Brain Disorders in Critical Illness

Mechanisms, Diagnosis, and Treatment

Edited by

Robert D. Stevens
Associate Professor, Department of Anesthesiology and Critical Care Medicine; Associate Professor of Neurology, Neurosurgery and Radiology-Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA

Tarek Sharshar
Professor, Department of Intensive Care Medicine, Raymond Poincaré Hospital, University de Versailles Saint-Quentin-en-Yvelines, Garches, France; Laboratory of Histopathology and Animal Models, Francois Jacob Centre, Institut Pasteur, Paris, France

E. Wesley Ely
Professor of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine and the Geriatric Research Education Clinical Center (GRECC) of Tennessee Valley Veterans Affairs Healthcare System, Nashville, TN, USA
Contents

List of contributors page viii
Foreword xiii
Jesse Hall
Introduction xv

Section 1. Epidemiology and Outcomes
1. The epidemiology of critical illness brain dysfunction 1
 Raoul Sutter and Robert D. Stevens
2. Cognitive dysfunction following critical illness 15
 Ramona O. Hopkins and James C. Jackson
3. Psychiatric disorders following critical illnesses 23
 Dimitry S. Davydow
4. Functional status and quality of life after critical illness 30
 Sanjay V. Desai, Nathan E. Brummel, and Dale M. Needham
5. Delirium and dementia: unraveling the complex relationship 39
 Margaret Pisani

Section 2. Behavioral Neurology in the ICU
6. Cognitive reserve 49
 Richard E. Temes, Robert S. Wilson, Lisa L. Barnes, and David A. Bennett
7. Neurology of consciousness impairments 59
 Benjamin Rohaut, Frédéric Faugeras, and Lionel Naccache
8. Mechanisms of attention and attentional impairment 68
 Paolo Bartolomeo
9. Neurology of sleep and sleep disorders 76
 Robert D. Sanders, Stefan D. Gurney, Jamie W. Sleigh, and Mervyn Maze
10. Neural basis of fear and anxiety 84
 Odile Viltart and Christel C. Vanbesien

Section 3. Biological Mechanisms
11. Experimental models of cognitive dysfunction in infection and critical illness 97
 Colm Cunningham
12. Neurobiological effects of systemic physiological and metabolic insults 108
 Jean-François Payen, Gérard Audibert, and Nicolas Bruder
13. Cerebral ischemia and reperfusion 119
 Raymond C. Koehler
14. Brain perfusion and autoregulation in systemic critical illness 129
 Martin Siegemund and Luzius A. Steiner
15. Delirium and neurotransmitter dysfunction 139
 Willem A. van Gool
Contents

Section 4. Diagnosis of Brain Dysfunction
23. Clinical neurological assessment of the critically ill patient 219
 Raoul Sutter, Tarek Sharshar, and Robert D. Stevens
24. Bedside assessment of delirium in critically ill patients 229
 Alawi Luetz and Claudia D. Spies
25. Electroencephalography and evoked potentials in critically ill patients 241
 Matthew A. Koenig and Peter W. Kaplan
26. Neuroimaging of delirium 257
 Karen J. Ferguson and Alasdair M. J. MacLullich

Section 5. Preventative and Therapeutic Interventions
27. Environmental modification 279
 Yoanna Skrobik
28. New paradigms in sedation of the critically ill patient 285
 Christopher G. Hughes and Pratik P. Pandharipande
29. Pharmacological management of delirium 294
 Dustin M. Hipp and E. Wesley Ely
30. Pharmacogenomics and cerebral dysfunction 305
 Yoanna Skrobik
31. Early physical and occupational therapy 316
 John P. Kress
32. Rehabilitation after critical illness 321
 Richard D. Griffiths and Christina Jones

