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Modulation of symmetric densities

1.1 Motivation

This book deals with a formulation for the construction of continuous prob-
ability distributions and connected statistical aspects. Before we begin, a
natural question arises: with so many families of probability distributions
currently available, do we need any more?

There are three motivations for the development ahead. The first mo-
tivation lies in the essence of the mechanism itself, which starts with a
continuous symmetric density function that is then modified to generate a
variety of alternative forms. The set of densities so constructed includes
the original symmetric one as an ‘interior point’. Let us focus for a mo-
ment on the normal family, obviously a case of prominent importance. It is
well known that the normal distribution is the limiting form of many non-
normal parametric families, while in the construction to follow the normal
distribution is the ‘central’ form of a set of alternatives; in the univari-
ate case, these alternatives may slant equally towards the negative and the
positive side. This situation is more in line with the common perception
of the normal distribution as ‘central’ with respect to others, which rep-
resent ‘departures from normality’ rather than ‘incomplete convergence to
normality’.

The second motivation derives from the applicability of the mechanism
to the multivariate context, where the range of tractable distributions is
much reduced compared to the univariate case. Specifically, multivariate
statistics for data in Euclidean space is still largely based on the normal
distribution. Some alternatives exist, usually in the form of a superset, of
which the most notable example is represented by the class of elliptical
distributions. However, these retain a form of symmetry and this require-
ment may sometimes be too restrictive, especially when considering that
symmetry must hold for all components.

The third motivation derives from the mathematical elegance and
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2 Modulation of symmetric densities

tractability of the construction, in two respects. First, the simplicity and
generality of the construction is capable of encompassing a variety of inter-
esting subcases without requiring particularly complex formulations.
Second, the mathematical tractability of the newly generated distributions
is, at least in some noteworthy cases, not much reduced compared to the
original symmetric densities we started with. A related but separate aspect
is that these modified families retain some properties of the parent sym-
metric distributions.

1.2 Modulation of symmetry

The rest of this chapter builds the general framework within which we
shall develop specific directions in subsequent chapters. Consequently, the
following pages adopt a somewhat more mathematical style than elsewhere
in the book. Readers less interested in the mathematical aspects may wish
to move on directly to Chapter 2. While this is feasible, it would be best
to read at least to the end of the current section, as this provides the core
concepts that will recur in subsequent chapters.

1.2.1 A fairly general construction

Many of the probability distributions to be examined in this book can be
obtained as special instances of the scheme to be introduced below, which
allows us to generate a whole set of distributions as a perturbed, or mod-
ulated, version of a symmetric probability density function f0, which we
shall call the base density. This base is modulated, or perturbed, by a
factor which can be chosen quite freely because it must satisfy very simple
conditions.

Since the notion of symmetric density plays an important role in our de-
velopment, it is worth recalling that this idea has a simple and commonly
accepted definition only in the univariate case: we say that the density f0 is
symmetric about a given point x0 if f0(x − x0) = f0(x0 − x) for all x, except
possibly a negligible set; for theoretical work, we can take x0 = 0 without
loss of generality. In the d-dimensional case, the notion of symmetric den-
sity can instead be formulated in a variety of ways. In this book, we shall
work with the condition of central symmetry: according to Serfling (2006),
a random variable X is centrally symmetric about 0 if it is distributed as
−X. In case X is a continuous variable with density function denoted f0(x),
then central symmetry requires that f0(x) = f0(−x) for all x ∈ Rd, up to a
negligible set.
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1.2 Modulation of symmetry 3

Proposition 1.1 Denote by f0 a probability density function on Rd, by
G0(·) a continuous distribution function on the real line, and by w(·) a real-
valued function on Rd, such that

f0(−x) = f0(x), w(−x) = −w(x), G0(−y) = 1 −G0(y) (1.1)

for all x ∈ Rd, y ∈ R. Then

f (x) = 2 f0(x) G0{w(x)} (1.2)

is a density function on Rd.

