
1. Introduction

1.1 The Early Days of Dual Models

In 1900, in the course of trying to fit to experimental data, Planck wrote
down his celebrated formula for black body radiation. It does not usually
happen in physics that an experimental curve is directly related to the
fundamentals of a theory; normally they are related by a more or less
intricate chain of calculations. But black body radiation was a lucky
exception to this rule. In fitting to experimental curves, Planck wrote
down a formula that directly led, as we all know, to the concept of the
quantum.

In the 1960s, one of the mysteries in strong interaction physics was
the enormous proliferation of strongly interacting particles or hadrons.
Hadronic resonances seemed to exist with rather high spin, the mass
squared of the lightest particle of spin J being roughly m2 = J/af, where
a' ~ l(GeV)~ is a constant that became known as the Regge slope.
Such behavior was tested up to about J = 11/2, and it seemed conceiv-
able that it might continue indefinitely. One reason that the proliferation
of strongly interacting particles was surprising was that the behavior of
the weak and electromagnetic interactions was quite different; there are,
comparatively speaking, just a few low mass particles known that do not
have strong interactions.

The resonances were so numerous that it was not plausible that they
were all fundamental. In any case consistent theories of fundamental
particles of high spin were not known to exist. Consistent (renormaliz-
able) quantum field theories seemed to be limited to spins zero, one-half,
and one, the known examples being abelian gauge theories and scalar
and Yukawa theories. That limitation on the possible spins in consis-
tent quantum field theory still seems valid today, though now we would
include Yang-Mills theory in the list of consistent theories for spin one.
The apparent limitation of consistent quantum field theories to low spin
was compatible with the existence of a successful field-theory description
of the electromagnetic interactions, in which the basic particles have spin
one half and spin one, and was compatible at least with attempts (which
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1. Introduction

Figure 1.1. An elastic scattering process with incoming particles with momenta pi, pi
and outgoing particles with momenta —P3,-p4 (we adopt the convention that the
labels refer to incoming momenta). Both s- and /-channel diagrams are indicated. In
field theory the amplitude is constructed as a sum of s-channel and /-channel diagrams.

in time succeeded) at field theories of the weak interactions. But a similar
approach to strong interactions did not appear promising.

A related puzzle about strong interactions concerned the high-energy
behavior of the scattering amplitudes. Consider an elastic scattering pro-
cess with incoming spinless particles of momenta pi, p2 and outgoing parti-
cles of momenta P3,P4. We adopt a metric with signature {—h + . . . + } ,
so that the mass squared of a particle is m2 = — p2. The conventional
Mandelstam variables are defined as

P2)2 = ~{P2 + P3)2 p3)2. (1.1.1)

They obey the one identity s+t-\-u = ]T) ra2. We assume that the external
states in fig. 1.1 are particles such as pions that transform in the adjoint
representation of the flavor group, which for three flavors is SU(3) or
U(3). The flavor quantum numbers of the ith external meson are specified
by picking a flavor matrix A,-. We will discuss a term in the scattering
amplitude proportional to the group-theory factor tr(AiA2A3A4). Since
this group-theory factor is invariant under the cyclic permutation 1234 —>
2341, Bose statistics require that the corresponding amplitude should be
cyclically symmetric under P1P2P3P4 —• P2P3P*Pi- In terms of Mandelstam
variables, this permutation of momenta amounts to s *-* t, which is the
symmetry we will require for the amplitude A(s,t).

In quantum field theory, the leading nontrivial contributions to the
scattering amplitude come from the tree diagrams of fig. 1.1. The basic
reason that it is difficult to construct sensible quantum field theories of
particles of high spin is that tree diagrams with the exchange of high spin
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1.1 The Early Days of Dual Models

particles have bad high-energy behavior. Asymptotically, they exceed
unitarity bounds. Consider, for instance, the ^-channel diagram. Denote
the external particles in fig. 1.1 as <j> and the exchanged particle as a. If a
has spin zero fig. 1.1 may involve a simple cj)*<j>cr interaction; the amplitude
is then simply A(s, t) = —g2/(t — M2) with g being the coupling constant
and M the mass of the a particle. This amplitude vanishes for t —» oo,
this being one aspect of the excellent high-energy behavior of the cubic
scalar interaction we are discussing.

