

Finance

By providing a solid theoretical basis, this book introduces modern finance to readers, including students in science and technology, who already have a good foundation in quantitative skills. It combines the classical, decision-oriented approach and the traditional organization of corporate finance books with a quantitative approach that is particularly well suited to students with backgrounds in engineering and the natural sciences. This combination makes finance much more transparent and accessible than the definition-theorem-proof pattern that is common in mathematics and financial economics. The book's main emphasis is on investments in real assets and the real options attached to them, but it also includes extensive discussion of topics such as portfolio theory, market efficiency, capital structure and derivatives pricing. *Finance: A Quantitative Introduction* equips readers as future managers with the financial literacy necessary either to evaluate investment projects themselves or to engage critically with the analysis of financial managers.

A range of supplementary teaching and learning materials are available online at www. cambridge.org/wijst.

NICO VAN DER WIJST is Professor of Finance at the Department of Industrial Economics and Technology Management, Norwegian University of Science and Technology in Trondheim, where he has been teaching since 1997. He has published a book on financial structure in small business and a number of journal articles on different topics in finance.

Finance

A Quantitative Introduction

NICO VAN DER WIJST

Norwegian University of Science and Technology, Trondheim

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107029224

© Nico van der Wijst 2013

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2013 Reprinted 2015

Printed in the United Kingdom by TJ International Ltd, Padstow, Cornwall

A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication data

Wijst, D. van der.

Finance: a quantitative introduction / Nico van der Wijst.

pages cm

Includes bibliographical references and index.

ISBN 978-1-107-02922-4

 Finance-Mathematical models.
 Options (Finance)
 Corporations-Finance.
 Investments.
 Title. HG106.W544 2013

332-dc23

2012038088

ISBN 978-1-107-02922-4 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

xi xiii xiv 1
1 1 4 5 8
1 1 4 5 8
1 4 5 8
4 5 8
4 5 8
5 8 10
10
10
10
18
24
29
35
51
51
61
71
81
90
96
96
101
127
136
136

V

vi)

Contents

	11.1	The basics of hedging	308
11	Hed	ging	308
	10.3	Conglomerate mergers	299
	10.2	Credit risk	292
	10.1	Corporate securities as options	285
10		cted option applications	285
40	c '	and author and Parties	207
	9.3	I WO CALCHSIONS	270
	9.4 9.5	Interacting real options Two extensions	272 276
	9.3	More real options	265 272
	9.2	The option to defer	261 265
	9.1	Investment opportunities as options The option to defor	257
		•	
9	Real	options analysis	257
	С	Cumulative standard normal distribution	253
	В	The Greeks of Black and Scholes' model	246
	A	A pinch of stochastic calculus	242
	8.3	Working with Black and Scholes	232
	8.2	Pricing options	223
	8.1	Preliminaries: stock returns and a die	220
8	Opti	on pricing in continuous time	220
	1.3	binomial option pricing	207
	7.2 7.3	Foundations in state-preference theory Binomial option pricing	197 207
	7.1	Options as securities Foundations in state preference theory	185
7		on pricing in discrete time	185
	6.5	Concluding remarks	181
	6.4	Some examples	177
	6.3	Project values with different debt ratios	173
	6.2	Financing rules and discount rates	169
	6.1	Basic elements	165
6	Valu	ing levered projects	165
	5.4	Dividends	156
	5.3	Models of optimal capital structure	147
	5.2	Capital structure analyses	141

vii Contents

	11.2 Pricing futures and forwards	315
	11.3 Some applications of hedging	321
12	Agency problems and governance	330
	12.1 Agency theory	330
	12.2 Ownership and governance	345
	Solutions to exercises	354
	Glossary	406
	References	414
	Index	425