Technical proof Note that g(x) = 2 [G0{w(x)}− 1
2 ] f0(x) is an odd function

and it is integrable because |g(x)| ≤ f0(x). Then

0 =
∫
Rd

g(x) dx =
∫
Rd

2 f0(x) G0{w(x)} dx − 1 . qed

Although this proof is adequate, it does not explain the role of the vari-
ous elements from a probability viewpoint. The next proof of the same
statement is more instructive. In the proof below and later on, we denote
by −A the set formed by reversing the sign of all elements of A, if A denotes
a subset of a Euclidean space. If A = −A, we say that A is a symmetric set.

Instructive proof Let Z0 denote a random variable with density f0 and T
a variable with distribution G0, independent of Z0. To show that W = w(Z0)
has distribution symmetric about 0, consider a Borel set A of the real line
and write

P{W ∈ −A} = P{−W ∈ A} = P{w(−Z0) ∈ A} = P{w(Z0) ∈ A} ,

taking into account that Z0 and −Z0 have the same distribution. Since T is
symmetric about 0, then so is T −W and we conclude that

1
2 = P{T ≤ W} = EZ0{P{T ≤ w(Z0)|Z0 = x}} =

∫
Rd

G0{w(x)} f0(x) dx .

qed

On setting G(x) = G0{w(x)} in (1.2), we can rewrite (1.2) as

f (x) = 2 f0(x) G(x) (1.3)

where

G(x) ≥ 0, G(x) +G(−x) = 1 . (1.4)
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4 Modulation of symmetric densities

Vice versa, any function G satisfying (1.4) can be written in the form
G0{w(x)}. For instance, we can set

G0(y) =
(
y + 1

2

)
I(−1,1)(2 y) + I[1,+∞)(2 y) (y ∈ R) ,

w(x) = G(x) − 1
2 (x ∈ Rd) ,

(1.5)

where IA(·) denotes the indicator function of set A; more simply, this G0 is
the distribution function of a U(− 1

2 ,
1
2 ) variate. We have therefore obtained

the following conclusion.

Proposition 1.2 For any given density f0 in Rd, such that f0(x) = f0(−x),
the set of densities of type (1.1)–(1.2) and those of type (1.3)–(1.4) coincide.

Which of the two forms, (1.2) or (1.3), will be used depends on the
context, and is partly a matter of taste. Representation of G(x) in the form
G0{w(x)} is not unique since, given any such representation,

G(x) = G∗{w∗(x)}, w∗(x) = G−1
∗ [G0{w(x)}]

is another one, for any monotonically increasing distribution function G∗
on the real line satisfying G∗(−y) = 1−G∗(y). Therefore, for mathematical
work, the form (1.3)–(1.4) is usually preferable. In contrast, G0{w(x)} is
more convenient from a constructive viewpoint, since it immediately en-
sures that conditions (1.4) are satisfied, and this is how a function G of this
type is usually constructed. Therefore, we shall use either form, G(x) or
G0{w(x)}, depending on convenience.

Since w(x)= 0 or equivalently G(x)= 1
2 are admissible functions in (1.1)

and (1.4), respectively, the set of modulated functions generated by f0 in-
cludes f0 itself. Another immediate fact is the following reflection property:
if Z has distribution (1.2), −Z has distribution of the same type with w(x)
replaced by −w(x), or equivalently with G(x) replaced by G(−x) in (1.3).

The modulation factor G0{w(x)} in (1.2) can modify radically and in
very diverse forms the base density. This fact is illustrated graphically by
Figure 1.1, which displays the effect on the contour level curves of the base
density f0 taken equal to the N2(0, I2) density when the perturbation factor
is given by G0(y) = ey/(1 + ey), the standard logistic distribution function,
evaluated at

w(x) =
sin(p1 x1 + p2 x2)