Figure 1.2. A one-loop diagram can be made by sewing together two tree diagrams,
as indicated here.

Suppose instead that the sigma particle is a spin J field cr^^.^j. F°r

such a field, the cubic coupling in fig. 1.1 must then be something like

<t>*dii\dii2 ••• dfufi ' cr^1^2"^7. In fig. 1.1 there are now 2J factors of
momenta. If the external particles are scalars then the contribution to
the scattering amplitude of the exchange in the t channel of this spin J
particle has the form

at high energies. The behavior of this amplitude is therefore worse and
worse (more and more divergent) for larger and larger J. An objective
criterion for what is a 'bad' amplitude is to ask what will happen when we
sew together amplitudes like that of (1.1.2) to make loops, as in fig. 1.2.

This is the behavior of the tree-level scattering amplitude in the asymptotic
region of large s, fixed t. The sJ behavior is easily found by contracting the
momenta that appear in the interaction vertices in fig. 1.1. The exact formula
(for moderate s) is more complicated, involving a Legendre polynomial Pj(cos 9t)
($t is the center-of-mass scattering angle in the t channel). We prefer to write only
the high-energy behavior, which is transparent and adequate for our purposes.
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4 1. Introduction

The one-loop integrand in n dimensions is roughly J dnp A2/(p2)2, with
A being the tree amplitude of (1.1.2). In four dimensions such a loop
diagram is convergent for J < 1, has a potentially renormalizable loga-
rithmic divergence for J = 1, and has a nasty unrenormalizable divergence
for J > 1.

There are strongly interacting particles of various mass and spin that
might be exchanged in the t channel, so we must think of a ^-channel
amplitude of the general form

where now we allow for the possibility that the couplings gj and masses
Mj of the exchanged particles may depend on J (and perhaps on other
quantum numbers that we do not indicate). Of course, one might take
the point of view that the strong interactions are so strong that a Bom-
like approximation as in (1.1.3) is hopeless. But let us be optimists and
see how well we can do. What is the high-energy behavior of the sum in
(1.1.3)? If this is a finite sum, the high-energy behavior is simply deter-
mined by the hadron of largest J that contributes in (1.1.3). This is very
different from what is observed in nature; the actual high-energy behavior
of hadron scattering amplitudes is much softer than the behavior of any
individual term in (1.1.3). (In fact, Regge asymptotic behavior of the
type described in §1.1.2. is a reasonable approximation to experiment.)
On the other hand, it is not reasonable to think of (1.1.3) as a finite sum.
There certainly does not seem to be any such thing as a 'hadron of highest
spin'. With (1.1.3) viewed as an infinite sum, it is certainly conceivable
that the whole sum might have a high-energy behavior better than the
behavior of any individual term in the series, just as the function e~x is
smaller for x —> oo than any individual term in its power series expansion

e~x = £r=o(-*)7«!
Regarding (1.1.3) as an infinite sum has another consequence. In a phys-

ical process such as the elastic scattering of pions, we expect the t-channel
poles that appear in (1.1.3), but we also expect s-channel resonances or
in other words poles in the amplitude at certain values of s. In fact, the
cyclic symmetry that we discussed earlier requires that the coefficient of
tr(AiA2AaA4) in the scattering amplitude have both s- and ^-channel poles
or neither. A finite sum (1.1.3) defines an amplitude A(s,t) that has no
5-channel poles; for fixed t, (1.1.3) manifestly defines an entire function
of 5, as long as there are only a finite number of terms in the sum. It
is precisely for this reason that the perturbative expansion of ordinary
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1.1 The Early Days of Dual Models 5

quantum field theories satisfies crossing symmetry by including both s-
and ^-channel diagrams. In the case of an infinite sum, things are differ-
ent. Though each term in (1.1.3) is an entire function of s, the infinite
sum might diverge at some finite values of s, giving poles in the s channel.
Thus, once we accept the fact that (1.1.3) is essentially an infinite series,
it is no longer obvious that s-channel terms must be included separately;
they may be already implicit in (1.1.3).