Figures

1.1	The interlocking cycles of scientific and applied research	3
1.2	The angular spectrum of the fluctuations in the WMAP full-sky map	6
1.3	Risk-return relationship for Nasdaq-100 companies, October 2010 to	
	September 2011	7
2.1	The utility function $U = 5W - 0.01W^2$	31
2.2	A two-dimensional utility function and $U = 750$	31
2.3	Indifference curves	32
2.4	Utility function $U(W)$ and uncertain values of (W)	33
2.5	Consumption choices in a budget space	36
2.6	Investment opportunities and their continuous approximation	37
2.7	Investment opportunities and choices	37
2.8	Production and consumption choices with a financial market	38
2.9	Flows of funds through the financial system	40
2.10	Production and consumption choices	49
3.1	Nasdaq-100 index, 1-10-2010 to 30-9-2011	52
3.2	Daily returns Nasdaq-100 index, 4-10-2010 to 30-9-2011	53
3.3	Frequency of daily returns Nasdaq-100 index, 4-10-2010 to 30-9-2011	53
3.4	Diversification effect	57
3.5	Portfolios' risk and return	61
3.6	Investment universe and choices along the efficient frontier	62
3.7	Efficient frontier	67
3.8	Portfolio composition versus risk	68
3.9	The capital market line	69
3.10	Portfolios of asset i and market portfolio M	71
3.11	Systematic and unsystematic risk	74
3.12	CML with different imperfections	79
4.1	Efficient and inefficient price adjustments	101
4.2	Weekly returns Microsoft, 29-10-2010 to 14-10-2011	102
4.3	Percentage return day t (x-axis) versus day $t + 1$ (y-axis)	104
4.4	Resistance and support line, Nasdaq-100 index	111
4.5	Moving averages, Nasdaq-100 index	112
4.6	Cumulative abnormal returns of Google	120
5.1	Modigliani–Miller proposition 2	145
5.2	Modigliani–Miller proposition 2 with taxes	148

ix

x

Figures

5.3	MM proposition 2 with limited liability, no taxes	149
5.4	Trade-off theory of capital structure	150
6.1	Returns and leverage	166
6.2	Timeline for rebalancing and discounting	169
6.3	Decision tree for calculation methods	174
7.1	Profit diagram for a call option	189
7.2	Profit diagrams for simple option positions	189
7.3	Profit diagrams for straddles	190
7.4	Profit diagrams for spreads	191
7.5	Payoff diagrams for the put–call parity	192
7.6	Arbitrage bounds on option prices	195
7.7	Geometric representation of market completeness	201
7.8	Binomial lattice and sample path	217
8.1	Geometric Brownian motion	227
8.2	Call option prices for $\sigma = 0.5$ (top), 0.4 and 0.2 (bottom)	236
8.3	Call option prices for $T = 3$ (top), 2 and 1 (bottom)	236
8.4	Option prices and option deltas	237
8.5	Implied volatility and volatility smile	241
9.1	Theoretical (ceteris paribus) effects of option interaction	277
10.1	Corporate securities as call option combinations	288
10.2	Option values of corporate claims on two projects	290
10.3	Default rates by rating category and year	293
12.1	The firm as nexus of contracts	332
12.2	Structure of an agency problem	334
12.3	Agency costs as a function of capital structure	341
12.4	Agency problems of cash and dividends	343
S2.1	Value as function of time	354
S2.2	Two utility functions	357
S4.1	caar for firms announcing dividend omissions	363
S7.1	Payoff diagram for an option position	371
S7.2	Profit diagrams for a butterfly spread	372
S7.3	Profit diagrams for spreads	373
S7.4	Payoff diagrams of spreads	373
S8.1	Lognormally distributed stock prices	379
S10.1	Corporate securities as put option combinations	394

Tables

1.1	Milestones in the development of finance	2
2.1	Effective annual rates	12
2.2	Income statement ZX Co	19
2.3	Balance sheet ZX Co	20
2.4	Statement of cash flows ZX Co	23
2.5	Statement of retained earnings ZX Co	23
2.6	Accounting representation of the project	26
2.7	Financial representation of the project	27
2.8	Economic depreciation of the project	29
3.1	Models and modelling techniques	52
3.2	Asset returns in scenarios	54
3.3	Stock returns in scenarios	59
3.4	Portfolios of stock 1, and 2, 3 and 4	60
3.5	Uncle Bob's portfolio October 2010 to October 2011	64
3.6	Uncle Bob's return estimates	64
3.7	Portfolio optimization inputs	65
3.8	Uncle Bob's optimal portfolio	66
3.9	Portfolios r and b	86
3.10	Arbitrage strategy	87
3.11	Portfolios r and b	95
4.1	Economic depreciation of a project	97
4.2	Autocorrelation coefficients	105
4.3	Coefficients of time series regression, five lags	105
4.4	Runs tests	106
4.5	Return horizons of momentum and contrarian strategies	109
4.6	Overview of fund performance studies	117
4.7	Returns around event day	120
4.8	Overview of event studies	124
5.1	Returns in three scenarios	144
5.2	(Un)levered cash flows	145
5.3	(Un)levered returns and values	146
6.1	Equity betas	177
6.2	Equity and asset betas	178