1 + cos(q1 x1 + q2 x2)
, x = (x1, x2) ∈ R2 , (1.6)

for some choices of the real parameters p1, p2, q1, q2.
Densities of type (1.2) or (1.3) are often called skew-symmetric, a term

which may be surprising when one looks for instance at Figure 1.1, where
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1.2 Modulation of symmetry 5
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Figure 1.1 Density function of a bivariate standard normal
variate with independent components modulated by a logistic
distribution factor with argument regulated by (1.6) using
parameters indicated in the top-left corner of each panel.

skewness is not the most distinctive feature of these non-normal distribu-
tions, apart from possibly the top-left plot. The motivation for the term
‘skew-symmetric’ originates from simpler forms of the function w(x),
which actually lead to densities where the most prominent feature is asym-
metry. A setting where this happens is the one-dimensional case with lin-
ear form w(x) = αx, for some constant α, a case which was examined
extensively in the earlier stages of development of this theme, so that the
prefix ‘skew’ came into use, and was later used also where skewness is not
really the most distinctive feature. Some instances of the linear type will be
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6 Modulation of symmetric densities

discussed in detail later in this book, especially but not only in Chapter 2.
However, in the more general context discussed in this chapter, the prefix
‘skew’ may be slightly misleading, and we prefer to use the term modulated
or perturbed symmetry.

The aim of the rest of this chapter is to examine the general properties
of the above-defined set of distributions and of some extensions which we
shall describe later on. In subsequent chapters we shall focus on certain
subclasses, obtained by adopting a specific formulation of the compon-
ents f0, G0 and w of (1.2). We shall usually proceed by selecting a certain
parametric set of functions for these three terms. We make this fact more
explicit with notation of the form

f (x) = 2 f0(x) G0{w(x;α)}, x ∈ Rd, (1.7)

where w(x;α) is an odd function of x, for any fixed value of the parameter
α. For instance, in (1.6) α is represented by (p1, p2, q1, q2). However, later
on we shall work mostly with functions w which have a more regular be-
haviour, and correspondingly the densities in use will usually fluctuate less
than those in Figure 1.1. In the subsequent chapters, we shall also intro-
duce location and scale parameters, not required for the aims of the present
chapter.

A word of caution on this programme of action is appropriate, even be-
fore we start to expand it. The densities displayed in Figure 1.1 provide
a direct perception of the high flexibility that can be achieved with these
constructions. And it would be very easy to proceed further, for instance by
adding cubic terms in the arguments of sin(·) and cos(·) in (1.6). Clearly,
this remark applies more generally to parametric families of type (1.7).
However, when we use these distributions in statistical work, one must
match flexibility with feasibility of the inferential process, in light of the
problem at hand and of the available data. The results to be discussed make
available powerful tools for constructing very general families of probabil-
ity distributions, but power must be exerted with wisdom, as in other human
activities.

1.2.2 Main properties

Proposition 1.3 (Stochastic representation) Under the setting of Propos-
itions 1.1 and 1.2, consider a d-dimensional variable Z0 with density func-
tion f0(x) and, conditionally on Z0, let

S Z0 =

{
+1 with probability G(Z0),
−1 with probability G(−Z0).

(1.8)
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1.2 Modulation of symmetry 7

Then both variables

Z′ = (Z0|S Z0 = 1), (1.9)

Z = S Z0 Z0 (1.10)

have probability density function (1.2). The variable S Z0 can be represented
in either of the forms

S Z0 =

{
+1 if T < w(Z0),
−1 otherwise,

S Z0 =

{
+1 if U < G(Z0),
−1 otherwise,

(1.11)

where T ∼ G0 and U ∼ U(0, 1) are independent of Z0.

Proof First note that marginally P{S = 1} =
∫
Rd G(x) f0(x) dx = 1

2 , and
then apply Bayes’ rule to compute the density of Z′ as the conditional den-
sity of (Z0|S = 1), that is

fZ′(x) =
P{S = 1|Z0 = x} f0(x)

P{S = 1} = 2 G(x) f0(x) .

Similarly, the variable Z′′ = (Z0|S Z0 = −1) has density 2 G(−x) f0(x). The
density of Z is an equal-weight mixture of Z′ and −Z′′, namely

1
2 {2 f0(x) G(x)} + 1

2 {2 f0(−x) G(x)} = 2 f0(x) G(x) .

