td>
</tr>
<tr>
<td>12.8</td>
<td>Constant and Varying Domains of Quantification</td>
<td>248</td>
</tr>
<tr>
<td>12.9</td>
<td>A Classicist’s Defense of Constant Domains</td>
<td>252</td>
</tr>
<tr>
<td>12.10</td>
<td>The Prospects for Classical Systems with Varying Domains</td>
<td>254</td>
</tr>
<tr>
<td>12.11</td>
<td>Rigid and Nonrigid Terms</td>
<td>258</td>
</tr>
<tr>
<td>12.12</td>
<td>Eliminating the Existence Predicate</td>
<td>260</td>
</tr>
<tr>
<td>12.13</td>
<td>Summary of Systems, Axioms, and Rules</td>
<td>261</td>
</tr>
<tr>
<td>13</td>
<td>Semantics for Quantified Modal Logics</td>
<td>263</td>
</tr>
<tr>
<td>13.1</td>
<td>Truth Value Semantics with the Substitution Interpretation</td>
<td>263</td>
</tr>
<tr>
<td>13.2</td>
<td>Semantics for Terms, Predicates, and Identity</td>
<td>266</td>
</tr>
<tr>
<td>13.3</td>
<td>Strong versus Contingent Identity</td>
<td>268</td>
</tr>
<tr>
<td>13.4</td>
<td>Rigid and Nonrigid Terms</td>
<td>274</td>
</tr>
<tr>
<td>13.5</td>
<td>The Objectual Interpretation</td>
<td>276</td>
</tr>
<tr>
<td>13.6</td>
<td>Universal Instantiation on the Objectual Interpretation</td>
<td>279</td>
</tr>
<tr>
<td>13.7</td>
<td>The Conceptual Interpretation</td>
<td>284</td>
</tr>
</tbody>
</table>
Contents

13.8 The Intensional Interpretation .. 286
13.9 Strengthening Intensional Interpretation Models 291
13.10 Relationships with Systems in the Literature 292
13.11 Summary of Systems and Truth Conditions 298

14 Trees for Quantified Modal Logic ... 301
14.1 Tree Rules for Quantifiers .. 301
14.2 Tree Rules for Identity ... 305
14.3 Infinite Trees ... 307
14.4 Trees for Quantified Modal Logic .. 308
14.5 Converting Trees into Proofs ... 312
14.6 Trees for Systems that Include Domain Rules 317
14.7 Converting Trees into Proofs in Stronger Systems 319
14.8 Summary of the Tree Rules .. 320

15 The Adequacy of Quantified Modal Logics ... 321
15.1 Preliminaries: Some Replacement Theorems 322
15.2 Soundness for the Intensional Interpretation 324
15.3 Soundness for Systems with Domain Rules 327
15.4 Expanding Truth Value (tS) to Substitution (sS) Models 330
15.5 Expanding Substitution (sS) to Intensional (iS) Models 335
15.6 An Intensional Treatment of the Objectual Interpretation 337
15.7 Transfer Theorems for Intensional and Substitution Models 340
15.8 A Transfer Theorem for the Objectual Interpretation 345
15.9 Soundness for the Substitution Interpretation 346
15.10 Soundness for the Objectual Interpretation 347
15.11 Systems with Nonrigid Terms .. 348
15.12 Appendix: Proof of the Replacement Theorems 349

16 Completeness of Quantified Modal Logics Using Trees 354
16.1 The Quantified Tree Model Theorem .. 354
16.2 Completeness for Truth Value Models .. 359
16.3 Completeness for Intensional and Substitution Models 359
16.4 Completeness for Objectual Models ... 360
16.5 The Adequacy of Trees ... 362

17 Completeness Using Canonical Models ... 363
17.1 How Quantifiers Complicate Completeness Proofs 363
17.2 Limitations on the Completeness Results 366
17.3 The Saturated Set Lemma .. 368
17.4 Completeness for Truth Value Models 371
17.5 Completeness for Systems with Rigid Constants 375
Contents

17.6 Completeness for Systems with Nonrigid Terms 377
17.7 Completeness for Intensional and Substitution Models 380
17.8 Completeness for the Objectual Interpretation 381

18 Descriptions 383
18.1 Russell’s Theory of Descriptions 383
18.2 Applying Russell's Method to Philosophical Puzzles 386
18.3 Scope in Russell’s Theory of Descriptions 388
18.4 Motives for an Alternative Treatment of Descriptions 390
18.5 Syntax for Modal Description Theory 392
18.6 Rules for Modal Description Theory: The System !S 394
18.7 Semantics for !S 398
18.8 Trees for !S 400
18.9 Adequacy of !S 401
18.10 How !S Resolves the Philosophical Puzzles 405

19 Lambda Abstraction 407
19.1 De Re and De Dicto 407
19.2 Identity and the De Re – De Dicto Distinction 411
19.3 Principles for Abstraction: The System λS 413
19.4 Syntax and Semantics for λS 414
19.5 The Adequacy of λS 420
19.6 Quantifying In 422

20 Conditionals 430
20.1 Why Conditional Logics Are Needed 430
20.2 Strict Implication 433
20.3 Relevance Logics 438
20.4 Semantics for Relevance Logics 445
20.5 Conditional Logics 450
20.6 Semantics for Conditional Logics 454
20.7 Unifying Logics for the Conditional 461

Answers to Selected Exercises 463

Bibliography of Works Cited 477

Index 481
Preface to the Second Edition

In the years since the first publication of Modal Logic for Philosophers, I have received many suggestions for its improvement. The most substantial change in the new edition is a response to requests for a chapter on logics for conditionals. This topic is widely mentioned in the philosophical literature, so any book titled “Modal Logic for Philosophers” should do it justice. Unfortunately, the few pages on the topic provided in the first edition did no more than whet the reader’s appetite for a more adequate treatment. In this edition, an entire chapter (Chapter 20) is devoted to conditionals. It includes a discussion of material implication and its failings, strict implication, relevance logic, and (so-called) conditional logic. Although this chapter still qualifies as no more than an introduction, I hope it will be useful for philosophers who wish to get their bearings in the area.