Similar remarks could be made if we took as our starting point resonant
scattering or in other words contributions to scattering amplitudes with
5-channel poles. We would then construct an amplitude analogous to
(1.1.3) but with 3-channel poles rather than ^-channel poles:

< U - 4 )

Symmetry under cyclic permutation of the external momenta requires that
the same masses and couplings appear in (1.1.4) as in (1.1.3). Studying
(1.1.4) we would again observe that a finite sum of the type in (1.1.4)
inevitably has a high-energy behavior much worse than the observed be-
havior of hadrons, but this is not inevitably true for an infinite sum of
this type. Furthermore, a finite sum (1.1.4) would certainly define (for
fixed s) an entire function of 2, but this might not be true for an infinite
sum.

Pursuing these thoughts still further, one might imagine that if the
couplings gj and masses Mj are cunningly chosen, then the s-channel
and ^-channel amplitudes A(s,t) and Af(s,t) might be equal. In this
case, the entire amplitude could be written as a sum over only s-channel
poles, as in (1.1.4), or as a sum over only ^-channel poles, as in (1.1.3).
This would be a sharp contrast to the field-theory situation in which one
ordinarily needs a sum over both s- and ^-channel poles.

Equality of the s- and ^-channel amplitudes was advocated around 1968
by Dolen, Horn and Schmid, who argued, on the basis of an approximate
evaluation of (1.1.3) and (1.1.4) (carried out with the help of experimen-
tal data), that the equality A(s,t) = A'(s,t) was indeed approximately
obeyed for small values of s and t. This was called the 'duality' hypothesis,
the hypothesis that s- and ^-channel diagrams give alternative or 'dual' de-
scriptions of the same physics. Is duality an approximation or a principle?
At first sight it looks well nigh impossible to choose the resonance masses
and couplings to obey exactly the duality relation A(s, t) = Af(s, t). How-
ever, a way of doing this was found by Veneziano in 1968. Veneziano
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1. Introduction

simply postulated a formula for the scattering amplitude, namely

A[S't}- T(-a(s)-a(t)) • ( L 1 - 5 )

Here F is the Euler gamma function,

oo

T{u)= [f-h-tdt, (1.1.6)
o

and a(s) is the 'Regge trajectory', for which Veneziano postulated the
linear form a(s) = a(0) + a's; a1 and a(0) are known in Regge-pole
theory as the Regge slope and the intercept, respectively.

1.1.1 The Veneziano Amplitude and Duality

It is not evident at first sight that the Veneziano amplitude obeys duality,
but we will now show that it does. First of all, we need to know something
about the gamma function. This function obeys the identity

r(u + 1) = ur(u)'. (1.1.7)

This is proved, starting from (1.1.6), by simple integration by parts:

oo oo

r(u + 1) = - / t*4-e-*dt = u ( f-h'Ut = uT(u). (1.1.8)

It is evident from (1.1.6) that F(l) = 1. If u is a positive integer, then
repeated use of (1.1.7) implies that

r(u) = (u - 1)!. (1.1.9)

The integral representation of the F function in (1.1.6) is valid as long as
the real part of u is positive, and shows that T has no singularities in this
part of the complex u plane. The recursion relation (1.1.7) can be used
to extend the domain of definition of F and determine its singularities.
Writing (1.1.7) in the form

r(tt) = HifJiii (i.i.io)

gives a definition of the gamma function for Reu > — 1, since the right
hand side of (1.1.10) has already been defined in that region. Equation
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1.1 The Early Days of Dual Models 7

