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8. One-Loop Diagrams in
the Bosonic String Theory

Our discussions of string scattering amplitudes in the first volume of this
book were limited to tree diagrams. These are the lowest-order approxi-
mations to string scattering amplitudes. In principle, quantum corrections
to the tree level or classical results should be obtained by a perturbation
expansion derived from string quantum field theory. Our present state
of knowledge does not make this possible. Historically, loop diagrams
were constructed by using unitarity to construct loop diagrams from tree
diagrams. This unitarization of the tree diagrams led, in time, to the
topological expansion, as sketched in chapter 1.

As has been explained in chapters 1 and 7, the tree amplitudes for on-
mass-shell string states can be represented by functional integrals over
Riemann surfaces that are topologically equivalent to a disk (for open
strings) or a sphere (for closed strings). Higher-order corrections are iden-
tified with functional integrals over surfaces of higher genus. An important
ingredient in the calculation of scattering amplitudes is the correlation
function of vertex operators corresponding to the external particles emit-
ted from the surface. The possible world-sheet topologies include surfaces
with holes or ‘windows’ cut out (for type I theories, where the surfaces
have boundaries) or ‘handles’ attached. For theories with oriented strings
the surfaces must be orientable. Similarly, for theories containing only
closed strings the surfaces must be closed.

As the genus of a surface increases, the power of the coupling constant
that accompanies it also increases. For example, adding a handle to a
surface is equivalent to adding a loop of closed strings (as in fig. 8.1)
and increases the order of a diagram by a factor of k%, where & is the
gravitational coupling constant. Cutting a window out of a surface (which
is only possible in theories that contain open strings) adds a boundary and
hence it increases the number of internal open strings (fig. 8.2a). The
order of the diagram is increased by g ~ & for each window, where g
is the Yang-Mills coupling constant. However, the presence of a window
does not always correspond to adding a loop of open strings. For example,
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2 8. One-Loop Diagrams in the Bosonic String Theory

Figure 8.1. A handle added to a world sheet of arbitrary topology.

C) ©®)

Figure 8.2. Cutting a window out of a world sheet adds a boundary. This increases
the number of internal open-string propagators as seen in (¢). Cutting a window out
of a spherical world sheet results in a diagram that is topologically a disk, as shown in

(8)-

cutting a window out of a sphere is a modification of the (type I) closed-
string tree amplitude, which gives a world sheet that is topologically a
disk with external closed-string particles attached at interior points of the
surface (fig. 8.2b). Type I superstring theory is based on unoriented open
and closed strings and therefore also includes nonorientable surfaces.
This topological classification of diagrams in string theories is certainly
strikingly different from the classification of Feynman diagrams in point-
particle field theory. In string theories there are far fewer diagrams to
consider at each order in perturbation theory, and there is no meaningful
separation of diagrams into tadpoles, mass insertions, vertex corrections,
etc. At the one-loop level, the analysis of world-sheet path integrals is
tractable. In fact, one-loop diagrams can be generated by the same op-
erator methods that we used for tree diagrams in chapter 7. Beyond the
one-loop level, the analysis of world-sheet path integrals involves some-
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8.1 Open-String One-Loop Amplitudes 3

what esoteric mathematics, which we will not explore in this book.

In the bosonic theory calculations based on the covariant operator for-
malism require the same mathematical manipulations as those that arise
in light-cone gauge, at least when the external on-shell states are taken
to have vanishing + components of momentum. Given Lorentz invari-
ance, amplitudes for external particles with momenta restricted in this
way completely determine the amplitudes provided that there are not too
many external states. Although we use the covariant method in most of
this chapter, very similar techniques also apply to the light-cone gauge
method in this special frame.

8.1 Open-String One-Loop Amplitudes
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Figure 8.3. (a) Unitarity equates the discontinuity of a scattering amplitude (with
M incoming and N outgoing particles) across a threshold cut (due to P intermediate
particles) to the product of M — P and P — N scattering amplitudes integrated over
intermediate state phase space. (4) At one loop, unitarity relates the discontinuity of a
loop diagram to the integral of the product of two tree diagrams over the phase space
for the intermediate on-shell two-particle states.