χi

xii

Tables

7.1	Rights and obligations attached to options	186
7.2	Moneyness of options	187
7.3	Lower arbitrage bound on call options	194
7.4	Lower arbitrage bound on European put options	194
7.5	Upper arbitrage bound on European put options	195
7.6	Arbitrage bounds on and relations between option prices	197
7.7	Calculation of the pricing kernel	207
8.1	Transformed probabilities for a die	223
8.2	Option price determinants and their Greeks	234
8.3	Area in the left tail of the standard normal density function	254
9.1	Stock-real option analogy	258
9.2	Some common real options	258
9.3	Stock versus real option input parameters	260
9.4	Prisoners' dilemma	280
9.5	Strategic investment timing	281
10.1	Two projects	289
10.2	Bankruptcy rates (%) in Norwegian industries	294
10.3	Logit estimates and example companies	296
10.4	Cash flow distribution	299
10.5	Joint cash flow distribution	300
10.6	Merger candidates' data	301
10.7	Merger candidates' values	302
10.8	Merger candidates' values and benefits	303
11.1	LME official prices, US\$ per tonne for 16 December 2009	310
11.2	Farmer's closing position	311
11.3	Baker's closing position	312
11.4	ZX Co. forward 1	316
11.5	ZX Co. forward 2	316
11.6	• 1	317
11.7	Arbitrage portfolio 1	318
11.8	Arbitrage portfolio 2	319
11.9		323
11.10	Farmer's closing position with imperfect cross hedging	323
11.11	Currency rates	324
12.1	Agency problems and costs of debt	336
12.2	Agency problems and costs of equity	339
12.3	Corporate governance systems	346
12.4	Ownership effect of performance, literature overview	350
12.5	Two representations of a project	353
S2.1	NPV calculations	356

Acronyms

APT Arbitrage Pricing Theory APV adjusted present value

BIS Bank for International Settlements caar cumulative average abnormal return

CAPM Capital Asset Pricing Model
CEO chief executive officer
CFO chief financial officer
CML capital market line
DCF discounted cash flow

EMH Efficient Market Hypothesis

FV future value

IPO initial public offering IRR internal rate of return

Nasdaq National Association of Securities Dealers Automated Quotations

NPV net present value

NYSE New York Stock Exchange OCC opportunity cost of capital

OECD Organisation for Economic Cooperation and Development

OTC over the counter PV present value S&P Standard & Poor's

SDE stochastic differential equation

SEC Securities and Exchange Commission

SML security market line

VaR value at risk

WACC weighted average cost of capital

xiii

Preface

Finance has undergone spectacular changes in the last four decades, both as a profession and as a scientific discipline. Before 1973 there were no option exchanges and there was no generally accepted model to price options. Today, the worldwide trade in derivative securities represents a much larger money amount than the global production of goods and services. The famous Black and Scholes option-pricing formula and its descendants are used in financial markets all over the world where an enormous number of derivative securities are traded every day. Professionals in sectors like engineering, telecommunications and manufacturing regularly find that their projects are evaluated with techniques such as real options analysis. Understanding the basic concepts of finance is increasingly becoming a prerequisite for the modern work place.

Many scientific developments in finance are fuelled by the use of quantitative methods; finance draws heavily on mathematics and statistics. This gives students and professionals who are familiar with quantitative techniques an advantage in mastering the principles of finance. As the title suggests, this book gives an introduction to finance in a manner and 'language' that are attuned to an audience with quantitative skills. It uses mathematical notations and derivations where appropriate and useful. But the book's main orientation is conceptual rather than mathematical; it explains core financial concepts without formally proving them. Avoiding the definition-theorem-proof pattern that is common in mathematical finance allows the book to use the more natural order of first presenting an insight from financial economics, then demonstrating its empirical relevance and practical applicability, and concluding with a discussion of the necessary assumptions. This 'reversed order' reduces the scientific rigour but it greatly enhances the readability for novice students of finance. It also allows the more demanding parts to be skipped or made non-mandatory without loss of coherence.

