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   Strictly speaking, modal logic studies reasoning that involves the use of 

the expressions ‘necessarily’ and ‘possibly’. The main idea is to introduce 

the symbols  ∫  (necessarily) and  ◊  (possibly) to a system of logic so that it 

is able to distinguish three different  modes  of assertion:  ∫  A (A is neces-

sary), A (A is true), and  ◊  A (A is possible). Introducing these symbols 

(or operators) would seem to be essential if logic is to be applied to judg-

ing the accuracy of philosophical reasoning, for the concepts of necessity 

and possibility are ubiquitous in philosophical discourse. 

 However, at the very dawn of the invention of modal logics, it was 

recognized that necessity and possibility have kinships with many other 

philosophically important expressions. So the term ‘modal logic’ is also 

used more broadly to cover a whole family of logics with similar rules 

and a rich variety of different operators. To distinguish the narrow sense, 

some people use the term ‘alethic   logic’ for logics of necessity and possi-

bility. A list describing some of the better known of these logics follows.       

 System  Symbols  Expression Symbolized 

 Modal logic 

 (or Alethic logic)   
  ∫  

  ◊  

 It is necessary that 

 It is possible that 

 Tense logic    G  It will always be the case that 
   F  It will be the case that 
   H  It has always been the case that 
   P  It was the case that 

 Deontic logic    O  It is obligatory that 
   P  It is permitted that 
   F  It is forbidden that 

     Introduction: What Is Modal Logic?   
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Modal Logic for Philosophers, Second Edition2

 Locative logic    Tx  It is the case at x that 

 Doxastic logic    Bx  x believes that 

 Epistemic logic  Kx  x knows that 

 This book will provide you with an introduction to all these logics, and 

it will help sketch out the relationships among the different systems. The 

variety found here might be somewhat bewildering, especially for the stu-

dent who expects uniformity in logic. Even within the above subdivisions 

of modal logic, there may be many different systems. I hope to convince 

you that this variety is a source of strength and fl exibility and makes for 

an interesting world well worth exploring.  
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   1.1.     The Language of Propositional Modal Logic  

 We will begin our study of modal logic with a basic system called K in 

honor of the famous logician Saul  K ripke. K serves as the foundation 

for a whole family of systems. Each member of the family results from 

strengthening K in some way. Each of these logics uses its own symbols 

for the expressions it governs. For example, modal (or alethic) logics use 

 ∫  for necessity, tense logics use  H  for what has always been, and deontic 

logics use  O  for obligation. The rules of K characterize each of these sym-

bols and many more. Instead of rewriting K rules for each of the distinct 

symbols of modal logic, it is better to present K using a generic operator. 

Since modal logics are the oldest and best known of those in the modal 

family, we will adopt  ∫  for this purpose. So  ∫  need not mean  necessarily  

in what follows. It stands proxy for many different operators, with differ-

ent meanings. In case the reading does not matter, you may simply call 

 ∫ A ‘box A’. 

 First we need to explain what a  language for propositional modal logic  

is. The symbols of the language are  ⊥ ,  ç ,  ∫ ; the propositional variables: p, 

q, r, p ′ , and so forth; and parentheses. The symbol  ⊥  represents a contra-

diction,  ç  represents ‘if . . then’, and  ∫  is the modal operator. A   sentence   
of propositional modal logic  is defi ned as follows:

    ⊥  and any propositional variable is a sentence.  

  If A is a sentence, then  ∫ A is a sentence.  

  If A is a sentence and B is a sentence, then (A ç B) is a sentence.  

  No other symbol string is a sentence.   

     1 

 The System K: A Foundation for Modal Logic  
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The System K: A Foundation for Modal Logic4

 In this book, we will use letters ‘A’, ‘B’, ‘C’ for sentences. So A may be 

a propositional variable, p, or something more complex like (p ç q), or 

((p ç   ⊥ ) ç q). To avoid eyestrain, we usually drop the outermost set of 

parentheses. So we abbreviate (p ç q) to p ç q. (As an aside for those who 

are concerned about use-mention issues, here are the conventions of this 

book. We treat ‘ ⊥ ’, ‘ ç ’, ‘ ∫ ’, and so forth as  used  to refer to symbols with 

similar shapes. It is also understood that ‘ ∫ A’, for example, refers to the 

result of concatenating  ∫  with the sentence A.) 

 The reader may be puzzled about why our language does not con-

tain negation: ~ and the other familiar logical connectives: &,  ñ , and  ≠ . 

Although these symbols are not in our language, they may be introduced 

as abbreviations by the following   defi nitions:

   (Def~)     ~A = df  A ç  ⊥   

  (Def&)     A&B = df  ~(A ç ~B)  

  (Def ñ )     A ñ B = df  ~A ç B  

  (Def ≠ )     A ≠ B = df  (A ç B)&(B ç A)   

 Sentences that contain symbols introduced by these defi nitions are 

understood as shorthand for sentences written entirely with  ç  and  ⊥ . 