In point-particle theories the one-loop diagrams can be determined by
unitarity in terms of tree diagrams without using the apparatus of second-
quantized field theory. Unitarity requires that scattering amplitudes
should have suitable branch cuts as a function of the Lorentz-invariant
quantities formed out of the external momenta. These cuts arise from
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4 8. One-Loop Diagrams in the Bosonic String Theory

the regions of momentum space in which intermediate states are on their
mass shells. For example, fig. 8.3a depicts the unitarity equation for an
amplitude with M incoming and N outgoing particles. A given set of
P intermediate on-shell physical states contributes to the discontinuity
across the branch cut an amount that is proportional to the product of
the amplitude for M — P particles multiplied by the amplitude for P —
N particles integrated over the accessible phase space for the intermediate
particles.

When expanded as a power series in the coupling constant this nonlinear
equation relates the discontinuity of a one-loop amplitude to the product
of two tree amplitudes. In this case, illustrated in fig. 8.3, the number
of intermediate states, P, is two. In particular, the form of the one-loop
amplitude, including its normalization, is determined in terms of the tree
diagrams up to an arbitrary entire function of these invariants. In the
case of ordinary field theory, the arbitrary entire function corresponds to
the arbitrariness associated with the renormalization procedure. In gauge
invariant field theories, it is also necessary to avoid including in loop
diagrams the contributions of timelike or longitudinally polarized gauge
mesons. These contributions can be removed by going to a light cone
or unitary gauge, or can be canceled by correctly including the Faddeev-
Popov ghosts,

Similar considerations apply to the construction of the one-loop ampli-
tudes in string theories from the tree diagrams. In this case the require-
ment of Regge behavior at high energies eliminates the ambiguity that
exists in field theory. Regge behavior forces amplitudes to vanish in cer-
tain asymptotic regimes; addition of an entire function of the momenta
to one-loop diagrams would inevitably spoil this property.

2 P P+1 P+M P+M+1 P+M+0-1

|
i

P+M+Q

Figure 8.4. A general tree diagram with P + M + Q ground-state particles factorized
to give a tree with two arbitrary excited states and M ground states.

For example, the tree diagram of fig. 8.4 illustrates the interaction of
P 4+ M + @ on-shell open-string states. It can be factorized as shown in
the figure to obtain the amplitude for an arbitrary pair of ‘excited’ states
to couple to M on-shell states. Ignoring the presence of unphysical states
for the moment the one-loop amplitude is obtained by sewing the excited
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8.1 Open-String One-Loop Amplitudes 5

states together, i.e., by inserting a propagator between the initial and
the final excited states and summing over all possible states as well as
integrating over their momenta. In the complete amplitude it is necessary
to sum over loop diagrams with twists inserted in all possible ways in the
internal propagators of the loop.

Just as in ordinary field theory, covariant string-theory formulas de-
scribe states of unphysical polarization circling in the loop. Care must
be taken to somehow suppress their contribution. In early calculations
of string loop diagrams, the propagation of unphysical states was avoided
by inserting a rather complicated physical-state projection operator in
the propagators. This ensured that the circulating particles corresponded
only to physical states; the procedure was analogous to some early ap-
proaches to Yang-Mills theory. A more modern approach incorporates
the Faddeev—Popov ghost modes in the calculations instead. This ap-
proach is far simpler, and is the approach that we will use in performing
covariant calculations.

In the bosonic theory the inclusion of ghost modes is quite easy. The
vertex operators, such as the tachyon vertex operator etk X , are con-
structed from X*# only, without ghosts, where X#(o, 7) is the string coor-
dinate defined in chapter 2. When ghosts are included in the formalism,
these vertex operators are understood to include a unit operator in the
ghost sector of the Fock space. The ghosts circulating around the loops
can then cancel the contributions of unphysical states. This is their only
role.