(1.1.10) also shows that F has a simple pole at u = 0 with residue 1. This
process can be generalized; repeated use of (1.1.7) gives

r(tt) = , r(» + ") _ (i.i.n)
K ; u ( u + l ) ( u + n l ) v J

for any positive integer n. The right-hand side of (1.1.11) is uniquely de-
fined by the integral representation (1.1.6) as long as Re u > — n, so we ob-
tain a unique analytic continuation of the gamma function in this region.
Since n is arbitrary, the gamma function actually has a unique analytic
continuation throughout the whole complex u plane. From (1.1.11) we can
see that the only singularities of F are simple poles a tu = 0,—1,—2,
The behavior for u near — n (n a non-negative integer) can be read off
from (1.1.11) and is

T(u) —L1L. (1.1.12)

Now we wish to discuss the analytic behavior of the function

which is called the Euler beta function. It is related to the Veneziano
amplitude by A(s,t) = B(—a(s),—a(t)). Evidently, (1.1.13) has a simple
pole when u or v is a non-positive integer. There are no double poles in
(1.1.13), since while T(u) and T(v) may simultaneously have poles, when
this occurs the denominator in (1.1.13) has a pole at the same time. This is
an important point, because simple poles are the only singularities allowed
in tree amplitudes in relativistic quantum mechanics. The behavior of
B{u, v) for v ~ —n (n being a non-negative integer) is evidently

1 (-l)n

B(u, v) - , (t* - l)(ti - 2) . . . (u - n). (1.1.14)
v + n n\

Here we are using (1.1.7) to write the residue of the pole at v = —n as a
polynomial in u; this is again an important step since the residue of a pole
in relativistic quantum mechanics must be a polynomial. As a function of
v for fixed ti, B{u,v) has only the singularities indicated in (1.1.14). We
claim now that (for Re u > 0 so that the following infinite sum converges)
we can write

-^H£(t,-l)(«-2)...(ti-n). (1.1.15)
n=0

The idea here is that the sum on the right of (1.1.15) reproduces all of the
singularities of the beta function, so could differ from it only by an entire
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1. Introduction

function of v, that is, a function without singularities in the complex v
plane. Such a function could not vanish for large \v\. As the sum on
the right-hand side of (1.1.15) vanishes for positive u and large \v\ (away
from the real axis), and we will presently see that B(u,v) has the same
property, they must be equal.

We can immediately express (1.1.15) as a formula for the Veneziano
amplitude:

a(t) — n

While the Veneziano amplitude was defined originally to manifestly obey
A(S)t) = A(t,s), this symmetry is not at all apparent in (1.1.16). Be-
cause of the underlying symmetry, we can immediately write down the
alternative expansion

n=0 v '

Now, with the simple choice of 'Regge trajectory', a(t) = olt + a(0), the
singularities of (1.1.16) are simple poles corresponding, as in (1.1.3), to t-
channel exchange of particles of mass M2 = (n — a(0))/a', n = 0,1,2,
The residue of the pole at a(t) = n is (with the linear choice of Regge
trajectory) an nth order polynomial in s, corresponding, in view of (1.1.3),
to the fact that the particles of mass (n — a(0))/af have spin at most n.
The smallest possible mass of a particle of spin J is thus (J — a(0))/a',
and this is why a1 is called the 'Regge slope'; the particles of mass M2 =
(J — a(0))/al are said to lie on the 'leading Regge trajectory'. We are
interested in the case a1 > 0, since these particles would otherwise be all
or almost all tachyons.

The equality of (1.1.16) and (1.1.17) is the seemingly impossible prop-
erty of 'duality': the same amplitude can be written as a sum of s-channel
poles as in (1.1.17) or as a sum of ^-channel poles as in (1.1.16).