So, for example, ~p abbreviates p ç  ⊥ , and we may replace one of these 

with the other whenever we like. The same is true of complex sentences. 

For example, ~p&q is understood to be the abbreviation for (p ç  ⊥ )&q, 

which by (Def&) amounts to ~((p ç  ⊥ ) ç ~q). Replacing the two occur-

rences of ~ in this sentence, we may express the result in the language 

of K as follows: ((p ç  ⊥ ) ç (q ç  ⊥ )) ç  ⊥ . Of course, using such primitive 

notation is very cumbersome, so we will want to take advantage of the 

abbreviations as much as possible. Still, it simplifi es much of what goes 

on in this book to assume that when the chips are down, all sentences are 

written with only the symbols  ⊥ ,  ç , and  ∫ .  

  EXERCISE 1.1   Convert the following sentences into the primitive notation 

of K.  

   a)     ~~p  

  b)     ~p&~q  

  c)     p ñ (q&r)  

  d)     ~(p ñ q)  

  e)     ~(p ≠ q)      
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1.2 Natural Deduction Rules for Propositional Logic: PL 5

 Our use of  ⊥  and the defi nition for negation (Def~) may be unfa-

miliar to you. However, it is not diffi cult to see why (Def~) works. 

Since  ⊥  indicates a contradiction,  ⊥  is always false. By the truth table 

for material implication, A ç  ⊥  is true (T) iff either A is false (F) or 

 ⊥  is T. But, as we said,  ⊥  cannot be T. Therefore A ç  ⊥  is T iff A is F. 

So the truth table for A ç  ⊥  corresponds exactly to the truth table for 

negation. 

 The notion of an argument is fundamental to logic. In this book, an 

 argument    H / C is composed of a list of sentences H, which are called the 

 hypotheses,    and a sentence C called the  conclusion.    In the next section, 

we will introduce rules of proof for arguments. When argument H / C is 

provable (in some system), we write ‘H  ⊢  C’. Since there are many differ-

ent systems in this book, and it may not be clear which system we have 

in mind, we subscript the name of the system S (thus: H  ⊢  S  C) to make 

matters clear. According to these conventions, p, ~q ç ~p / q is the argu-

ment with hypotheses p and ~q ç ~p and conclusion q. The expression ‘p, 

~q ç ~p  ⊢  K  q’ indicates that the argument p, ~q ç ~p / q has a proof in 

the system K.  

  1.2.     Natural Deduction Rules for Propositional Logic: PL  

 Let us begin the description of K by introducing a system of rules called 

PL (for  p ropositional  l ogic). We will use natural deduction rules in this 

book because they are especially convenient both for presenting and 

fi nding proofs. In general, natural deduction systems are distinguished 

by the fact that they allow the introduction of (provisional) assumptions 

or hypotheses, along with some mechanism (such as vertical lines or 

dependency lists) for keeping track of which steps of the proof depend on 

which hypotheses. Natural deduction systems typically include the rules 

Conditional Proof (also known as Conditional Introduction) and Indirect 

Proof (also known as Reductio ad Absurdum or Negation Introduction). 

We assume the reader is already familiar with some natural deduction 

system for propositional logic. In this book, we will use vertical lines to 

keep track of subproofs  . The notation:

   

A

B  
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The System K: A Foundation for Modal Logic6

indicates that B has been   proven from the hypothesis A. The dots indi-

cate intervening steps, each of which follows from previous steps by one 

of the following fi ve rules. The abbreviations for rule names to be used in 

proofs are given in parentheses.

   

The System PL
Hypothesis

A new hypothesis A may be added to a proof
at any time, as long as A begins a new subproof.

A

Modus Ponens
This is the familiar rule Modus Ponens.
It is understood that A, AçB, and B must
all lie in exactly the same subproof.

A
AçB
------
B (MP)

Conditional Proof
When a proof of B is derived from the hypothesis A,
it follows that AçB, where AçB lies outside
hypothesis A.

A
:

 B

AçB (CP)

Double Negation
~~ A The rule allows the removal of double

negations. As with (MP), ~~A and A
A (DN) must lie in the same subproof.

Reiteration
Sentence A may be copied into a new subproof.
(In this case, into the subproof headed by B.)

A

:

B
:

 A    (Reit)   

 These fi ve rules comprise a system for propositional logic called PL. The 

rules say that if you have proven what appears above the dotted line, then 
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1.2 Natural Deduction Rules for Propositional Logic: PL 7

you may write down what appears below the dotted line. Note that in 

applying (MP) and (DN),  all sentences involved must lie in the same sub-
proof.  Here is a sample proof of the argument p ç q, ~q / ~p, to illustrate 

how we present proofs in this book.  