Section 6. Clinical Encephalopathy Syndromes
33. Drug-induced encephalopathy 329
 Bruno Mégarbane
34. Metabolic encephalopathies: inborn errors of metabolism causing encephalopathies in adults 344
 Frederic Sedel
35. Encephalopathy associated with alcohol or drug withdrawal 354
 Felix Kork and Claudia D. Spies
36. Posterior reversible encephalopathy syndrome (PRES): the essential elements 362
 Walter S. Bartynski and Hebah M. Hefzy
37. Hypoxic-ischemic encephalopathy 373
 Fabio Silvio Taccone and Alain Cariou
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>38.</td>
<td>Sepsis-associated encephalopathy</td>
<td>381</td>
</tr>
<tr>
<td></td>
<td>Romain Sonneville, C. Rauturier, F. Verdonk, F. Chretien, and Tarek</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sharshar</td>
<td></td>
</tr>
<tr>
<td>39.</td>
<td>Seizures and status epilepticus in critical illness</td>
<td>391</td>
</tr>
<tr>
<td></td>
<td>Brandon Foreman and Jan Claassen</td>
<td></td>
</tr>
<tr>
<td>40.</td>
<td>Encephalopathy and coma in acute and chronic liver failure</td>
<td>403</td>
</tr>
<tr>
<td></td>
<td>Julia Wendon and Jennifer Ryan</td>
<td></td>
</tr>
<tr>
<td>41.</td>
<td>Neurological complications of cardiac surgery: stroke, encephalopathy</td>
<td>410</td>
</tr>
<tr>
<td></td>
<td>and cognitive decline</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rebecca F. Gottesman, Maura A. Grega, Guy M. McKhann, and Ola A.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selnes</td>
<td></td>
</tr>
</tbody>
</table>

Glossary 419
Index 424

Color plate section is between pp. 240 and 241.
Contributors

Ioannis P. Androulakis
Department of Biomedical Engineering, Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, and Department of Surgery, UMDNJ-Robert Wood Johnson Medical School, New Brunswick, NJ, USA

Djillali Annane
Service de reanimation, hospital Raymond Poincaré (AP-HP), University of Versailles SQY, Garches, France

Gérard Audibert
Department of Anesthesiology and Critical Care, Nancy University Hospital, Nancy, France

Lisa L. Barnes
Departments of Behavioral Sciences and Neurological Sciences, and Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA

Paolo Bartolomeo
INSERM-U 975, Centre de Recherche de l’Institut du Cerveau et de la Moelle Epinière (CRICM) et Université Pierre et Marie Curie (UPMC), Groupe Hospitalier Pitié-Salpêtrière, Paris, France; AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Fédération de Neurologie, Paris, France; Department of Psychology, Catholic University, Milan, Italy

Walter S. Bartynski
Department of Radiology and Radiological Science, Division of Neuroradiology, Medical University of South Carolina, Charleston, SC, USA

David A. Bennett
Professor of Neurological Sciences, Department of Neurological Sciences and Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA

Nicolas Bruder
Department of Anesthesiology and Critical Care, Marseille University Hospital, Marseille, France

Nathan E. Brummel
Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt School of Medicine, Nashville, TN, USA

Steve E. Calvano
Department of Surgery, UMDNJ-Robert Wood Johnson Medical School, New Brunswick, NJ, USA

Alain Cariou
Medical Intensive Care Unit, AP-HP, Cochin Hospital, Paris, and Paris Descartes University and Sorbonne Paris Cité Medical School, Paris, France

F. Chretien
Unité "Histopathologie Humaine et Modèles Animaux," Département Infection et Épidémiologie, Institut Pasteur, Paris, and University of Versailles Saint-Quentin-en-Yvelines, Garches, France

Jan Claassen
Division of Neurocritical Care, Neurological Institute of New York, Columbia University Medical Center, New York, NY, USA

Colm Cunningham
Trinity College Institute of Neuroscience and School of Biochemistry and Immunology, Trinity College Dublin, Republic of Ireland

Souhayl Dahmani
AP-HP, Robert Debré University Hospitals, INSERM-U 676, Paris Diderot University, Paris, France
Robert Dantzer
Department of Symptom Research, MD Anderson Cancer Center, Houston, TX, USA