Representations (1.11) are obvious. qed

An immediate corollary of representation (1.10) is the following prop-
erty, which plays a key role in our construction.

Proposition 1.4 (Modulation invariance) If the random variable Z0 has
density f0 and Z has density f , where f0 and f are as in Proposition 1.1,
then the equality in distribution

t(Z)
d
= t(Z0) (1.12)

holds for any q-valued function t(x) such that t(x) = t(−x) ∈ Rq, q ≥ 1.

We shall refer to this property also as perturbation invariance. An ex-
ample of the result is as follows: if the density function of the
two-dimensional variable (Z1, Z2) is one of those depicted in Figure 1.1,
we can say that Z2

1 + Z2
2 ∼ χ2

2, since this fact is known to hold for their base
density f0, that is when (Z1, Z2) ∼ N2(0, I2) and t(x) = x2

1 + x2
2 is an even

function of x = (x1, x2).
An implication of Proposition 1.4 which we shall use repeatedly is that

|Zr |
d
= |Z0,r | (1.13)
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8 Modulation of symmetric densities

for the rth component of Z and Z0, respectively, on taking t(x) = |xr |. This
fact in turn implies invariance of even-order moments, so that

E
{
Zm

r

}
= E

{
Zm

0,r

}
, m = 0, 2, 4, . . . , (1.14)

when they exist. Clearly, equality of even-order moments holds also for
more general forms such as

E
{
Zk

r Zm−k
s

}
= E

{
Zk

0,r Zm−k
0,s

}
, m = 0, 2, 4, . . . ; k = 0, 1, . . . ,m.

It is intuitive that the set of densities of type (1.2)–(1.3) is quite wide,
given the weak requirements involved. This impression is also supported by
the visual message of Figure 1.1. The next result confirms this perception
in its extreme form: all densities belong to this class.

Proposition 1.5 Let f be a density function with support S ⊆ Rd. Then a
representation of type (1.3) holds, with

f0(x) = 1
2 { f (x) + f (−x)},

G(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f (x)

2 f0(x)
if x ∈ S 0,

arbitrary otherwise,

(1.15)

where S 0 = S∪(−S ) is the support of f0(x) and the arbitrary branch of G
satisfies (1.4). Density f0 is unique, and G is uniquely defined over S 0.

The meaning of the notation −S is explained shortly after Proposition 1.1.

Proof For any x ∈ S 0, the identity

f (x) = 2
f (x) + f (−x)

2
f (x)

f (x) + f (−x)

holds, and its non-constant factors coincide with those stated in (1.15). To
prove uniqueness of this factorization on S 0, assume that there exist f0 and
G such that f (x) = 2 f0(x) G(x) and they satisfy f0(x) = f0(−x) and (1.4).
From

f (x) + f (−x) = 2 f0(x){G(x) +G(−x)} = 2 f0(x),

it follows that f0 must satisfy the first equality in (1.15). Since f0 > 0 and
it is uniquely determined over S 0, then so is G(x). qed

Rewriting the first expression in (1.15) as f (−x) = 2 f0(x) − f (x), fol-
lowed by integration on (−∞, x1] × · · · × (−∞, xd], leads to

F(−x) = 2 F0(x) − F(x) , x = (x1, . . . , xd) ∈ Rd, (1.16)
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1.2 Modulation of symmetry 9

if F0 denotes the cumulative distribution function of f0 and F denotes the
survival function, which is defined for a variable Z = (Z1, . . . , Zd) as

F(x) = P{Z1 ≥ x1, . . . , Zd ≥ xd} . (1.17)

1.2.3 The univariate case

Additional results can be obtained for the case d = 1. An immediate con-
sequence of (1.16) is

1 − F(−x) = 2 F0(x) − F(x), x ∈ R, (1.18)

which will be useful shortly.
The following representation can be obtained with an argument similar

to Proposition 1.3. Note that V = |Z| has distribution 2 f0(·) on [0,∞),
irrespective of the modulation factor, and is of type (1.2). See Problem 1.2.