How can we be certain that the ghosts are really correctly canceling
the contributions of the unphysical states? It is particularly important to
address this question, since — pending a completely satisfactory derivation
of loop amplitudes from a logically satisfying starting point — there is
an element of guesswork in formulating the Feynman rules including the
ghosts. To gain some insight into this important question, it is possible
to do the calculations in light-cone gauge. In this case, there are no
unphysical states propagating in the loop — neither states that violate the
Virasoro conditions, nor null states, nor ghosts. All the states in the light-
cone Fock space correspond to physical propagating degrees of freedom.
The light-cone amplitudes are thus manifestly unitary — or at any rate,
singularities that appear are due to physical intermediate states. It will
be rather clear in our discussion that — at least for processes that are
easily discussed in both formalisms — the light-cone approach gives the
same answers that one obtains in the covariant treatment with ghosts.
Ultimately, the rules involving Faddeev—Popov modes should be derived
from a logically sound starting point, perhaps a gauge-invariant nonlinear
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6 8. One-Loop Diagrams in the Bosonic String Theory

field theory of strings.

A curious feature of string theories is that new singularities can arise
due to divergences of sums over intermediate states. This feature already
appeared in tree amplitudes, where we saw in chapters 1 and 7 that ¢-
channel poles arise due to divergences in the sum over s-channel poles. In
the case of loop diagrams even more remarkable things can happen. For
instance, an open-string loop with suitable twists can actually give rise to
closed-string poles. It was by trying to reconcile these singularities with
unitarity that the significance of the critical dimension first became appar-
ent; in the critical dimension, these singularities correspond to graviton
poles, and (as we discussed in §1.5.6), they are the reason that a consis-
tent string theory without gravity does not seem possible, at the quantum

level. M 1
2
3
Figure 8.5. The planar loop diagram with M ground-state particles
M 1
2
3

Figure 8.6. A nonorientable one-loop diagram with M external particles has a world
sheet that is a Mobius strip.
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8.1 Open-String One-Loop Amplitudes 7

3

Figure 8.7. A nonplanar one-loop diagram in which K particles are attached to one
boundary and M — K to the other.

The simplest one-loop diagram in a theory of open strings corresponds
to a process for which the world sheet is topologically an annulus or cylin-
der with M external states attached to one boundary as illustrated in
fig. 8.5. (A world sheet with this topology is referred to as a planar di-
agram). The precise meaning of the parameters describing the annulus
and the positions of the attached particles in this figure is explained later
in this chapter. By including an odd number of twists in the world sheet
it is possible to construct other one-loop diagrams associated with world
sheets that are nonorientable, i.e., Mobius strips having only one bound-
ary (as in fig. 8.6). By using an even number of twists one can describe
oriented surfaces in which particles are attached to both boundaries of
the annulus as in fig. 8.7. These are called nonplanar diagrams. These
various different contributions to the full one-loop open-string amplitude
must be calculated separately, although much of the computation is sim-
ilar for each of the diagrams. (In this respect, theories of oriented closed
strings, which have only one diagram at each order, are a lot simpler.)

8.1.1 The Planar Diagrams

Let us consider bosonic open strings carrying group-theory quantum num-
bers of the type described in §6.1. Let n be the dimension of the fun-
damental representation of the gauge group — the representation of the
charges that sit at the ends of the open string. Then the group-theory
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8 8. One-Loop Diagrams in the Bosonic String Theory

factor associated with the planar diagram (fig. 8.5) is
Gp =ntr(MA2... M), (8.1.1)

where the factor of n arises from the trace of the n X n unit matrix as-
sociated with the free boundary of the annulus. As in the case of tree
diagrams, the matrices A, must be n X n matrices belong to the funda-
mental representation of the algebra of any of the allowed groups (i.e.,
the classical groups SO(n), USp(n) and U(n)) if the states are at even
mass levels. Hermitian matrices (denoted g in §6.1) would be used for
odd levels.