Dimitry S. Davydow
Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA

Sanjay V. Desai
Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University, Baltimore, MD, USA

E. Wesley Ely
Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine and the Geriatric Research Education Clinical Center (GRECC) of Tennessee Valley Veterans Affairs Healthcare System, Nashville, TN, USA

Frédéric Faugeras
INSERM, ICM Research Center, UMRS 975, Paris, and AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Departments of Neurophysiology and Neurology, Paris, France

Karen J. Ferguson
Neuroimaging Research Fellow, School of Clinical Sciences, University of Edinburgh, UK

Brandon Foreman
Comprehensive Epilepsy Center, Neurological Institute of New York, Columbia University Medical Center, New York, NY, USA

Sadanand M. Gaikwad
Department of Neurology, Clinical Neuroscience Unit, University of Bonn, Bonn, Germany

Rebecca F. Gottesman
Department of Neurology, Johns Hopkins Bayview Medical Center, Baltimore, MD, USA

Maura A. Grega
Research Nurse Program Coordinator, The Johns Hopkins University, Baltimore, MD, USA

Richard D. Griffiths
Emeritus Professor of Medicine (Intensive Care), Whiston Hospital and Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK

Marion Griton
CNRS UMR 5536 Magnetic Resonance of Biological Systems, Victor Segalen Bordeaux 2 University, Bordeaux, France

Stefan D. Gurney
Magill Department of Anaesthesia, Intensive Care, and Pain Medicine, and Department of Anaesthetics, Intensive Care and Pain Medicine, Chelsea & Westminster Hospital, Imperial College London, UK

Hebah M. Hefzy
Department of Neurology, Henry Ford Hospital, Detroit, MI, USA

Michael T. Heneka
Department of Neurology, Clinical Neuroscience Unit, University of Bonn, Bonn, Germany

Dustin M. Hipp
Vanderbilt University School of Medicine, Nashville, TN, USA

Ramona O. Hopkins
Department of Psychology and Neuroscience Center, Brigham Young University, Provo, UT, and Department of Medicine, Pulmonary and Critical Care Division, Intermountain Medical Center, Murray, UT, USA

Christopher G. Hughes
Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN, USA

James C. Jackson
Division of Allergy, Pulmonary, and Critical Care Medicine, and Center for Health Services Research, Vanderbilt University School of Medicine, Nashville, TN, USA

Christina Jones
Nurse Consultant, Intensive Care Rehabilitation, Intensive Care Unit, Whiston Hospital, Prescot, Merseyside, and Honorary Reader, Institute of Ageing and Chronic Disease, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK

Peter W. Kaplan
Department of Neurology, Johns Hopkins Bayview Medical Center, Baltimore, MD, USA

Keith W. Kelley
Department of Immunophysiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
List of contributors

Raymond C. Koehler
Department of Anesthesiology and Critical Care Medicine, School of Medicine, The Johns Hopkins University, Baltimore, MD, USA

Matthew A. Koenig
Neurocritical Care, Neuroscience Institute, The Queen’s Medical Center, Honolulu, HI, USA

Jan Pieter Konsman
CNRS UMR 5536 Magnetic Resonance of Biological Systems, Victor Segalen Bordeaux 2 University, Bordeaux, France

Felix Kork
Department of Anaesthesiology and Intensive Care Medicine, Charité – Universitätsmedizin Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany

John P. Kress
Department of Medicine, Section of Pulmonary and Critical Care, University of Chicago, Chicago, IL, USA

Stephen F. Lowry
Department of Surgery, UMDNJ-Robert Wood Johnson Medical School, New Brunswick, NJ, USA

Alawi Luetz
Department of Anaesthesiology and Intensive Care Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany

David Luis
Service de reanimation, hospital Raymond Poincaré (AP-HP), University of Versailles SQY, Garches, France