One thing that is not obvious in either (1.1.17) or (1.1.16) is the sign
of the residues of the s-channel and ^-channel poles. In (1.1.2) for ex-
change of a spin J particle, the coefficient of —(—l)J/(t — M2), which
is called the residue of the pole, must be positive (since g2 must be pos-
itive). More generally, the residues of poles must be positive in a rela-
tivistic quantum theory, for unitarity and absence of ghosts. We are thus
led to the question of whether the residues in (1.1.16) and (1.1.17) are
positive, something that is far from obvious. Much early work on dual
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1.1 The Early Days of Dual Models 9

models was concerned with this question, culminating eventually in the
4no-ghost theorem', which asserts that ghosts (or negative residues) are
absent if certain rather surprising restrictions are placed on the value of
a(0) and the dimension of space-time. In particular, it turned out that
the dimension of space-time should be 26, and the constant a(0) in the
Regge trajectory a(s) = a's + a(0) should be 1. (The no-ghost theorem
suggests but by itself does not uniquely determine those values.) We shall
return to these matters in the next chapter.

Next, we would like to work out an interesting integral representation
for the Veneziano amplitude. Consider the function

l

C(ti,v)= I dxxu~\l-x)v-1. (1.1.18)

o

It obeys

l l
C(u-l,t; + l)= [ dxxu-2(l-x)v = —— [dxi^-x^Ml-xYJ u — 1 J ax

o o

(1.1.19)
where we have integrated by parts. The beta function obeys the same
identity B(u - l,v + 1) = ^B(u,v) by virtue of (1.1.7). C also obeys

l

C(u + l,v) = fdxxu(l-x)v-1

0

i i (1.1.20)
= I dxxu-l(l-x)v-1- j dxxu~1{l-x)v

0 0

=C(u,v)-C(u,v + l).

The analogous beta function identity J3(u + l,i?) +J3(u, v + 1) = B(u,v) is
likewise a consequence of (1.1.7). These recursion relations together with
the similar asymptotic behavior of the functions B(u,v) and C(u, v) and
the fact that they are equal at u — v = 1 imply that in fact B(u, v) =
C(u, v). Therefore, we obtain an integral representation for the Veneziano
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10 1. Introduction

amplitude:
l

A( c 4\ / /r —«(«) —1/1 'r\~Ol(t)~ls]<r (\ 1 01 "\
f\\S)l) — / V — / O X . ^ l . l . Z J L J

0

This integral representation is quite important, since it is in this form that
the Veneziano amplitude usually appears in most approaches to calculat-
ing string scattering amplitudes.

1.1.2 High-Energy Behavior of the Veneziano Model

Our next task is to understand the asymptotic behavior of the Veneziano
amplitude for high energy. We consider first the Regge region of large s,
fixed t. The physical region for elastic scattering is positive s, negative
t or vice versa. Large s, fixed t corresponds to small angle scattering at
high energy; it was the phenomenology of this region that gave birth to
Regge-pole theory and eventually to dual models.

To explore the asymptotic behavior of the Veneziano amplitude, we
first need to know the asymptotic behavior of the gamma function. The
behavior of T(u) for large u can be easily extracted from the integral
representation

oo

r(u) = /dttu-le-1. (1.1.22)

o

For large w, the integral is dominated by the region t ~ u — 1. A saddle
point evaluation in this region gives Stirling's formula

T{u) ~ v & " - 1 / 2 e - « . (1.1.23)

Although our derivation assumed positive t/, Stirling's formula is actually
valid for large u throughout the u plane as long as one keeps away from
the negative u axis, where T(u) has poles. From (1.1.23), we see that the
Veneziano amplitude

V(-a(s))T(-a(t))
A M = T(-a(s)-a(t)) < U - 2 4 )

has in the region of large s, fixed t the asymptotic behavior

A(s,t) ~ r(-a( t ))(-a(s)) aW. (1.1.25)

For a linear Regge trajectory, a(s) ~ a1 s, the asymptotic behavior for
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