For simplicity and explicitness, we mostly consider processes in which
the external states are either tachyons (an odd level) or massless vector
particles (an even level), although essentially the same techniques can be
used for arbitrary excited states. In either case the vertex for emitting
an on-shell particle with momentum k, at ‘time’ 7 is denoted by V(k;, 7),
where

V(ky,7) = LoV (k,,0)e Lo, (8.1.2)

As in chapter 7, we frequently work with £ = '™ and take  to be real,
corresponding to a Wick-rotated time coordinate. In this case we write

V(kr,z) = 220V (ky, 1)z 10, (8.1.3)

We recall that, apart from the vertex (8.1.3), the main ingredient in the
construction of tree diagrams in chapter 7 was the propagator, which for
bosonic open strings was

A=(Ly—-1)"1 (8.1.4)

To associate an amplitude with the diagram of fig. 8.5, we include a vertex
(8.1.2) for each external line, and a propagator (8.1.4) for each internal
line. The closed loop is represented by a trace in the Fock space of the
internal lines. Putting things together in this way, the amplitude that we
define is

Ap(1,2,...,M)=¢MGp / dPp Tr(AV (k1,1)AV (kz, 1)
.. AV (kp,1)).

(8.1.5)

In the covariant formalism used here the trace runs over the infinite set of
bosonic oscillator modes of, u = 0,...,25, as well as the ghost oscillators
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8.1 Open-String One-Loop Amplitudes 9

ks

Figure 8.8. The kinematics for the calculation of the planar loop diagram.

b, and cy. In the light-cone gauge, the only modes entering in the trace
would be the transverse oscillators o, 7 = 1,...,24. Just as in ordinary
field theory, the poles of the propagators give rise to cuts associated with
on-shell intermediate states.

The sequence of emitted particles (1,2,..., M) corresponds to the order
in which they are attached to the boundary in fig. 8.5. The cyclic prop-
erty of the trace ensures that only the cyclic ordering matters. The full
one-loop planar amplitude includes a sum over all cyclically inequivalent
permutations of the external particles, each weighted with its own group-
theory factor. The kinematics for this process is illustrated in fig. 8.8.

As in chapter 7, it is convenient to use the integral representation

1
A=(L—1)"1= /:cL°—2d:1: (8.1.6)
0

for the open-string propagator. The vertex operator for emitting an on-
shell tachyon of momentum k* (with k% = 2) is given by

Vo(k,1) =: FXM) ;| (8.1.7)

If the emitted particle is a massless vector boson, the vertex operator is
given by
V(¢ k,1) = ¢ - X(1)eH X, (8.1.8)

where (# is the polarization vector of the particle and ¢ - k = k% = 0).
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10 8. One-Loop Diagrams in the Bosonic String Theory

As explained in chapter 7, a convenient way to evaluate amplitudes with
external vector particles is to use the vertex operator

V(k,¢,1) = exp{¢ - X(1) + ik - X (1)}, (8.1.9)

with the understanding that only the terms linear in the (’s are to be
kept. This vertex factorizes into a product of terms for each oscillator
mode, which is helpful in the evaluation of the traces. {This will also be
useful in the discussion of the heterotic string in the next chapter.) This
vertex does not need to be normal ordered, since the only ordering factor
that arises is an exponential involving (%, which does not contribute to
the terms linear in (¥.

Let us now consider the one-loop planar diagram with M external
tachyons. Inserting the integral representation for the propagators in
(8.1.5) and using the fact that 2LV (k,,1) = V(k,,z)z°, the expression
for the loop can be written as

1M
Ap(1,2,...,M) ‘—gMGp/Hdz,/deTr[%(kl,x1)

o =1

x Vo(ky, z123) ... Vo(kpr, 21 . . .z a0 )wo ™2

U

€

r=

1 IM
=gMGp / =/ i pi (pr = pesn)(L,-.., M),
0

(8.1.10)

where

I(1,..., M) = /deTr (Votkr, 1) . Volka, parhe™)  (81.11)

and

pr=21...Ty, (8.1.12)

WEPY =21...TM. (8.1.13)

In writing (8.1.10), we have used the fact that the Jacobian for the trans-
formation from the z, variables that parametrize the individual propaga-
tors to the p, variables is given by

I1dz =dw [ dor. (8.1.14)

The variables p, are integrated on the interval (w,1) of the real axis of
the complex p plane.
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