The need for a book like this arose during the many years that I have been teaching finance to science and technology students. Their introductory years give these students a good working knowledge of quantitative techniques, so they are particularly well placed to study modern finance. However, almost all introductory textbooks in finance are written for MBA students, who have a much less quantitative background. In my experience, teaching finance to numerate students using an MBA textbook is an unfortunate combination. It forces the teacher to supply much additional material to allow students to use their analytical skills and to highlight the quantitative aspects that are severely understated in MBA textbooks. Of course, there are many textbooks in finance that are analytically more advanced, but these are usually written for a second or third course. They assume familiarity with the terminology and basic concepts of finance, which first-time readers

xiv

Preface

do not possess. This is also the case for introductory textbooks in financial economics, or the 'theory of finance'. In addition, many of these books are written in the definition-theorem-proof pattern, which makes them, in my opinion, less suitable for introductory courses. Students' first meeting with finance should be an appetizer that arouses their interest in finance as a science, shows them alternative uses for the quantitative techniques they have acquired, and welcomes them to the wonderful world of financial modelling. Formal proofs are not instrumental in that.

Readership

This book is primarily written for science and technology students who include a course in finance or project valuation in their study programmes. Most study programmes in mathematics, engineering, computer science and the natural sciences offer the opportunity to include such elective subjects; their typical place is late in the bachelor programme or early in the master programme. The book can be used as the only text for a course in finance or as one of several if other management aspects are included, such as project planning and organization. Given the limited room for these courses in most study programmes the book has to be concise, but it takes students from discounting to the Black and Scholes formula and its applications. To limit its size, the main emphasis is on investments in real assets and the real options attached to them. This is the area of finance that prospective natural scientists and engineers are most likely to meet later in their careers. Of course, a thorough analysis of such investments requires a theoretical basis in finance that includes portfolio theory and the pricing models based on it, market efficiency, capital structure, and derivatives pricing. Topics with a less direct connection with real assets are omitted, such as bond pricing, interest rate models, market microstructure, exotic options, cash and receivables management, etc.

I have also used the material in this book for intermediate courses in finance for business school students. The purpose of these courses is to deepen students' theoretical understanding of finance and to prepare them for more specialized subjects in, for example, continuous-time finance and derivatives pricing. The step from an introductory MBA book to a specialized text is often too large, and this book can fruitfully be used to bridge the gap. It introduces students to techniques that they will meet in later courses, but in a much more accessible and less formal way than is usual in the specialized literature. Greater accessibility is increasingly required because of the growing diversity in business school students' backgrounds. In my experience, students find the material in the book both interesting and demanding, but most students rise to the challenge and successfully complete the course.

A final use that I have made of the book's material is for a permanent education course aimed at professionals in science and technology and technical project leaders. After some years of work experience, many professionals feel the need for more knowledge about the way financial managers decide about projects, particularly how they value the flexibility in projects with real options analysis. The scope and depth of the book are sufficient to make such professionals competent discussion partners of financial managers in matters of project valuation, including the aspects of strategic value.

Preface

Acknowledgements

I would not have enjoyed writing this book as much as I did without the support of many more people than can be mentioned here. I am grateful to my present and former PhD students, especially John Marius Ørke and Tom E. S. Farmen, Ph.D., Senior Adviser and Senior Portfolio Manager at Norway's Central Bank. They were first in line to be asked to read and re-read the collection of lecture notes, exercises and manuscripts that grew into this book. I also want to thank Thomas Hartman and my other colleagues at the School of Business, Stockholm University. Teaching at the School of Business whetted my interest in the pedagogical features of the material in this book. I am indebted to Jaap Spronk at RSM/Rotterdam School of Management and to my other former colleagues at Erasmus University Rotterdam; this book owes much to discussions with them. A final word of thanks is due to my students who, over the years, have contributed in many ways to this book.

Nico van der Wijst Kräftriket, Stockholm, 2013