Alasdair M. J. MacLullich
Department of Geriatric Medicine, University of Edinburgh, and Honorary Consultant in General and Geriatric Medicine, Royal Infirmary of Edinburgh, UK

Guy M. McKhann
Johns Hopkins University School of Medicine, Baltimore, MD, USA

Jean Mantz
Department of Anesthesia and Critical Care, Beaujon-Paris Val de Seine University Hospitals, Paris, France

Panteleimon D. Mavroudis
Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ, USA

Mervyn Maze
Department of Anesthesia & Perioperative Care, University of California San Francisco, San Francisco, CA, USA

Bruno Mégarbane
Medical and Toxicological Critical Care Unit, Lariboisière Hospital, Paris Diderot University, INSERM U705, Paris, France

Lionel Naccache
INSERM, ICM Research Center, UMRS 975, Paris; AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Departments of Neurophysiology and Neurology, Paris; University Paris 6, Faculté de Médecine Pitié-Salpêtrière, Paris, France

Dale M. Needham
Outcomes After Critical Illness and Surgery (OACIS) Group, Division of Pulmonary and Critical Care Medicine, and Department of Physical Medicine and Rehabilitation, The Johns Hopkins University, Baltimore, MD, USA

Pratik P. Pandharipande
Vanderbilt University School of Medicine, Anesthesia Service, VA TVHS, Nashville, Nashville, TN, USA

Jean-François Payen
Department of Anesthesiology and Critical Care, Grenoble University Hospital, Grenoble, France

V. Hugh Perry
Experimental Neuropathology, Centre for Biological Sciences, University of Southampton, Southampton, UK
List of contributors

Richard E. Temes
Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA

Willem A. van Gool
Department of Neurology, Academic Medical Centre, Amsterdam, the Netherlands

Christel C. Vanbesien
University Lille Nord de France/USTL (Sciences & Technologies, Lille 1), and INSERM UMR 837, Molecular events associated to early stages of Parkinson’s disease, Place de Verdun, Lille, France

F. Verdonk
Unité “Histopathologie Humaine et Modèles Animaux,” Département Infection et Epidémiologie, Institut Pasteur, Paris, and University of Versailles Saint-Quentin-en-Yvelines, Garches, France

Odile Viltart
University Lille Nord de France/USTL (Sciences & Technologies, Lille 1), and INSERM UMR 837, Plasticity and Development of Postnatal Brain, Place de Verdun, Lille, France

Julia Wendon
Division of Mucosal Biology and Transplantation, Institute of Liver Studies, Kings College London, Kings College Hospital, London, UK

Catherine N. Widmann
Department of Neurology, Clinical Neuroscience Unit, University of Bonn, Bonn, Germany

Robert S. Wilson
Rush Alzheimer’s Disease Center, Rush University, Chicago, IL, USA
Foreword

Jesse Hall, MD
Professor of Medicine, Anesthesia & Critical Care,
Section Chief, Pulmonary and Critical Care Medicine,
University of Chicago,
Chicago, TL, USA

As patients emerge from the terror and abyss of early life-threatening illness, many critical care physicians have learned the wisdom of asking them – or their loved ones when the patient cannot interact and communicate – a simple but probing question: “What do you hope will be achieved by our treatments here in the intensive care unit?” Unfortunately the question is more often asked in those circumstances that lead care providers to predict that the chances for survival and recovery are becoming remote. I believe that if we asked this more routinely, of those dramatically improving and hence lifting our pride in the power of our healing, as well as those dying and bringing us to acknowledge the limitations of our interventions and engaging our commitment to provide comfort to all, the answer would be fairly straightforward and akin to: “To return to my life as I knew it” or “To be myself again.”