While the structure of the rest of the book has not changed, there have been improvements everywhere. Thanks to several classes in modal logic taught using the first edition, and suggestions from attentive students, a number of revisions have been made that clarify and simplify the technical results. The first edition also contained many errors. While most of these were of the minor kind from which a reader could easily recover, there were still too many where it was difficult to gather what was intended. A list of errata for the first edition has been widely distributed on the World Wide Web, and this has been of some help. However, it is time to gather these corrections together to produce a new edition where (I can hope) the remaining errors are rare.

I am grateful to the authors of the many messages I have received concerning the first edition, which are far too numerous to list here. I am also
Preface to the Second Edition

indebted to my student Alireza Fatollahi and especially to my colleague Gregory Brown, who joined with me in a semester-long collaboration covering just about every part of the first edition. Their sharp eyes and helpful suggestions made invaluable contributions to the new edition.
The main purpose of this book is to help bridge a gap in the landscape of modal logic. A great deal is known about modal systems based on propositional logic. However, these logics do not have the expressive resources to handle the structure of most philosophical argumentation. If modal logics are to be useful to philosophy, it is crucial that they include quantifiers and identity. The problem is that quantified modal logic is not as well developed, and it is difficult for the student of philosophy who may lack mathematical training to develop mastery of what is known. Philosophical worries about whether quantification is coherent or advisable in certain modal settings partly explain this lack of attention. If one takes such objections seriously, they exert pressure on the logician to either eliminate modality altogether or eliminate the allegedly undesirable forms of quantification.

Even if one lays those philosophical worries aside, serious technical problems must still be faced. There is a rich menu of choices for formulating the semantics of quantified modal languages, and the completeness problem for some of these systems is difficult or unresolved. The philosophy of this book is that this variety is to be explored rather than shunned. We hope to demonstrate that modal logic with quantifiers can be simplified so that it is manageable, even teachable. Some of the simplifications depend on the foundations – in the way the systems for propositional modal logic are developed. Some ideas that were designed to make life easier when quantifiers are introduced are also genuinely helpful even for those who will study only the propositional systems. So this book can serve a dual purpose. It is, I hope, a simple and accessible introduction to propositional modal logic for students who have had a first course.
in formal logic (preferably one that covers natural deduction rules and truth trees). I hope, however, that students who had planned to use this book to learn only propositional modal logic will be inspired to move on to study quantification as well.

A principle that guided the creation of this book is the conviction that visualization is one of the most powerful tools for organizing one's thoughts. So the book depends heavily on diagrams of various kinds. One of the central innovations is to combine the method of Haus diagrams (to represent Kripke's accessibility relation) with the truth tree method. This provides an easy and revealing method for checking validity in a wide variety of modal logics. My students have found the diagrams both easy to learn and fun to use. I urge readers of this book to take advantage of them.

The tree diagrams are also the centerpiece for a novel technique for proving completeness – one that is more concrete and easier to learn than the method of maximally consistent sets, and one that is extremely easy to extend to the quantifiers. On the other hand, the standard method of maximally consistent sets has its own advantages. It applies to more systems, and many will consider it an indispensable part of anyone's education in modal logic. So this book covers both methods, and it is organized so that one may easily choose to study one, the other, or both.

Three different ways of providing semantics for the quantifiers are introduced in this book: the substitution interpretation, the intensional interpretation, and the objectual interpretation. Though some have faulted the substitution interpretation on philosophical grounds, its simplicity prompts its use as a centerpiece for technical results. Those who would like a quick and painless entry to the completeness problem may read the sections on the substitution interpretation alone. The intensional interpretation, where one quantifies over individual concepts, is included because it is the most general approach for dealing with the quantifiers. Furthermore, its strong kinships with the substitution interpretation provide a relatively easy transition to its formal results. The objectual interpretation is treated here as a special case of the intensional interpretation. This helps provide new insights into how best to formalize systems for the objectual interpretation.

The student should treat this book more as a collection of things to do than as something to read. Exercises in this book are found embedded throughout the text rather than at the end of each chapter, as is the more common practice. This signals the importance of doing exercises as soon as possible after the relevant material has been introduced. Think
of the text between the exercises as a preparation for activities that are the foundation for true understanding. Answers to exercises marked with a star (*) are found at the end of the book. Many of the exercises also include hints. The best way to master this material is to struggle through the exercises on your own as far as humanly possible. Turn to the hints or answers only when you are desperate.

Many people should be acknowledged for their contributions to this book. First of all, I would like to thank my wife, Connie Garson, who has unfailingly and lovingly supported all of my odd enthusiasms. Second, I would like to thank my students, who have struggled through the many drafts of this book over the years. I have learned a great deal more from them than any of them has learned from me. Unfortunately, I have lost track of the names of many who helped me make numerous important improvements, so I apologize to them. But I do remember by name the contributions of Brandy Burfield, Carl Feierabend, Curtis Haaga, James Hulgan, Alistair Isaac, JoBeth Jordon, Raymond Kim, Kris Rhodes, Jay Schroeder, Steve Todd, Andy Tristan, Mako Voelkel, and especially Julian Zinn. Third, I am grateful to Johnathan Raymon, who helped me with the diagrams. Finally, I would like to thank Cambridge University Press for taking an interest in this project and for the excellent comments of the anonymous readers, some of which headed off embarrassing errors.