   

 pçq
~q

 qçƒ (Def~)
 p

 pçq (Reit)
 q (MP)
 qçƒ (Reit)
 ƒ (MP)

 pçƒ (CP)
 ~p (Def~) 

The proof begins by placing the premises of the argument (namely, p ç q 

and ~q) at the head of the outermost subproof. Then the conclusion (~p) 

is derived from these using the fi ve rules of PL. Since there are no rules 

concerning the negation sign, it is necessary to use (Def~) to convert 

all occurrences of ~ into  ç  and  ⊥  as we have done in the third and last 

steps. We do not bother writing the name (Hyp) where we have used the 

hypothesis rule. That the (Hyp) rule is being used is already clear from 

the presence of the subproof bracket (the horizontal “diving board” at 

the head of a subproof). 

 Most books use line numbers in the justifi cation of steps of a proof. 

Since we only have four rules, the use of line numbers is really not neces-

sary. For example, when (CP) is used, the steps at issue must be the begin-

ning and end of the preceding subproof; when (DN) is used to produce A, 

it is easy to locate the sentence ~~A to which it was applied; when (MP) 

is used to produce B, it is easy enough to fi nd the steps A and A ç B to 

which (MP) was applied. On occasion, we will number steps to highlight 

some parts of a proof under discussion, but step numbers will not be part 

of the offi cial notation of proofs, and they are not required in the solu-

tions to proof exercises. 

 Proofs in PL generally require many uses of Reiteration (Reit). That 

is because (MP) cannot be applied to A and A ç B unless both of these 
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The System K: A Foundation for Modal Logic8

sentences lie in the same subproof. This constant use of (Reit) is annoy-

ing, especially in longer proofs, so we will adopt a convention to leave 

out the (Reit) steps where it is clear that an offi cial proof could be con-

structed by adding them back in. According to this more relaxed policy, 

the proof just given may be abbreviated as follows:

   

 pçq
~q

 qçƒ (Def~)
p

 q (MP)
 ƒ (MP)

 pçƒ (CP)
 ~p (Def~) 

We will say that an argument H / C is provable in PL (in symbols: H 

 ⊢  PL  C) exactly when it is possible to fi ll in a subproof headed by mem-

bers of H to obtain C.  

   

 H

 C
:

 

It is possible to prove some sentences outside of any subproof. These sen-

tences are called  theorems.    Here, for example, is a proof that p ç (q ç p) 

is a theorem.  

   

 p
q
 p (Reit)

 qçp (CP)
pç(qçp) (CP)  

  EXERCISE 1.2   Prove the following in PL.  

   a)     p ç q / (q ç  ⊥ ) ç (p ç  ⊥ )  

  b)     p ç q, p ç (q ç  ⊥ ) / p ç  ⊥   

  c)     Show (p ç q) ç (~q ç ~p) is a theorem of PL.       
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1.3 Derivable Rules of PL 9

  1.3.     Derivable Rules of PL  

 PL is a complete system for propositional logic. Every valid argu-

ment written in the language of propositional logic has a proof in PL. 

However, proofs involving the abbreviations ~, &,  ñ , and  ≠  may be 

very complicated. The task of proof fi nding is immensely simplifi ed by 

introducing derivable rules to govern the behavior of the defi ned con-

nectives. (A rule is derivable in a system iff it can be proven in the 

system.) It is easy to show that the rule Indirect Proof (IP) is derivable 

in PL. Once this is established, we may use (IP) in the future, with the 

understanding that it abbreviates a sequence of steps using the original 

rules of PL.  

   

Proof of Derivability:

~A ~A
::

ƒ ƒ

------ -------
A (IP) ~Açƒ (CP)

~~A (Def~)
A (DN)  

The (IP) rule has been stated at the left, and to the right we have indi-

cated how the same result can be obtained using only the original rules of 

PL. Instead of using (IP) to obtain A, (CP) is used to obtain ~A ç  ⊥ . This 

by (Def~) is really ~~A, from which we obtain A by (DN). So whenever 

we use (IP), the same result can be obtained by the use of these three 

steps instead. It follows that adding (IP) to PL cannot change what is 

provable. 

 We may also show derivable a rule ( ⊥ In) that says that  ⊥  follows from 

a contradictory pair of sentences A, ~A.  

   

Proof of Derivability:

A A
~A ~A
----- -----
ƒ (ƒIn) Açƒ (Def~)

ƒ (MP)  
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The System K: A Foundation for Modal Logic10

  Once (IP) and ( ⊥ In) are available, two more variations on the rule of 

Indirect Proof may be shown   derivable.  

   

Proof of Derivability:

~A ~A
:     :

 B  B
:     :

~B ~B
------- --------
A (~Out) ƒ (ƒIn)

A (IP)  

  EXERCISE 1.3   Show that the following   variant of Indirect Proof is also 

derivable. (Feel free to appeal to ( ⊥ In) and (IP), since they were previously 

shown derivable.)    

   

 A
:

 B
:

~B

-------
~A     (~In) 

With (~Out) available it is easy to show the derivability of (~~In), a var-

iant of Double Negation.  

   

Proof of Derivability:

A             A
---- ----
~~A (~~In) A

 

(DN)
A (Reit)

~~A (~Out)

~A
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