In my experience our patients and their families show extraordinary realism and resilience. What they mean by those simple statements are not first and foremost that their hearts, and lungs, and kidneys, and limbs all return to their level of function before devastating illness or injury, although this is of course a deep wish. Yes, we discuss whether the dialysis machine or mechanical ventilator will be temporary and if it is to be eventually withdrawn what the path to liberation will entail. But their most fervent wish is to have their loved one return home. And in addition to their return to home and community and job, that they would be the same person, with the personal history, memories, ability to interact, personality and personhood that they recently left behind. In the hierarchy of all of the organs that we discuss on rounds each day when we use our organ- and problem-based approach to organize our findings and plans, they wish most to have their brains back.

Paradoxically, this pre-eminent priority embedded in their simple answers to our question is often precisely what we are least able to address, because we lack insight into what has happened to their brain in the course of critical illness, and what the arc of recovery might be. There are reasons the field of critical care medicine has found itself lacking in response to this patient-oriented outcome and priority. We are a young field of medicine, which arose in response to technology expansion and its geographic concentration in hospital units. Early means were developed and refined by pioneers of the field to halt lethal organ failure, to provide an opportunity to diagnose and treat underlying diseases and return patients to an increasingly stable state. We learned that the interplay of these disease processes and our life-support systems was complex and we wisely chose to define critical illness syndromes characterizing the state of our patients, such as the Systemic Inflammatory Response Syndrome. Careful exploration of organ function under our watch taught us that even when the patient became ill from a seemingly localized problem, such as an inflamed pancreas, coagulation, liver, renal, lung, and brain dysfunctions were more often than not present. We assumed, perhaps overly optimistically, that these organ dysfunctions seemingly acquired during critical illness would be shed if the fundamental problem was properly identified and treated, at least if our patient did not march inexorably into a dreaded state of refractory multi-system organ failure.

Because our healthcare systems lack ideal longitudinal care and follow-up – in fact far from ideal for either patients or care providers – our early hopeful supposition that conditions such as ICU delirium would be temporary and shed as the patient improved was not much tested before our own eyes. However, our increasing success in treating life-threatening illness generated large populations of survivors of critical illness, and this reality coupled with the dedication and insight of early investigators describing long-term outcomes from critical illness have challenged our early halcyon projections of recovery from presumed temporary brain dysfunction. Seminal studies of patients recovering from the acute respiratory distress syndrome (ARDS), understandably focusing upon serial lung function improvement over time, described
major neurocognitive and neuropsychiatric problems persisting for years after the lung injury that so captured our attention, even when a clear and defined structural brain injury appeared absent. It was most often these deficits of the brain and psyche that precluded patients from returning to the full aspects of their premorbid lives, and which dominated their assessment of the quality of their lives.

Somewhat late to the table for the reasons stated above, a large multi-disciplinary group of investigators has arisen across the world, bringing the perspectives and tools of critical care medicine, neurology, psychology, psychiatry, pharmacology, neuroimaging, and rehabilitation medicine to this clinical problem. A handful of descriptive studies has now exploded in only a few years to become literally hundreds of publications defining, describing, and exploring the mechanisms of brain dysfunction acquired during and persisting after diverse critical illnesses. Accordingly, it is timely for the creation of a textbook to summarize where we are in this nascent field, and what the best paths to further study and treatment of our patients might be. Brain Disorders in Critical Illness, created by senior editors Robert Stevens, Tarek Sharshar, and Wes Ely, is a tour de force in the pursuit of this mission.

The assembled authors are leaders from the fields of inquiry needed to address the central questions that have arisen about brain dysfunction in critical illness. The reader will be presented with an organization of material that is logical and thorough. It begins with a section on the epidemiology and outcomes that have been increasingly described in the literature based upon longitudinal study of critically ill patients. It then moves to a series of chapters describing behavioral neurology in the ICU, a necessary preamble to then describe biological mechanisms for dysfunction of the central nervous system with emphasis on those mechanisms most plausibly operative during the diverse insults that produce critical illness. A series of chapters then address the dilemma of diagnosis. We are still at a point of determining if there are truly unique types of injury occurring during typical treatments in the ICU, or whether we are witnessing injuries akin to those previously described during other processes (e.g., cardiopulmonary bypass, hypoxia, anesthesia), and how we may assemble tools and then definitions to identify at-risk patients during their ICU stay for special attention downstream. While we certainly are early in the course of even understanding this problem (or how many different problems the general observations will yield), the next section addresses some early studies of promising means of preventing and even treating brain dysfunction in the critically ill. Finally, the last section describes those relatively specific encephalopathies (e.g., hepatic encephalopathy, sepsis) that have been the subjects of study in their own right in the past.