Proposition 1.6 If Z0 is a univariate variable having density f0 symmetric
about 0, V = |Z0| and G satisfies (1.4), then

Z = S V V, S V =

{
+1 with probability G(V),
−1 with probability G(−V)

(1.19)

has density function (1.3).

We know that E{Zm} = E{Zm
0

}
= E{Vm} for m = 0, 2, 4 . . . The odd

moments of Z can be expressed with the aid of (1.19) as

E{Zm} = E{S V Vm}
= EV {E{S V |V}Vm}
= E{[G(V) −G(−V)]Vm}
= E{[2 G(V) − 1]Vm}
= 2 E{Vm G(V)} − E{Vm} , m = 1, 3, . . . (1.20)

Consider now a fixed base density f0 and a set of modulating functions
Gk, all satisfying (1.4). What can be said about the resulting perturbed ver-
sions of f0? This broad question can be expanded in many directions. An
especially interesting one, tackled by the next proposition, is to find which
conditions on the Gk ensure that there exists an ordering on the distribution
functions

Fk(x) =
∫ x

−∞
2 f0(u) Gk(u) du , (1.21)

since this fact implies a similar ordering of moments and quantiles. If the
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10 Modulation of symmetric densities

variables X1 and X2 have distribution functions F1 and F2, respectively,
recall that X2 is said to be stochastically larger than X1, written X2 ≥st X1,
if P{X2 > x} ≥ P{X1 > x} for all x, or equivalently F1(x) ≥ F2(x). In this
case we shall also say that X1 is stochastically smaller than X2, written
X1 ≤st X2. An introductory account of stochastic ordering is provided by
Whitt (2006).

Proposition 1.7 Consider functions G1 and G2 on R which satisfy condi-
tion (1.4) and additionally G2(x) ≥ G1(x) for all x > 0. Then distribution
functions (1.21) satisfy

F1(x) ≥ F2(x) , x ∈ R. (1.22)

If G1(x) > G2(x) for all x in some interval, (1.22) holds strictly for some x.

Proof Consider first s ≤ 0 and notice that G1(x) ≥ G2(x) for all x < s.
This clearly implies F1(s) ≥ F2(s). If s > 0, the same conclusion holds
using (1.18) with x = −s. qed

To illustrate, consider variables Z0, Z and |Z0| whose respective densities
are: (i) f0(x), (ii) 2 f0(x) G(x) with G continuous and 1

2 < G(x) < 1 for
x > 0, and (iii) 2 f0(x) I[0,∞)(x). They can all be viewed as instances of
(1.3), recalling that the first distribution is associated with G(x) ≡ 1

2 and the
third one with G(x) = I[0,∞)(x), both fulfilling (1.4). From Proposition 1.7
it follows that

Z0 ≤st Z ≤st |Z0| (1.23)

and correspondingly, for any increasing function t(·), we can write

E{t(Z0)} < E{t(Z)} < E{t(|Z0|)} , (1.24)

provided these expectations exist. Here strict inequalities hold because of
analogous inequalities for the corresponding G functions, which implies
strict inequality for some x in (1.22). A case of special interest is when
t(x) = x2k−1, for k = 1, 2, . . ., leading to ordering of odd moments. Another
implication of stochastic ordering is that p-level quantiles of the three dis-
tributions are ordered similarly to expectations in (1.24), for any 0 < p < 1.

We often adopt the form of (1.2), with pertaining conditions, and it is
convenient to formulate a version of Proposition 1.7 for this case.

Corollary 1.8 Consider G1(x) = G0{w1(x)} and G2(x) = G0{w2(x)},
where G0, w1 and w2 satisfy (1.1) and additionally G0 is monotonically in-
creasing. If w2(x) ≥ w1(x) for all x > 0, then (1.22) holds. If w1(x) > w2(x)
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