Emerging fields benefit enormously from thoughtful pauses that inventory existing information, organize findings into comprehensible frameworks, offer new paradigms for understanding what has been described, and at least name the demon when there are large gaps challenging our understanding. This textbook provides those valuable contributions to the field of critical care medicine, and the authors are to be commended for their accomplishments. It is my hope the book will stimulate as much new thought and discovery as it reviews, and if so it will be poised for an even more exciting second edition in the near future.
Introduction

Tarek Sharshar, E. Wesley Ely, and Robert D. Stevens

In recent years there has been widespread acknowledgment that critical illness has a fundamental neurological dimension. A broad body of work has demonstrated that severe illnesses, possibly in conjunction with practices and interventions in the ICU, are responsible for neurological complications which have a major impact on short- and long-term outcome. This neurological burden is almost certainly an indirect product of intensive care itself, with increasing numbers of patients surviving to the recovery phase of critical illness. Scientific exploration of the relevance and impact of ICU-acquired neurological disorders has been led by an initially small, but rapidly expanding, group of dedicated researchers.

An illustration of this process is the work on delirium which started with observational studies and now includes large, multicenter randomized trials. Delirium is a complex and fascinating syndrome as its pathophysiology, expression, and severity is heavily dependent on the underlying disorder (e.g., sepsis, hepatic failure), while understanding of its biological mechanisms draws on concepts from neurology, neuropharmacology, neuroimmunology, and the cognitive neurosciences. The association between delirium and age- or disease-associated cognitive impairment is clearly reciprocal, possibly implicating subtle shifts between chronic and acute neuroinflammatory states.

Another illustration is anoxic-ischemic encephalopathy resulting from cardiac arrest, which has been the object of a major research effort mobilizing intensivists, neurologists, neurophysiologists, and neuroradiologists in order to develop prognostic models and to assess therapeutic strategies. Anoxic-ischemic encephalopathy is also a clinical paradigm for understanding the biology of consciousness and consciousness disorders.

Critical illnesses are life-threatening disturbances of homeostasis. The central nervous system is a major regulator of homeostasis, responding to physiological challenges via behavioral, neuroendocrine, autonomic, and neuroinflammatory responses. A major task for research in critical illness is to understand the fundamental differences between adaptive and maladaptive homeostatic responses, a task which will require rigorous scientific evaluation of interactions between immunological, endocrine, and autonomic systems. Knowledge of these interactions is likely to yield breakthroughs in the treatment of life-threatening diseases such as sepsis, ARDS, and their associated neurological sequelae.

Collectively, constructs elaborated in this book underscore the central relevance of neuroscience in the realm of critical care medicine, not only for clinicians in the ICU who are routinely facing acute neurological syndromes, but also for clinical and translational researchers who are evaluating novel therapeutic interventions and innovative methods to map brain perturbations via advances in neuroimaging and electrophysiology.

This book provides an overview of brain disorders in critical illness, of which delirium and anoxic-ischemic encephalopathy are emblematic. But the overarching goal is to construct a biological framework for understanding these disorders. It is our conviction that insights and methods developed in neuroscience will be the main driver of scientific progress in the neurology of critical illness. We would like to extend our deepest appreciation to each author for having enthusiastically accepted to contribute to this book. As editors of this “first-ever textbook” synthesizing Brain Disorders in Critical Illness we look forward to advances in care that will bring more complete healing to our patients globally as they emerge from ICUs and put the pieces of their lives back together.